JPH0593935A - Polarization state control method - Google Patents

Polarization state control method

Info

Publication number
JPH0593935A
JPH0593935A JP25395291A JP25395291A JPH0593935A JP H0593935 A JPH0593935 A JP H0593935A JP 25395291 A JP25395291 A JP 25395291A JP 25395291 A JP25395291 A JP 25395291A JP H0593935 A JPH0593935 A JP H0593935A
Authority
JP
Japan
Prior art keywords
component
signal
wave plate
product
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25395291A
Other languages
Japanese (ja)
Inventor
Kazushige Yonenaga
一茂 米永
Noboru Takachio
昇 高知尾
Katsu Iwashita
克 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25395291A priority Critical patent/JPH0593935A/en
Publication of JPH0593935A publication Critical patent/JPH0593935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize received signal light having fluctuating polarization states to a linearly polarized wave of a prescribed direction. CONSTITUTION:The received signal light P having the two orthogonal polarization states is passed through a quarter-wave length plate 1 and a halfwave length plate 2. The two orthogonal polarization axis (X-Y) components of this signal light are respectively heterodyne-detected, by which two intermediate frequency band signals are detected. The quarter-wave length plate 1 is controlled by the signal B obtd. by multiplying the product of the X component and the Y component delayed by pi/2 in the phase by a demodulation signal A. The halfwave length plate 2 is controlled by the signal C obtd. by multiplying the product of the sum of and the difference between the X component and the Y component by the demodulation signal A and, therefore, the received signal light P is stabilized to the linearly polarized wave of the prescribed direction. The fluctuation in the polarization generated in the transmission path of polarization multiplex optical wave communication is compensated and the deterioration in the characteristics by the fluctuation in the polarization is lessened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏波多重光波通信にお
ける受信側での偏波状態制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization state control method on the receiving side in polarization multiplexed lightwave communication.

【0002】[0002]

【従来の技術】光波通信の分野では、位相雑音による感
度劣化の低減を目的とし、光の偏波状態を用いてデータ
を伝送する通信方式の研究が盛んに行なわれており、最
近では2つの直交偏波を夫々変調するようにした通信方
法(信学技報,Vol.91,No.63,OCS91−1
0,pp.7〜12)も提案されている。この通信方法
は位相雑音に原理的に不感応であり、信号帯域を従来の
半分にできるという利点を有している。しかし、受信さ
れる信号光の偏波状態を完全な円偏波として仮定してお
り、偏波制御回路を持たないことから、伝送路中での偏
波変動が考えられる光ファイバ通信等では該偏波変動の
影響により受信感度が著しく劣化すると考えられる。
2. Description of the Related Art In the field of lightwave communication, research has been actively conducted on a communication system for transmitting data using the polarization state of light for the purpose of reducing sensitivity deterioration due to phase noise, and recently two types have been studied. Communication method for modulating each of the orthogonal polarizations (Technical Report, Vol. 91, No. 63, OCS 91-1
0, pp. 7-12) have also been proposed. This communication method is insensitive to phase noise in principle, and has an advantage that the signal band can be reduced to half that of the conventional method. However, the polarization state of the received signal light is assumed to be a perfect circular polarization, and since it does not have a polarization control circuit, it may be It is considered that the reception sensitivity is significantly degraded due to the influence of polarization fluctuation.

【0003】一方、受信側での偏波状態制御方法に関す
る報告もいくつかあり、その一例(信学論,Vol.J68
−C,No.2,pp.77〜86)を図12に示す。
On the other hand, there are some reports on the method of controlling the polarization state on the receiving side, one example of which is shown in (Theoretical theory, Vol. J68).
-C, No. 2, pp. 77-86) is shown in FIG.

【0004】この制御系では、まず受信信号光Pを45
°傾いた2つの移相器(電気光学位相変調器)121,
122に通過させ、該信号光をハーフミラー123で分
岐し、分岐した信号光を45°傾いたロッションプリズ
ム124に通す。そして、この信号光から2つの光検出
器125,126でX軸から±45°傾いた成分の電力
S1 ,S2 (図13参照)を検出し、差動増幅器127
で差をとって誤差信号(S1 −S2 )を得て、この誤差
信号で移相器121の電圧を制御する。また、ハーフミ
ラー123を通過した信号光をハーフミラー128で分
岐し、分岐した信号光を45°傾けた1/4波長板12
9とロッションプリズム130に通す。そして、この信
号光から2つの検出器131,132でX軸及びY軸方
向の電力S3 ,S4 (図14参照)を検出し、差動増幅
器133で差をとって誤差信号(S3 −S4 )を得て、
この誤差信号で移相器122の電力を制御する。以上の
動作によってX軸方向の直線偏波が作り出される。
In this control system, first, the received signal light P is changed to 45
Two tilted phase shifters (electro-optical phase modulator) 121,
Then, the signal light is passed through the beam splitter 122, split by the half mirror 123, and the split signal light is passed through the Lotion prism 124 inclined at 45 °. Then, from the signal light, the two photodetectors 125 and 126 detect the electric powers S1 and S2 (see FIG. 13) of the components inclined by ± 45 ° from the X axis, and the differential amplifier 127
To obtain the error signal (S1-S2), and the voltage of the phase shifter 121 is controlled by this error signal. Further, the signal light that has passed through the half mirror 123 is branched by the half mirror 128, and the branched signal light is inclined by 45 °.
9 and the lotion prism 130. Then, the two detectors 131 and 132 detect the electric powers S3 and S4 (see FIG. 14) in the X-axis and Y-axis directions from this signal light, and the differential amplifier 133 takes the difference to obtain an error signal (S3-S4). Got
The power of the phase shifter 122 is controlled by this error signal. The above operation produces a linearly polarized wave in the X-axis direction.

【0005】[0005]

【発明が解決しようとする課題】上述のような従来の偏
波状態制御方法は偏波状態が情報に依存しない場合には
有効であるが、偏波変調や偏波多重のように偏波状態が
情報に依存する場合を考えたときに、制御信号の極性の
反転などによって正確に動作しなくなる欠点がある。
Although the conventional polarization state control method as described above is effective when the polarization state does not depend on information, the polarization state control such as polarization modulation or polarization multiplexing is effective. However, when considering the case where is dependent on information, there is a drawback that it does not operate correctly due to inversion of the polarity of the control signal.

