JPH0593317A - Microorganism degradable conjugate fiber having latently crimping ability - Google Patents

Microorganism degradable conjugate fiber having latently crimping ability

Info

Publication number
JPH0593317A
JPH0593317A JP3277248A JP27724891A JPH0593317A JP H0593317 A JPH0593317 A JP H0593317A JP 3277248 A JP3277248 A JP 3277248A JP 27724891 A JP27724891 A JP 27724891A JP H0593317 A JPH0593317 A JP H0593317A
Authority
JP
Japan
Prior art keywords
poly
conjugate fiber
component
caprolactone
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3277248A
Other languages
Japanese (ja)
Inventor
Masatsugu Mochizuki
政嗣 望月
Yoshihiro Kan
喜博 冠
Shuji Takahashi
修治 高橋
Naotaka Kanemoto
直貴 金元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP3277248A priority Critical patent/JPH0593317A/en
Publication of JPH0593317A publication Critical patent/JPH0593317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject conjugate fiber having excellent latently crimping ability, providing excellent woven and knit fabric having excellent elasticity and elastic recovery by eccentrically bonding both components of poly-epsilon- caprolactone, etc., and poly(beta-hydroxyalkanoate), etc. CONSTITUTION:(A) poly-epsilon-caprolactone and/or poly-beta-propilactone having preferably <=25 melt flow rate is eccentrically bonded to (B) poly(beta- hydroxyalkanoate) or its copolymer (preferably poly-3-hydroxybutyrate) in a combination ratio of 1:5-5:1 (preferably 2:3-3:2) to give the objective conjugate fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伸縮性や弾性回復性の
優れた織編物又は不織布を得るのに適した潜在捲縮能を
有する微生物分解性複合繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable conjugate fiber having a latent crimping ability suitable for obtaining a woven or knitted fabric or a nonwoven fabric having excellent stretchability and elastic recovery.

【0002】[0002]

【従来の技術】従来、漁業や農業、土木用として用いら
れる産業資材用繊維としては、主としてポリアミド、ポ
リエステル、ビニロン、ポリオレフィン等の強度及び耐
久性の優れたものが使用されている。しかし、これらの
繊維は自己分解性がなく、使用後、海や山野に放置する
と種々の公害を引き起こすという問題がある。この問題
は、使用後、焼却、埋め立てあるいは回収再生により処
理すれば一応解決されるが、これらの処理には多大の費
用を要するため、現実には海や山野にそのまま放置され
るような事態がしばしば発生している。
2. Description of the Related Art Conventionally, as fibers for industrial materials used for fisheries, agriculture, and civil engineering, those having excellent strength and durability such as polyamide, polyester, vinylon, and polyolefin have been mainly used. However, these fibers are not self-degradable, and there is a problem in that they cause various pollution when left in the sea or mountains after use. This problem can be solved by incineration, landfilling, or recovery and recycling after use, but since such processing requires a large amount of money, in reality it may be left in the sea or mountains. It often happens.

【0003】また、使い捨ておむつや使い捨ておしぼ
り、ワイピングクロスや生理用ナプキン等の生活資材用
繊維についても、主として経済性からポリオレフィン、
ポリエステル、ポリアミド等の合成繊維が使用されてい
るが、これらは自然分解性に乏しいため、使用後は止む
を得ず焼却されているのが現状である。
[0003] In addition, regarding fibers for daily life materials such as disposable diapers and disposable towels, wiping cloths and sanitary napkins, polyolefin is mainly used because of its economical efficiency.
Synthetic fibers such as polyester and polyamide are used, but since these are poor in natural degradability, they are inevitably incinerated after use.

【0004】このような問題を解決する方法として、自
然分解性(微生物分解性又は生分解性又は加水分解性)
の素材を用いることが考えられる。
As a method for solving such a problem, there is a natural degradability (biodegradability, biodegradability or hydrolysis).
It is possible to use the material of.

【0005】従来、自然分解性ポリマーとして、セルロ
ーズやキチン等の多糖類、カット・グット(腸線)や再
生コラーゲン等の蛋白質やポリペプチド(ポリアミノ
酸)、微生物が自然界で作るポリ−3−ヒドロキシブチ
レートのようなポリ( β- ヒドロキシアルカノエート)
又はその共重合体、ポリグリコリドやポリラクチドのよ
うなポリ(α−オキシ酸) 、ポリ−ε−カプロラクトン
のようなポリ(ω−ヒドロキシアルカノエート) 等の合
成脂肪族ポリエステル等がよく知られている。
Conventionally, as naturally degradable polymers, polysaccharides such as cellulose and chitin, proteins and polypeptides (polyamino acids) such as cut gut (intestinal line) and regenerated collagen, and poly-3-hydroxybutyrate produced by microorganisms in the natural world. Rate-like poly (β-hydroxyalkanoate)
Also known are copolymers thereof, poly (α-oxy acids) such as polyglycolide and polylactide, and synthetic aliphatic polyesters such as poly (ω-hydroxyalkanoate) such as poly-ε-caprolactone. ..