【0006】本発明は上記問題点に鑑みてなされたもの
で、その目的とするところは、2つの直交偏波を利用し
た偏波多重光波通信において、偏波状態が変動する受信
信号光を所定方向の直線偏波に安定させることができる
偏波状態制御方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a received signal light whose polarization state fluctuates in a polarization multiplexed lightwave communication using two orthogonal polarizations. It is an object of the present invention to provide a polarization state control method capable of stabilizing linearly polarized waves in any direction.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
請求項1記載の制御方法では、2つの直交した偏波状態
をもつ受信信号光を1/4波長板及び1/2波長板に通
過させ、該信号光の2つの直交偏波軸(X−Y)成分を
夫々ヘテロダイン検波して2つの中間周波数帯信号を検
出し、このX成分と位相をπ/2遅らせたY成分との積
に、復調信号を乗算した信号で1/4波長板を制御する
と共に、X成分とY成分の和と差の積に、復調信号を乗
算した信号で1/2波長板を制御している。
In order to achieve the above object, in the control method according to claim 1, the received signal light having two orthogonal polarization states is passed through a quarter wave plate and a half wave plate. Then, two orthogonal polarization axes (X-Y) components of the signal light are heterodyne-detected to detect two intermediate frequency band signals, and the product of this X component and the Y component whose phase is delayed by π / 2 is detected. In addition, the 1/4 wavelength plate is controlled by the signal multiplied by the demodulation signal, and the 1/2 wavelength plate is controlled by the signal obtained by multiplying the product of the sum and difference of the X component and the Y component by the demodulation signal.

【0008】請求項2記載の制御方法では、2つの直交
した偏波状態をもつ受信信号光を1/4波長板及び1/
2波長板に通過させ、該信号光の2つの直交偏波軸(X
−Y)成分を夫々ヘテロダイン検波して2つの中間周波
数帯信号を検出し、このX成分と位相をπ/2遅らせた
Y成分との積に、復調信号を乗算した信号で1/4波長
板を制御すると共に、X成分の二乗とY成分の二乗との
差に、復調信号を乗算した信号で1/2波長板を制御し
ている。
In the control method according to the second aspect of the present invention, the received signal light having two polarization states orthogonal to each other is converted into a 1/4 wavelength plate and a 1 / wave plate.
The two orthogonal polarization axes (X
-Y) component is heterodyne-detected to detect two intermediate frequency band signals, and the product of the X component and the Y component whose phase is delayed by π / 2 is multiplied by the demodulation signal to obtain a quarter wave plate. And the difference between the square of the X component and the square of the Y component is multiplied by the demodulation signal to control the ½ wavelength plate.

【0009】請求項3記載の制御方法では、2つの直交
した偏波状態をもつ受信信号光を1/4波長板及び1/
2波長板に通過させ、該信号光と局部発振光夫々の2つ
の直交偏波軸(X−Y)成分を夫々ホモダイン検波して
4つの中間周波数帯信号を検出し、このXI成分とYQ
成分の積とXQ成分とYI成分の積との差に、復調信号
を乗算した信号で1/4波長板を制御すると共に、XI
成分の二乗とXQ成分の二乗の和とYI成分の二乗とY
Q成分の二乗の和との差に、復調信号を乗算した信号で
1/2波長板を制御している。
According to a third aspect of the control method, the received signal light having two orthogonal polarization states is converted into a quarter wave plate and a one / fourth wave plate.
The two orthogonal polarization axes (X-Y) components of the signal light and the local oscillation light are respectively homodyne-detected to detect four intermediate frequency band signals, and these XI component and YQ are passed.
The ¼ wavelength plate is controlled by a signal obtained by multiplying the difference between the product of the components and the product of the XQ component and the YI component by the demodulation signal, and
The sum of the square of the component and the square of the XQ component and the square of the YI component and Y
The 1/2 wavelength plate is controlled by a signal obtained by multiplying the demodulated signal by the difference between the sum of the squares of the Q components and the demodulated signal.

【0010】請求項4記載の制御方法では、2つの直交
した偏波状態をもつ受信信号光を1/4波長板及び1/
2波長板に通過させ、該信号光と局部発振光夫々の2つ
の直交偏波軸(X−Y)成分を夫々ホモダイン検波して
4つの中間周波数帯信号を検出し、このXI成分とYQ
成分の積とXQ成分とYI成分の積との差に、復調信号
を乗算した信号で1/4波長板を制御すると共に、XI
成分とYI成分の和と差の積と、XQ成分とYQ成分の
和と差の積との差に、復調信号を乗算した信号で1/2
波長板を制御している。
According to a fourth aspect of the control method, the received signal light having two orthogonal polarization states is converted into a quarter wavelength plate and a one / fourth wavelength plate.
The two orthogonal polarization axes (X-Y) components of the signal light and the local oscillation light are respectively homodyne-detected to detect four intermediate frequency band signals, and these XI component and YQ are passed.
The ¼ wavelength plate is controlled by a signal obtained by multiplying the difference between the product of the components and the product of the XQ component and the YI component by the demodulation signal, and
The product of the sum and difference of the component and the YI component, and the product of the sum and the difference of the XQ component and the YQ component, multiplied by the demodulated signal
It controls the wave plate.

【0011】[0011]

【作用】請求項1記載の制御方法によれば、ヘテロダイ
ン検波後の偏波のX成分と、位相をπ/2遅らせたY成
分との積は、復調された信号を乗算することによって該
信号に依存する成分がキャンセルされ、伝送路中に生じ
たx,y成分間の位相差のみを含んだ信号となる。ま
た、X成分とY成分の和と差の積(電力の差)について
も、復調された信号を乗算することによって該信号に依
存する成分がキャンセルされ、受信信号光と受信側偏波
ビームスプリッタとの主軸の傾きに対応する信号とな
る。つまり、前者の信号で1/4波長板を制御すること
によって受信信号光を所定方向の直線偏波にすることが
でき、また後者の信号で1/2波長板を制御することに
よってその直線偏波を受信軸から45°傾いた方向に合
わせることができる。
According to the control method of the present invention, the product of the X component of the polarized wave after the heterodyne detection and the Y component of which the phase is delayed by π / 2 is multiplied by the demodulated signal to obtain the signal. The component dependent on is canceled and the signal becomes a signal containing only the phase difference between the x and y components generated in the transmission path. Regarding the product of the sum and difference (power difference) of the X component and the Y component, the component dependent on the signal is canceled by multiplying the demodulated signal, and the received signal light and the reception side polarization beam splitter The signal corresponds to the inclinations of the main axes of and. That is, by controlling the ¼ wavelength plate with the former signal, the received signal light can be linearly polarized in a predetermined direction, and by controlling the ½ wavelength plate with the latter signal, the linear polarization can be changed. The waves can be aligned in a direction inclined by 45 ° from the receiving axis.

【0012】請求項2記載の制御方法によれば、ヘテロ
ダイン検波後の偏波のX成分の二乗とY成分の二乗との
差は、復調された信号を乗算することによって該信号に
依存する成分がキャンセルされ、受信信号光と受信側偏
波ビームスプリッタとの主軸の傾きに対応する信号とな
る。請求項1の制御方法とは1/2波長板に対する制御
信号の演算方法を異にするが、同様の作用が得られる。
According to the control method of the second aspect, the difference between the square of the X component and the square of the Y component of the polarized wave after the heterodyne detection depends on the demodulated signal and is dependent on the signal. Is canceled and becomes a signal corresponding to the inclination of the principal axis of the reception signal light and the polarization beam splitter on the reception side. Although the method of calculating the control signal for the half-wave plate is different from that of the control method according to claim 1, the same operation can be obtained.

【0013】請求項3記載の制御方法によれば、ホモダ
イン検波後の偏波のXI成分とYQ成分の積とXQ成分
とYI成分の積との差は、復調された信号を乗算するこ
とによって該信号に依存する成分がキャンセルされ、伝
送路中で生じたx,y成分間の位相差のみを含んだ信号
となる。また、XI成分の二乗とXQ成分の二乗の和と
YI成分の二乗とYQ成分の二乗の和との差について
も、復調された信号を乗算することによって該信号に依
存する成分がキャンセルされ、受信信号光と受信側偏波
ビームスプリッタとの主軸の傾きに対応する信号とな
る。つまり、前者の信号で1/4波長板を制御すること
によって受信信号光を所定方向の直線偏波にすることが
でき、また後者の信号で1/2波長板を制御することに
よってその直線偏波を受信軸から45°傾いた方向に合
わせることができる。
According to the control method of the third aspect, the difference between the product of the XI component and the YQ component of the polarization after the homodyne detection and the product of the XQ component and the YI component is multiplied by the demodulated signal. The component dependent on the signal is canceled and the signal contains only the phase difference between the x and y components generated in the transmission path. Further, regarding the difference between the sum of the squares of the XI component and the square of the XQ component and the sum of the square of the YI component and the square of the YQ component, the component dependent on the signal is canceled by multiplying the demodulated signal, It becomes a signal corresponding to the inclination of the principal axes of the received signal light and the receiving side polarization beam splitter. That is, by controlling the ¼ wavelength plate with the former signal, the received signal light can be linearly polarized in a predetermined direction, and by controlling the ½ wavelength plate with the latter signal, the linear polarization can be changed. The waves can be aligned in a direction inclined by 45 ° from the receiving axis.

【0014】請求項4記載の制御方法によれば、ホモダ
イン検波後の偏波のXI成分とYI成分の和と差の積
と、XQ成分とYQ成分の和と差の積との差は、復調さ
れた信号を乗算することによって該信号に依存する成分
がキャンセルされ、受信信号光と受信側偏波ビームスプ
リッタとの主軸の傾きに対応する信号となる。請求項3
の制御方法とは1/2波長板に対する制御信号の演算方
法を異にするが、同様の作用が得られる。
According to the control method of the fourth aspect, the difference between the product of the sum and difference of the XI component and the YI component of the polarized wave after homodyne detection and the product of the sum and the difference of the XQ component and the YQ component is By multiplying the demodulated signal, the component dependent on the signal is canceled and the signal becomes a signal corresponding to the inclination of the principal axes of the received signal light and the reception side polarization beam splitter. Claim 3
Although the method of calculating the control signal for the half-wave plate is different from the control method of, the same effect can be obtained.

【0015】[0015]

【実施例】まず、請求項1に記載した発明の実施例を図
1示す光受信機の構成図を参照して説明する。同図にお
いて1は1/4波長板、2は1/2波長板、3は光カッ
プラ、4は局部発振用レ−ザ、5は偏波ビ−ムスプリッ
タ、6a,6bは光検出器、7はπ/2位相遅延器、8
a乃至8cは低域通過フィルタ、9は符号判定器、1
a,10bは1bit遅延器、11は加算器、12は減
算器、13a乃至13eは乗算器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of the invention described in claim 1 will be described with reference to the block diagram of the optical receiver shown in FIG. In the figure, 1 is a quarter wavelength plate, 2 is a half wavelength plate, 3 is an optical coupler, 4 is a laser for local oscillation, 5 is a polarization beam splitter, 6a and 6b are photodetectors, 7 is a π / 2 phase delay device, 8
a to 8c are low-pass filters, 9 is a code determiner, 1
Reference numerals a and 10b are 1-bit delay devices, 11 is an adder, 12 is a subtractor, and 13a to 13e are multipliers.

【0016】受信信号光Pは、まず1/4波長板1及び
1/2波長板2を順に通過し、局部発振用レ−ザ4の発
振光と共に光カップラ3に入る。光カップラ3で合波さ
れた信号光は偏波ビ−ムスプリッタ5に入り、2つの直
交偏波軸(X−Y)成分に分離される。このX成分とY
成分は夫々光検出器6a,6bに入り、IX とIY のI
F(中間周波数)帯電流に変換される。
The received signal light P first passes through the quarter-wave plate 1 and the half-wave plate 2 in order, and enters the optical coupler 3 together with the oscillation light of the local oscillation laser 4. The signal light multiplexed by the optical coupler 3 enters the polarization beam splitter 5 and is separated into two orthogonal polarization axis (X-Y) components. This X component and Y
The components enter the photodetectors 6a and 6b, respectively, and the I of IX and IY
Converted to F (intermediate frequency) band current.

【0017】ヘテロダイン検波後の電流IX ,IY は乗
算器13aで乗算された後、低域通過フィルタ8aと符
号判定器9を通過して復調信号Aとなる。
The currents IX and IY after the heterodyne detection are multiplied by the multiplier 13a and then passed through the low-pass filter 8a and the sign determiner 9 to become the demodulated signal A.

【0018】また、電流IX と、π/2位相遅延器7で
位相を遅らされた電流IY は乗算器13bで乗算された
後、低域通過フィルタ8bと1bit遅延器10aを通
過し、さらに乗算器13cで上記の復調信号Aと乗算さ
れて信号Bとなる。この信号Bは制御信号として1/4
波長板1に帰還される。
The current IX and the current IY whose phase has been delayed by the π / 2 phase delay unit 7 are multiplied by the multiplier 13b and then passed through the low pass filter 8b and the 1-bit delay unit 10a, and further, The demodulated signal A is multiplied by the multiplier 13c to obtain a signal B. This signal B is 1/4 as a control signal
It is returned to the wave plate 1.

【0019】更に、電流IX ,IY は加算器11と減算
器12で夫々加・減算され、これら和と差が乗算器13
dで乗算された後、低域通過フィルタ8cと1bit遅
延器10bを通過し、さらに乗算器13eで上記の復調
信号Aと乗算されて信号Cとなる。この信号Cは制御信
号として1/2波長板2に帰還される。
Further, the currents IX and IY are added and subtracted by an adder 11 and a subtractor 12, respectively, and the sum and difference thereof are multiplied by a multiplier 13.
After being multiplied by d, it passes through the low-pass filter 8c and the 1-bit delay device 10b, and is further multiplied by the demodulated signal A in the multiplier 13e to become a signal C. This signal C is fed back to the half-wave plate 2 as a control signal.

【0020】図2は図1に示した光受信機に対応する光
送信機の変調部の構成図で、同図において21は半導体
レ−ザ、22a,22bは偏波ビ−ムスプリッタ、23
a,23bは位相変調器である。
FIG. 2 is a block diagram of a modulator of an optical transmitter corresponding to the optical receiver shown in FIG. 1, in which 21 is a semiconductor laser, 22a and 22b are polarization beam splitters, and 23 is a polarization beam splitter.
Reference numerals a and 23b are phase modulators.