【0006】しかし、一般的にセルローズ等の多糖類は
自然分解性速度が比較的遅く、ごみ埋立地のように十分
に土壌と接触することの少ない場合には、数年間もその
形態をとどめている場合が多く、現実に問題となってい
る。また、一般的に多糖類は熱可塑性でないために、そ
の加工や用途に一部制限を受けるという問題があった。
However, in general, polysaccharides such as cellulose have a relatively slow rate of spontaneous decomposition and, if they do not come into sufficient contact with soil, such as in a landfill, they remain in their forms for several years. In many cases, it is a real problem. Further, since polysaccharides are generally not thermoplastic, there is a problem that their processing and uses are partially limited.

【0007】また、その他のポリマーから繊維を製造す
る場合にも、湿式紡糸法で製造しなければならなかった
り、素材のコストが極めて高いため製造原価が高価にな
ったり、高強度の繊維を得ることができなかったりする
という問題があった。
Also, when fibers are produced from other polymers, they must be produced by a wet spinning method, the cost of materials is extremely high, the production cost is high, and fibers of high strength are obtained. There was a problem that I could not do it.

【0008】ポリ−ε−カプロラクトンやポリ−β−プ
ロピオラクトンは比較的安価な完全生分解性の合成高分
子であり、溶融紡糸が可能であるが、融点が60〜100℃
と低いために、その用途が一部制限されるという問題が
あった。
Poly-ε-caprolactone and poly-β-propiolactone are relatively inexpensive, completely biodegradable synthetic polymers, which can be melt-spun, but have a melting point of 60 to 100 ° C.
Therefore, there was a problem in that its use was partially limited.

【0009】また、ポリ(β−ヒドロキシアルカノエー
ト) 又はその共重合体は熱可塑性であるが、実際に溶融
紡糸をしても曳糸性に乏しく、低い強度レベルの糸条し
か得られないという問題点があった。
Further, although poly (β-hydroxyalkanoate) or its copolymer is thermoplastic, it has a poor spinnability even when actually melt-spun, and only a yarn having a low strength level can be obtained. There was a problem.

【0010】さらに、安価な自然崩壊性の素材として、
ポリエチレンに澱粉を配合したものが検討されており、
直鎖状低密度ポリエチレンに澱粉を約6%配合して製膜
したフィルムが買物袋として一部実用化されている。し
かし、このような澱粉を配合したポリエチレンから繊維
を製造しても、強度等の機械的特性が著しく劣ったもの
となり、高強度を必要とする産業資材用として使用する
ことはできない。また、ポリエチレン成分が完全に生分
解されないために、根本的な解決策とはなり得ない。
Further, as an inexpensive material which is naturally disintegrating,
A mixture of polyethylene and starch is being studied,
A film formed by mixing linear low-density polyethylene with about 6% starch has been partially put into practical use as a shopping bag. However, even if fibers are produced from polyethylene mixed with such starch, the mechanical properties such as strength are remarkably inferior and cannot be used for industrial materials requiring high strength. It also cannot be a fundamental solution because the polyethylene component is not completely biodegradable.

【0011】[0011]