【0021】半導体レ−ザ1からの信号光は、まず偏波
ビ−ムスプリッタ22aに入り、2つの直交偏波軸(x
−y)成分に分離される。偏波のx軸成分とy軸成分は
夫々位相変調器23a,23bで変調され、偏波ビ−ム
スプリッタ22bで合波される。変調された信号光は、
図3に示すように2つの直交した直線偏波状態を持つこ
とになる。
The signal light from the semiconductor laser 1 first enters the polarization beam splitter 22a and two orthogonal polarization axes (x
-Y) separated into components. The x-axis component and the y-axis component of the polarized wave are modulated by the phase modulators 23a and 23b, respectively, and combined by the polarized beam splitter 22b. The modulated signal light is
As shown in FIG. 3, it has two orthogonal linear polarization states.

【0022】ここで、上述の偏波状態制御について具体
式を挙げて詳しく説明する。
Here, the above-mentioned polarization state control will be described in detail with reference to specific equations.

【0023】図2に示した光送信機側の偏波ビームスプ
リッタ22a,22bの直交軸をx−yとすると、送信
電界のx,y成分ETx、ETyは夫々、 ETx=ATxcos(ωs t+φs +πdx ) ETy=ATycos(ωs t+φs +πdy ) となる。上式のATx,ATyは夫々送信電界のx,y成分
の振幅、ωs は送信光の角周波数、φs は送信光の位相
雑音、dx ,dy は夫々x,y成分の電界を位相変調し
た2値データ信号(0または1)である。
Assuming that the orthogonal axes of the polarization beam splitters 22a and 22b on the optical transmitter side shown in FIG. 2 are xy, the x and y components ETx and ETy of the transmission electric field are ETx = ATxcos (ωst + φs + πdx), respectively. ) ETy = ATycos (ωst + φs + πdy). Where ATx and ATy are the amplitudes of the x and y components of the transmission electric field, ωs is the angular frequency of the transmission light, φs is the phase noise of the transmission light, and dx and dy are the phase modulation of the electric fields of the x and y components, respectively. It is a value data signal (0 or 1).

【0024】この信号光は伝送中、伝送路である光ファ
イバの複屈折の影響を受け、受信端では電界のx,y成
分間に位相差が生じる。また、送信側偏波ビームスプリ
ッタ22a,22bと受信側偏波ビームスプリッタ5の
主軸の傾き、及び伝送路中での偏波方向の回転等によ
り、受信信号光Pと受信側偏波ビームスプリッタ5の間
には主軸に傾きが生じる。
During transmission, this signal light is affected by the birefringence of the optical fiber that is the transmission line, and a phase difference occurs between the x and y components of the electric field at the receiving end. In addition, the received signal light P and the reception-side polarization beam splitter 5 are caused by the inclination of the main axes of the transmission-side polarization beam splitters 22a and 22b and the reception-side polarization beam splitter 5, rotation of the polarization direction in the transmission path, and the like. There is a tilt in the main axis.

【0025】一方、光受信機の偏波ビームスプリッタ5
の直交軸をX−Yとすると、受信電界ERX,ERYは夫
々、 ERX=cosθATxcos(ωs t+φs +πdx +ψ) −sinθATycos(ωs t+φs +πdy ) ERY=cosθATycos(ωs t+φs +πdy −ψ) +sinθATxcos(ωs t+φs +πdx ) となる。上式のθは信号光からみた送信側偏波ビームス
プリッタ22a,22bの主軸と受信側偏波ビームスプ
リッタ5の主軸のずれ、ψは伝送路中に生じたx,y成
分間の位相差である。
On the other hand, the polarization beam splitter 5 of the optical receiver
Letting X-Y be the orthogonal axis of X, the received electric fields ERX and ERY are ERX = cos θATxcos (ωst + φs + πdx + ψ) -sinθATycos (ωst + φs + πdysω + x + s + t + cos + ATs + ωd + sθ + sd + φs + Δs + Δs + Δs + A). Becomes In the above equation, θ is the shift between the main axes of the transmission side polarization beam splitters 22a and 22b and the reception side polarization beam splitter 5 viewed from the signal light, and ψ is the phase difference between the x and y components generated in the transmission path. is there.

【0026】この信号光は図1に示した光受信機におい
てX,Y成分が夫々独立に局部発振光と合波されヘテロ
ダイン検波される。ここでは、 ATx=ATy=AT ALX=ALY=AL が成立する。上式のALX,ALYは夫々局部発振光の電界
のX,Y成分の振幅である。
In the optical receiver shown in FIG. 1, the signal light is heterodyne-detected by independently combining the X and Y components with the local oscillation light. In this case, ATx = ATy = AT ALX = ALY = AL. ALX and ALY in the above equation are the amplitudes of the X and Y components of the electric field of the local oscillation light, respectively.

【0027】ヘテロダイン検波によって得られるIF帯
電流IX ,IYは夫々、 IX =K[cosθcos(ωi t+φ+πdx +ψ) −sinθcos(ωi t+φ+πdy )] IY =K[cosθcos(ωi t+φ+πdy −ψ) +sinθcos(ωi t+φ+πdx )] 但し、K=ηeAT AL /hν となる。上式のωi はビート角周波数、φはビート位相
雑音、ηは光検出器の量子効率、eは電子の電荷、hは
プランク定数、νは局部発振光の周波数である。そし
て、各電流IX ,IY を用いて復調信号Aと信号Bと信
号Cが夫々演算される。
The IF band currents IX and IY obtained by the heterodyne detection are respectively IX = K [cos θcos (ωi t + φ + πdx + ψ) -sin θcos (ωit + φ + πdy)] IY = K [cos θcos (ωi t + φ + πsd co ((ωi t + φ + πdy-co) (ωi t + φ + πdy-ψ) However, K = ηeAT AL / hν. In the above equation, ω i is the beat angular frequency, φ is the beat phase noise, η is the quantum efficiency of the photodetector, e is the electron charge, h is the Planck's constant, and ν is the frequency of the locally oscillated light. Then, the demodulated signal A, the signal B, and the signal C are calculated using the respective currents IX and IY.

【0028】即ち、電流IX ,IY の積は、低域通過フ
ィルタ(LPF)8aで高調波成分を取り除かれた後に
符号判定器(DEC)9で判定され、θとψが小さいと
きに復調信号Aとして、 DEC{LPF[IX ×IY ]}=cosπ(dx −dy )=±1 が得られる。
That is, the product of the currents IX and IY is judged by the code judging device (DEC) 9 after the harmonic components are removed by the low pass filter (LPF) 8a, and the demodulated signal is obtained when θ and ψ are small. As A, DEC {LPF [IX × IY]} = cosπ (dx−dy) = ± 1 is obtained.

【0029】また、電流IX と、位相をπ/2遅らせた
電流IY (|IY |π/2)の積は、低域通過フィルタ
(LPF)8bで高調波成分を取り除かれた後に上記の
復調信号Aを乗算され、信号Bとして、 LPF[IX ×|IY |π/2]×DEC{LPF[IX ×IY ]} =−1/2×K2 cos2 θsin2ψ が得られる。この信号Bは1/4波長板1への制御信号
として帰還され、ψを0に制御する。つまり、任意の楕
円偏波を所定方向の直線偏波に変換するように働く。
Further, the product of the current IX and the current IY whose phase is delayed by π / 2 (| IY | π / 2) is demodulated after the harmonic components are removed by the low pass filter (LPF) 8b. The signal A is multiplied to obtain the signal B as LPF [IX × | IY | π / 2] × DEC {LPF [IX × IY]} = − 1/2 × K 2 cos 2 θ sin2ψ. This signal B is fed back as a control signal to the quarter-wave plate 1 to control ψ to 0. That is, it works to convert an arbitrary elliptical polarization into a linear polarization in a predetermined direction.

【0030】更に、電流IX ,IY の和と差の積(電力
の差)は、低域通過フィルタ(LPF)8bで高調波成
分を取り除かれた後に上記の復調信号Aを乗算され、信
号Cとして、 LPF[(IX +IY )×(IX −IY )]×DEC{LPF[IX ×IY ]} =−K2 cosψsin2θ が得られる。この信号Cはψ=0のときに1/2波長板
2への制御信号として帰還され、θを0またはπに制御
する。つまり、受信信号光Pの主軸を受信側偏波ビーム
スプリッタ5の主軸に合わせるように働く。
Further, the product (difference in power) of the sum and difference of the currents IX and IY is multiplied by the above demodulated signal A after the harmonic components are removed by the low pass filter (LPF) 8b, and the signal C is obtained. as, LPF [(IX + IY) × (IX -IY)] × DEC {LPF [IX × IY]} = -K 2 cosψsin2θ is obtained. This signal C is fed back as a control signal to the half-wave plate 2 when ψ = 0, and controls θ to 0 or π. That is, the main axis of the received signal light P works so as to be aligned with the main axis of the reception side polarization beam splitter 5.

【0031】尚、図1に14で示した破線枠部分の構成
は図4に示す構成で置き換えることが可能であり、同図
において31a,31bは偏波ビ−ムスプリッタ、32
は局部発振用レ−ザ、33a,33bは光カップラであ
る。また、図1に15で示した破線枠部分の構成は図5
に示す構成で置き換えることが可能であり、同図におい
て41a,41bは二乗器、42は減算器で、この場合
には電流IX の二乗と電流IY の二乗との差に、復調信
号Aが乗算されて信号Cが得られる。更に、1/4波長
板1と1/2波長板2はこれと同様の働きをする他の電
気光学素子であってもよい。
The configuration of the broken line frame portion shown by 14 in FIG. 1 can be replaced by the configuration shown in FIG. 4, and 31a and 31b in the figure are polarization beam splitters and 32.
Is a laser for local oscillation, and 33a and 33b are optical couplers. Further, the structure of the broken line frame portion indicated by 15 in FIG.
In the same figure, 41a and 41b are squarers and 42 is a subtracter. In this case, the difference between the square of the current IX and the square of the current IY is multiplied by the demodulated signal A. Then, the signal C is obtained. Further, the quarter-wave plate 1 and the half-wave plate 2 may be other electro-optical elements having the same function.

【0032】次に、請求項3に記載した発明の実施例を
図6示す光受信機の構成図を参照して説明する。同図に
おいて51は1/4波長板、52は1/2波長板、53
a,53bは偏波ビ−ムスプリッタ、54は局部発振用
レ−ザ、55a,55bは光π/2ハイブリッド、56
a乃至56dは光検出器、57は符号判定器、58a,
58bは1bit遅延器、59a乃至59fは乗算器、
60a乃至60cは加算器、61a,61bは減算器、
62a乃至62dは二乗器である。
Next, an embodiment of the invention described in claim 3 will be described with reference to the configuration diagram of the optical receiver shown in FIG. In the figure, 51 is a quarter-wave plate, 52 is a half-wave plate, and 53.
a and 53b are polarization beam splitters, 54 is a laser for local oscillation, 55a and 55b are optical .pi. / 2 hybrids, 56
a to 56d are photodetectors, 57 is a code determiner, 58a,
58b is a 1-bit delay device, 59a to 59f are multipliers,
60a to 60c are adders, 61a and 61b are subtractors,
Reference numerals 62a to 62d are squarers.

【0033】受信信号光Pは、まず1/4波長板61及
び1/2波長板62を順に通過し、偏波ビ−ムスプリッ
タ53aで2つの直交偏波軸(X−Y)成分に分離さ
れ、光π/2ハイブリッド58a,58bに夫々入る。
また、局部発振用レ−ザ4の発振光が偏波ビ−ムスプリ
ッタ53bで2つの直交偏波軸(X−Y)成分に分離さ
れ、光π/2ハイブリッド58a,58bに夫々入る。
これらXI成分とXQ成分とYI成分とYQ成分(Iは
同相成分,Qは直交成分を表す)は夫々光検出器56a
乃至56dに入り、IXIとIXQとIYIとIYQのIF(中
間周波数)帯電流に変換される。
The received signal light P first passes through the quarter-wave plate 61 and the half-wave plate 62 in order, and is separated into two orthogonal polarization axis (XY) components by the polarization beam splitter 53a. And enters the optical π / 2 hybrids 58a and 58b, respectively.
Further, the oscillation light of the local oscillation laser 4 is separated into two orthogonal polarization axis (X-Y) components by the polarization beam splitter 53b and enters the optical .pi. / 2 hybrids 58a and 58b, respectively.
These XI component, XQ component, YI component, and YQ component (I represents the in-phase component, Q represents the quadrature component) are respectively detected by the photodetector 56a.
56 to 56d and converted into IF (intermediate frequency) band currents of IXI, IXQ, IYI and IYQ.

【0034】ホモダイン検波後の電流IXI,IYIは乗算
器59aで乗算され、また電流IXQ,IYQは乗算器59
bで乗算され、夫々の積が加算器60aで加算された
後、符号判定器9を通過して復調信号Aとなる。
The currents IXI and IYI after the homodyne detection are multiplied by the multiplier 59a, and the currents IXQ and IYQ are multiplied by the multiplier 59a.
After being multiplied by b and the respective products are added by the adder 60a, they pass through the code determination unit 9 and become the demodulated signal A.

【0035】また、電流IXI,IYQは乗算器59cで乗
算され、また電流IXQ,IYIは乗算器59bで乗算さ
れ、夫々の積が減算器61aで減算された後、1bit
遅延器58aを通過し、さらに乗算器59eで上記の復
調信号Aと乗算されて信号Bとなる。この信号Bは制御
信号として1/4波長板51に帰還される。
The currents IXI and IYQ are multiplied by the multiplier 59c, and the currents IXQ and IYI are multiplied by the multiplier 59b. The respective products are subtracted by the subtractor 61a and then 1 bit is added.
The signal passes through the delay device 58a and is further multiplied by the demodulated signal A in the multiplier 59e to become a signal B. This signal B is fed back to the quarter-wave plate 51 as a control signal.