【発明が解決しようとする課題】本発明は、比較的安価
で、かつ、実用に供することができる一定の耐熱性と強
度を有し、自然界で完全に分解される微生物分解性複合
繊維であって、伸縮性や弾性回復性に優れた織編物や不
織布を得るのに適した潜在捲縮性を有する複合繊維を提
供しようとするものである。また、本発明は、短繊維不
織布又は長繊維不織布とする場合に、それ自体が微細な
多数の捲縮を発現する熱接着性繊維となり得るような、
微生物分解性複合繊維を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a biodegradable conjugate fiber that is relatively inexpensive and has a certain level of heat resistance and strength that can be put to practical use and is completely decomposed in the natural world. Thus, it is intended to provide a conjugate fiber having a latent crimping property suitable for obtaining a woven or knitted fabric or a nonwoven fabric excellent in elasticity and elastic recovery. Further, the present invention, when it is a short fiber non-woven fabric or a long fiber non-woven fabric, such itself can be a thermo-adhesive fiber that expresses a large number of fine crimps,
It is intended to provide a biodegradable conjugate fiber.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するものであり、その要旨は、ポリ−ε−カプロラクト
ン及び/又はポリ−β−プロピオラクトンからなるA成
分とポリ(β−ヒドロキシアルカノエート) 又はその共
重合体からなるB成分とが偏心的に接合している潜在捲
縮能を有する微生物分解性複合繊維にある。なお、本発
明の複合繊維には、両成分それぞれの基本特性を損なわ
ない範囲内で少量の他の微生物分解性成分を含有するも
のも含むものである。
Means for Solving the Problems The present invention is to solve the above problems, and the gist thereof is to provide an A component comprising poly-ε-caprolactone and / or poly-β-propiolactone and poly (β-hydroxy). Alkanoate) or a component B composed of a copolymer thereof is eccentrically bonded to the microbial degradable conjugate fiber having a latent crimping ability. The conjugate fiber of the present invention also includes those containing a small amount of other microbial degradable components within a range that does not impair the basic characteristics of both components.

【0013】以下、本発明について詳細に説明する。本
発明においてA成分として用いられるポリ−ε−カプロ
ラクトン及びポリ−β−プロピオラクトンは、JIS K 67
60に準じて測定したメルトフローレート(単位:g/10
min)が40以下、好ましくは25以下のものが適当である。
The present invention will be described in detail below. Poly-ε-caprolactone and poly-β-propiolactone used as the component A in the present invention are JIS K 67
Melt flow rate measured according to 60 (unit: g / 10
Those having a min) of 40 or less, preferably 25 or less are suitable.

【0014】一方、B成分として用いられるポリ(β−
ヒドロキシアルカノエート) 又はその共重合体として
は、ポリ−3−ヒドロキシプロピオネート、ポリ−3−
ヒドロキシブチレート、ポリ−3−ヒドロキシカプロレ
ート、ポリ−3−ヒドロキシヘプタノエート、ポリ−3
−ヒドロキシオクタノエート及びこれらとポリ−3−ヒ
ドロキシバリレートやポリ−4−ヒドロキシブチレート
との共重合体等が挙げられ、これらは通常微生物が産生
する微生物ポリエステルとして得られる。この中でも、
最も好ましいものは、ポリ−3−ヒドロキシブチレート
とポリ−3−ヒドロキシバリレートとの共重合体及びポ
リ−3−ヒドロキシブチレートとポリ−4−ヒドロキシ
ブチレートとの共重合体である。B成分としては、一定
の耐熱性と優れた潜在捲縮能を付与するために、A成分
の融点より高い100℃以上の融点を有するものを使用す
ることが望ましい。
On the other hand, poly (β- used as the B component
(Hydroxyalkanoate) or a copolymer thereof, poly-3-hydroxypropionate, poly-3-
Hydroxybutyrate, poly-3-hydroxycaprolate, poly-3-hydroxyheptanoate, poly-3
-Hydroxyoctanoate and copolymers of these with poly-3-hydroxyvalerate and poly-4-hydroxybutyrate, etc., and these are usually obtained as microbial polyesters produced by microorganisms. Among these,
Most preferred are the copolymers of poly-3-hydroxybutyrate and poly-3-hydroxyvalerate and the copolymers of poly-3-hydroxybutyrate and poly-4-hydroxybutyrate. As the component B, it is desirable to use a component having a melting point of 100 ° C. or higher, which is higher than the melting point of the component A, in order to impart constant heat resistance and excellent latent crimping ability.

【0015】本発明の複合繊維において、複合比は、1
/5〜5/1、好ましくは2/3〜3/2とするのが適
当である。
In the composite fiber of the present invention, the composite ratio is 1
/ 5 to 5/1, preferably 2/3 to 3/2 is suitable.

【0016】本発明の複合繊維は、高重合度のポリ−ε
−カプロラクトン及び/又はポリ−β−プロピオラクト
ンをA成分とし、ポリ(β−ヒドロキシアルカノエー
ト)又はその共重合体をB成分として、常法により複合
溶融紡糸し、延伸することにより製造することができ
る。複合の形態は、両成分が偏心的に接合しているもの
であればよいが、より優れた潜在捲縮能力を付与する観
点からは芯鞘複合型よりもサイドバイサイド複合型とす
ることが望ましい。 (熱接着性の繊維とするためには、
A成分の少なくとも一部が繊維表面に露出する複合形態
とすることが必要である。)
The composite fiber of the present invention has a high degree of polymerization of poly-ε.
-Caprolactone and / or poly-β-propiolactone as the A component, and poly (β-hydroxyalkanoate) or its copolymer as the B component, are prepared by composite melt spinning by a conventional method and stretching. You can The composite form may be one in which both components are eccentrically joined, but from the viewpoint of imparting more excellent latent crimping ability, it is preferable to use the side-by-side composite type rather than the core-sheath composite type. (To make it a heat-adhesive fiber,
It is necessary to have a composite form in which at least part of the A component is exposed on the fiber surface. )