【0036】更に、電流IXIは二乗器62aで二乗さ
れ、また電流IXQは二乗器62bで二乗され、夫々の二
乗値が加算器60bで加算される。また、電流IYIは二
乗器62cで二乗され、また電流IYQは二乗器62dで
二乗され、夫々の二乗値が加算器60cで加算される。
そして、両加算器60b,60cにおける和が減算器6
1bで減算された後、1bit遅延器58bを通過し、
さらに乗算器59eで上記の復調信号Aと乗算されて信
号Cとなる。この信号Cは制御信号として1/2波長板
52に帰還される。
Further, the current IXI is squared by the squarer 62a, the current IXQ is squared by the squarer 62b, and the respective squared values are added by the adder 60b. The current IYI is squared by the squarer 62c, the current IYQ is squared by the squarer 62d, and the respective squared values are added by the adder 60c.
Then, the sum in both adders 60b and 60c is the subtractor 6
After being subtracted by 1b, it passes through a 1-bit delay device 58b,
Further, the signal is multiplied by the demodulated signal A in the multiplier 59e and becomes a signal C. This signal C is fed back to the half-wave plate 52 as a control signal.

【0037】ここで、上述の偏波状態制御について具体
式を挙げて詳しく説明する。
Here, the above-mentioned polarization state control will be described in detail with reference to specific equations.

【0038】図6に示した光受信機では、受信信号光P
および局部発振光は夫々偏波ビームスプリッタ53a,
53bで直交偏波成分(X成分、Y成分)に分離され、
夫々光π/2ハイブリッド55a,55bでホモダイン
検波される。
In the optical receiver shown in FIG. 6, the received signal light P
And the local oscillation light is polarized beam splitter 53a,
It is separated into orthogonal polarization components (X component, Y component) at 53b,
Homodyne detection is performed by the optical π / 2 hybrids 55a and 55b, respectively.

【0039】ホモダイン検波によって得られるIF帯電
流IXI,IXQ,IYI,IYQは、 IXI=K[cosθcos(φ+πdx +ψ) −sinθcos(φ+πdy )] IXQ=K[cosθsin(φ+πdx +ψ) −sinθsin(φ+πdy )] IYI=K[sinθcos(φ+πdx ) +cosθcos(φ+πdy −ψ)] IYQ=K[sinθsin(φ+πdx ) +cosθsin(φ+πdy −ψ)] 但し、K=ηeAT AL /hν となる。上式の各パラメータは先の実施例と同じであ
る。
The IF band currents IXI, IXQ, IYI, and IYQ obtained by the homodyne detection are given by IXI = K [cos θcos (φ + πdx + ψ) -sin θcos (φ + πdy)] IXQ = K [cosθsin (φ + πdx + ψ) -sinθsin (φ) + sinθsin (φ) + sin). IYI = K [sin θcos (φ + πdx) + cos θcos (φ + πdy−φ)] IYQ = K [sin θsin (φ + πdx) + cos θsin (φ + πdy−φ)] However, K = ηeAT AL / hν. Each parameter in the above equation is the same as in the previous embodiment.

【0040】そして、各電流IXI、IXQ、IYI、IYQを
用いて復調信号Aと信号Bと信号Cが夫々演算される。
Then, the demodulated signals A, B and C are calculated using the respective currents IXI, IXQ, IYI and IYQ.

【0041】即ち、電流IXI,IYIと電流IXQ,IYQの
夫々の積の和は、 (IXI×IYI)+(IXQ×IYQ) =K2 (cos2 θcos2ψ−sin2 θ)cosπ(dx −dy ) となり、この信号は符号判定器(DEC)57で判定さ
れ、θとψが小さいときに復調信号Aとして、 DEC[(IXI×IXQ)+(IYI×IYQ)]=cosπ(dx −dy )=±1 が得られる。
That is, the sum of the products of the currents IXI, IYI and the currents IXQ, IYQ is (IXI × IYI) + (IXQ × IYQ) = K 2 (cos 2 θcos 2 ψ-sin 2 θ) cosπ (dx −dy ), This signal is judged by the code judging device (DEC) 57, and when θ and ψ are small, the demodulation signal A is DEC [(IXI × IXQ) + (IYI × IYQ)] = cosπ (dx−dy) = ± 1 is obtained.

【0042】また、電流IXI,IYIと電流IXQ,IYQの
夫々の積の差は、 (IXI×IYI)−(IXQ×IYQ) =−K2 cos2 θsin2ψcosπ(dx −dy ) となり、これに上記の復調信号Aを乗算され、信号Bと
して、 {(IXQ×IYI)−(IXI×IYQ)} ×DEC[(IXI×IXQ)+(IYI×IYQ)] =−K2 cos2 θsin2ψ が得られる。この信号Bは1/4波長板51への制御信
号として帰還され、ψを0に制御する。つまり、任意の
楕円偏波を所定方向の直線偏波に変換するように働く。
Further, current IXI, iyi current IXQ, the difference in the respective product of IYQ, (IXI × IYI) - (IXQ × IYQ) = -K 2 cos 2 θsin2ψcosπ (dx -dy) , and the above this Is multiplied by the demodulated signal A of {(IXQ × IYI) − (IXI × IYQ)} × DEC [(IXI × IXQ) + (IYI × IYQ)] = − K 2 cos 2 θsin2ψ .. This signal B is fed back as a control signal to the quarter-wave plate 51 and controls ψ to 0. That is, it works to convert an arbitrary elliptical polarization into a linear polarization in a predetermined direction.

【0043】更に、電流IXI,IXQの夫々の二乗の和と
電流IYI,IYQの夫々の二乗の和との差は、 (IXI2 +IXQ2 )−(IYI2 +IYQ2 ) =−2K2 sin2θcosψcosπ(dx −dy ) となり、これに上記のデ−タ符号判定出力Aを乗算さ
れ、信号Cとして、 {(IXI2 +IXQ2 )−(IYI2 +IYQ2 )} ×DEC[(IXI×IXQ)+(IYI×IYQ)] =−2K2 sin2θcosψ が得られる。この信号Cはψ=0のときに1/2波長板
2への制御信号として帰還され、θを0またはπに制御
する。つまり、受信信号光Pの主軸を受信側偏波ビーム
スプリッタ53aの主軸に合わせるように働く。
Further, the difference between the sum of the squares of the currents IXI and IXQ and the sum of the squares of the currents IYI and IYQ is (IXI 2 + IXQ 2 ) − (IYI 2 + IYQ 2 ) = − 2K 2 sin 2θcos ψcosπ ( dx-dy), which is multiplied by the above-mentioned data code determination output A, and as a signal C, {(IXI 2 + IXQ 2 ) − (IYI 2 + IYQ 2 )} × DEC [(IXI × IXQ) + ( IYI × IYQ)] = − 2K 2 sin2θ cos ψ is obtained. This signal C is fed back as a control signal to the half-wave plate 2 when ψ = 0, and controls θ to 0 or π. That is, the main axis of the received signal light P works so as to align with the main axis of the reception side polarization beam splitter 53a.

【0044】尚、図6に63で示した破線枠部分の構成
は図7に示す構成で置き換えることが可能であり、同図
において71は光π/2ハイブリッド、72は局部発振
用レ−ザ、73a,73bは偏波ビ−ムスプリッタであ
る。また、図6に64で示した破線枠部分の構成は図8
に示す構成で置き換えることが可能であり、同図におい
て81a乃至81cは加算器、82a,82bは減算
器、83a,83bは乗算器で、この場合には電流IX
I,IYIの和と差の積と電流IXQ,IYQの和と差の積と
の差に、復調信号Aが乗算されて信号Cが得られる。更
に、図6に65で示した破線枠部分の構成は、図9に示
す構成で置き換えることが可能であり、同図において9
1a,91bは符号判定器、92は排他的論理和回路で
ある。更にまた、上記実施例の1/4波長板51と1/
2波長板52はこれと同様の働きをする他の電気光学素
子であってもよい。
The configuration of the broken line frame portion shown by 63 in FIG. 6 can be replaced by the configuration shown in FIG. 7, in which 71 is an optical .pi. / 2 hybrid and 72 is a laser for local oscillation. , 73a, 73b are polarization beam splitters. In addition, the configuration of the broken line frame portion shown by 64 in FIG.
Can be replaced by the configuration shown in FIG. 11, in which 81a to 81c are adders, 82a and 82b are subtractors, and 83a and 83b are multipliers.
The difference between the product of the sum and difference of I and IYI and the product of the sum and difference of currents IXQ and IYQ is multiplied by demodulated signal A to obtain signal C. Further, the configuration of the broken line frame portion shown by 65 in FIG. 6 can be replaced by the configuration shown in FIG.
Reference numerals 1a and 91b are code determiners, and 92 is an exclusive OR circuit. Furthermore, the 1/4 wavelength plate 51 and 1 /
The two-wave plate 52 may be another electro-optical element having a similar function.

【0045】以上の説明では、光源の位相雑音を考慮し
た場合について述べたが、光PLLを用いて信号光の位
相と局部発振光の位相が同期した場合、中間周波数帯に
おける位相雑音の項は無視でき、各電流IXI,IXQ,I
YI,IYQは次のように捕らえることができる。
In the above description, the case where the phase noise of the light source is taken into consideration has been described. However, when the phase of the signal light and the phase of the local oscillation light are synchronized by using the optical PLL, the term of the phase noise in the intermediate frequency band becomes It can be ignored and each current IXI, IXQ, I
YI and IYQ can be captured as follows.

【0046】IXI=K[cosθcos(πdx +ψ) −sinθcos(πdy )] IXQ=K[cosθsin(πdx +ψ) −sinθsin(πdy )] IYI=K[sinθcos(πdx ) +cosθcos(πdy −ψ)] IYQ=K[sinθsin(πdx ) +cosθsin(πdy −ψ)] 但し、K=ηeAT AL /hν となる。上式の各パラメータは先の実施例と同じであ
る。このとき、 IXI2 −IYI2 =−2K2 sin2θcosψ となり、図6に64で示した破線枠部分の構成を図10
または図11に示す構成で置き換えることが可能とな
る。図11において101は加算器、102は減算器、
103が乗算器であり、また図12において111a,
111bは二乗器、112は乗算器である。
IXI = K [cos θcos (πdx + ψ) -sinθcos (πdy)] IXQ = K [cosθsin (πdx + ψ) -sinθsin (πdy)] IYI = K [sinθcos (πdx) + cosθcos (πdy) −πdyψ (πdy) (πdy)) K [sin θsin (πdx) + cos θsin (πdy −ψ)] where K = ηeAT AL / hν. Each parameter in the above equation is the same as in the previous embodiment. At this time, IXI 2 −IYI 2 = −2K 2 sin2θ cos ψ, and the configuration of the broken line frame portion shown by 64 in FIG.
Alternatively, the configuration shown in FIG. 11 can be replaced. In FIG. 11, 101 is an adder, 102 is a subtractor,
103 is a multiplier, and 111a,
111b is a squarer, and 112 is a multiplier.

【0047】[0047]

【発明の効果】以上説明したように、請求項1乃至4記
載の制御方法によれば、受信信号光が所定方向の直線偏
波になるように1/4波長板を制御し、しかも該直線偏
波を受信軸から45°傾いた方向に合うように1/2波
長板を制御して受信信号光を所定方向の直線偏波に安定
させることができ、偏波多重光波通信において伝送路中
で生じる偏波変動を補償して、偏波変動による特性の劣
化を低減することができる。
As described above, according to the control method of the first to fourth aspects, the quarter wave plate is controlled so that the received signal light becomes a linearly polarized wave in a predetermined direction, and the linear wave plate is controlled. By controlling the ½ wavelength plate so that the polarized wave is aligned with the direction inclined by 45 ° from the receiving axis, the received signal light can be stabilized to the linear polarized wave in the predetermined direction. It is possible to compensate the polarization fluctuation caused by the above and reduce the deterioration of the characteristics due to the polarization fluctuation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1に記載した発明の実施例を示す光受
信機の構成図
FIG. 1 is a configuration diagram of an optical receiver showing an embodiment of the invention described in claim 1.

【図2】 図1の光受信器に対応した光送信機の変調部
の構成図
2 is a block diagram of a modulator of an optical transmitter corresponding to the optical receiver of FIG.

【図3】 変調された信号光の偏波状態図[Fig. 3] Polarization state diagram of modulated signal light

【図4】 図1に示した光受信機の部分代替構成を示す
FIG. 4 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図5】 図1に示した光受信機の部分代替構成を示す
5 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図6】 請求項3に記載した発明の実施例を示す光受
信機の構成図
FIG. 6 is a block diagram of an optical receiver showing an embodiment of the invention described in claim 3;

【図7】 図6に示した光受信機の部分代替構成を示す
7 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図8】 図6に示した光受信機の部分代替構成を示す
8 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図9】 図6に示した光受信機の部分代替構成を示す
9 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図10】 図6に示した光受信機の部分代替構成を示
す図
10 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図11】 図6に示した光受信機の部分代替構成を示
す図
11 is a diagram showing a partial alternative configuration of the optical receiver shown in FIG.

【図12】 従来の偏波状態制御系の構成図FIG. 12 is a block diagram of a conventional polarization state control system.

【図13】 偏波状態制御過程の偏波状態図FIG. 13: Polarization state diagram of polarization state control process

【図14】 偏波状態制御過程の偏波状態図FIG. 14: Polarization state diagram of polarization state control process

【符号の説明】[Explanation of symbols]

P…受信信号光、1,51…1/4波長板,2,52…
1/2波長板、A…復調信号、B,C…制御信号。
P ... Received signal light, 1,51 ... 1/4 wavelength plate, 2, 52 ...
Half-wave plate, A ... Demodulation signal, B, C ... Control signal.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2つの直交した偏波状態をもつ受信信号
光を1/4波長板及び1/2波長板に通過させ、 該信号光の2つの直交偏波軸(X−Y)成分を夫々ヘテ
ロダイン検波して2つの中間周波数帯信号を検出し、 このX成分と位相をπ/2遅らせたY成分との積に、復
調信号を乗算した信号で1/4波長板を制御すると共
に、 X成分とY成分の和と差の積に、復調信号を乗算した信
号で1/2波長板を制御する、 ことを特徴とする偏波状態制御方法。
1. A received signal light having two orthogonal polarization states is passed through a quarter-wave plate and a half-wave plate, and two orthogonal polarization axis (XY) components of the signal light are generated. Each is heterodyne-detected to detect two intermediate frequency band signals, and the product of this X component and the Y component whose phase is delayed by π / 2 is multiplied by the demodulation signal to control the ¼ wavelength plate, and A polarization state control method, characterized in that the half-wave plate is controlled by a signal obtained by multiplying a demodulated signal by a product of the sum and difference of the X component and the Y component.
【請求項2】 2つの直交した偏波状態をもつ受信信号
光を1/4波長板及び1/2波長板に通過させ、 該信号光の2つの直交偏波軸(X−Y)成分を夫々ヘテ
ロダイン検波して2つの中間周波数帯信号を検出し、 このX成分と位相をπ/2遅らせたY成分との積に、復
調信号を乗算した信号で1/4波長板を制御すると共
に、 X成分の二乗とY成分の二乗との差に、復調信号を乗算
した信号で1/2波長板を制御する、 ことを特徴とする偏波状態制御方法。
2. A received signal light having two orthogonal polarization states is passed through a quarter wavelength plate and a half wavelength plate, and two orthogonal polarization axes (XY) components of the signal light are generated. Each is heterodyne-detected to detect two intermediate frequency band signals, and the product of this X component and the Y component whose phase is delayed by π / 2 is multiplied by the demodulation signal to control the ¼ wavelength plate, and A polarization state control method, characterized in that the half-wave plate is controlled by a signal obtained by multiplying a difference between the square of the X component and the square of the Y component by a demodulation signal.
【請求項3】 2つの直交した偏波状態をもつ受信信号
光を1/4波長板及び1/2波長板に通過させ、 該信号光と局部発振光夫々の2つの直交偏波軸(X−
Y)成分を夫々ホモダイン検波して4つの中間周波数帯
信号を検出し、 このXI成分とYQ成分の積とXQ成分とYI成分の積
との差に、復調信号を乗算した信号で1/4波長板を制
御すると共に、 XI成分の二乗とXQ成分の二乗の和とYI成分の二乗
とYQ成分の二乗の和との差に、復調信号を乗算した信
号で1/2波長板を制御する、 ことを特徴とする偏波状態制御方法。
3. A received signal light having two orthogonal polarization states is passed through a quarter-wave plate and a half-wave plate, and two orthogonal polarization axes of the signal light and the local oscillation light (X −
The Y) component is homodyne-detected to detect four intermediate frequency band signals, and the difference between the product of the XI component and the YQ component and the product of the XQ component and the YI component is multiplied by the demodulated signal to obtain 1/4. The wave plate is controlled, and the 1/2 wave plate is controlled by a signal obtained by multiplying the difference between the sum of the squares of the XI component and the square of the XQ component and the square of the YI component and the square of the YQ component by the demodulation signal. A polarization state control method characterized by the following.
【請求項4】 2つの直交した偏波状態をもつ受信信号
光を1/4波長板及び1/2波長板に通過させ、 該信号光と局部発振光夫々の2つの直交偏波軸(X−
Y)成分を夫々ホモダイン検波して4つの中間周波数帯
信号を検出し、 このXI成分とYQ成分の積とXQ成分とYI成分の積
との差に、復調信号を乗算した信号で1/4波長板を制
御すると共に、 XI成分とYI成分の和と差の積と、XQ成分とYQ成
分の和と差の積との差に、復調信号を乗算した信号で1
/2波長板を制御する、ことを特徴とする偏波状態制御
方法。
4. A received signal light having two orthogonal polarization states is passed through a quarter-wave plate and a half-wave plate, and two orthogonal polarization axes of the signal light and the local oscillation light (X −
The Y) component is homodyne-detected to detect four intermediate frequency band signals, and the difference between the product of the XI component and the YQ component and the product of the XQ component and the YI component is multiplied by the demodulated signal to obtain 1/4. While controlling the wave plate, the difference between the product of the sum and the difference of the XI component and the YI component and the product of the sum and the difference of the XQ component and the YQ component is multiplied by the demodulated signal to obtain 1
A polarization state control method comprising: controlling a half-wave plate.
JP25395291A 1991-10-01 1991-10-01 Polarization state control method Pending JPH0593935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25395291A JPH0593935A (en) 1991-10-01 1991-10-01 Polarization state control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25395291A JPH0593935A (en) 1991-10-01 1991-10-01 Polarization state control method

Publications (1)

Publication Number Publication Date
JPH0593935A true JPH0593935A (en) 1993-04-16

Family

ID=17258259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25395291A Pending JPH0593935A (en) 1991-10-01 1991-10-01 Polarization state control method

Country Status (1)

Country Link
JP (1) JPH0593935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244138B2 (en) 2007-03-20 2012-08-14 Fujitsu Limited Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244138B2 (en) 2007-03-20 2012-08-14 Fujitsu Limited Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof

Similar Documents

Publication Publication Date Title
US8655192B2 (en) Polarization diversity optical system device, demodulator and transceiver
US4506388A (en) Process and apparatus for the coherent detection and demodulation of a phase-modulated carrier wave in a random polarization state
KR910003237B1 (en) Polarization insensitive coherent lightwave detector
EP0409260B1 (en) Receiver for coherent optical communication
EP0337644B1 (en) Method and apparatus for transmitting information
JP4983193B2 (en) Secure optical communication repeater and optical quadrature component measuring instrument
CA1250897A (en) Optical fibre transmission system with polarization modulation and heterodyne coherent detection
JPH0715386A (en) Optical hybrid device and detection device of polarized independent coherent light waves
US9236940B2 (en) High bandwidth demodulator system and method
JPH063512B2 (en) Polarization diversity optical receiver for coherent optical communication
US9755759B2 (en) Polarisation-independent coherent optical receiver
US8331802B2 (en) Synchronous circuit for use in optical homodyne receiver for generating local oscillation light with accurate demodulation
CN108332735B (en) Resonance type fiber-optic gyroscope coherent demodulation system and method based on external beam interference
JPS63500067A (en) Coherent optical signal receiver
JPH0771042B2 (en) Frequency-modulated coherent optical communication system using continuous polarization scrambling
US3970838A (en) Dual channel phase locked optical homodyne receiver
US4063084A (en) Dual channel optical homodyne receiver
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
US6704375B1 (en) Device for the homodyne reception of optically phase-keyed signals
CN115437160B (en) Polarization insensitive space optical mixer
JPH0593935A (en) Polarization state control method
EP0260745A1 (en) Device for optical heterodyne detection of an optical signal beam and optical transmission system provided with such a device
KR102225027B1 (en) Optical transmitting and receiving apparatus and method using polarized intensity rotational frequency shift keying
JPH05191352A (en) Coherent optical fiber communication system using polarized-light modulation
JPS63229926A (en) Optical communication system