【0017】溶融紡糸の温度は、用いるA、B両成分の
組成や重合度により異なるが200〜300℃とすることが望
ましい。紡糸温度が200℃未満では溶融押出しが困難で
あり、300℃を超えると熱分解が顕著となり高強度の繊
維を得ることが困難となる。
The temperature of melt spinning varies depending on the composition of both components A and B and the degree of polymerization, but is preferably 200 to 300 ° C. If the spinning temperature is less than 200 ° C, melt extrusion is difficult, and if it exceeds 300 ° C, thermal decomposition becomes remarkable and it becomes difficult to obtain high-strength fibers.

【0018】溶融紡出された糸条はは空冷又は水冷後、
一旦巻き取った後又は巻き取らずにそのまま、1段又は
2段以上の冷延伸もしくは熱延伸に供される。全延伸倍
率は、目的とする繊維 (フィラメント又はステープル)
の要求性能により異なるが、3.0g/d以上の引張強度
を維持するには2.0〜3.2倍に延伸することが必要であ
る。
The melt spun yarn is air-cooled or water-cooled,
After being wound once or without being wound, it is subjected to one-stage or two-stage or more cold stretching or hot stretching. The total draw ratio is the target fiber (filament or staple)
Although it depends on the required performance of No. 3, it is necessary to stretch the film 2.0 to 3.2 times in order to maintain the tensile strength of 3.0 g / d or more.

【0019】このようにして得られる本発明の複合繊維
は、前述のように実用に耐え得る一定の耐熱性と強度特
性とを有し、かつ、優れた潜在捲縮能と微生物分解性と
を有するものである。
The thus obtained conjugate fiber of the present invention has a certain level of heat resistance and strength characteristics that can withstand practical use as described above, and has excellent latent crimping ability and microbial degradability. I have.

【0020】本発明の複合繊維を伸縮性を有する織編物
又は不織布に加工する場合には、原糸又は原綿の製造工
程では熱履歴は極力抑え、織編物又はウエブ(スパンボ
ンド又はステープル)とした後に弛緩熱処理により微細
な多数のスパイラル捲縮を発現させることが好ましい。
この場合に生ずるスパイラル捲縮が30個/25mm以上とな
るようにすることが望ましい。なお、ステープルの場合
には、必要に応じてあらかじめスタフィンボックスによ
る機械捲縮を付与することも可能である。
When the composite fiber of the present invention is processed into a stretchable woven or knitted fabric or a nonwoven fabric, the heat history is suppressed as much as possible in the production process of the raw yarn or raw cotton, and the woven or knitted fabric or web (spunbond or staple) is formed. It is preferable to develop a large number of fine spiral crimps later by relaxation heat treatment.
It is desirable that the number of spiral crimps generated in this case is 30 pieces / 25 mm or more. In the case of stapling, it is possible to apply mechanical crimping in advance using a stuffing box if necessary.

【0021】[0021]

【作用】本発明の複合繊維が優れた潜在捲縮能を発揮す
る作用機構は必ずしも明かでないが、B成分を構成する
ポリ(β−ヒドロキシアルカノエート) 又はその共重合
体の融点が、A成分を構成するポリ−ε−カプロラクト
ン及び/又はポリ−β−プロピオラクトンの融点 (60〜
100℃) よりも高いために、A成分の融点近傍の温度で
熱処理した時の熱収縮率の差によりスパイラル状の微細
な捲縮を生ずるものと考えられる。
The action mechanism by which the conjugate fiber of the present invention exhibits an excellent latent crimping ability is not always clear, but the melting point of the poly (β-hydroxyalkanoate) or its copolymer constituting the B component is the A component. Of poly-ε-caprolactone and / or poly-β-propiolactone constituting
Since it is higher than 100 ° C., it is considered that spiral fine crimps are generated due to the difference in heat shrinkage ratio when heat-treated at a temperature near the melting point of the component A.

【0022】また、両成分をブレンドした場合には溶融
状態でエステル交換反応を起こし、両成分のランダム共
重合体を生ずる結果、わずかな融点上昇しか期待されな
いのに対し、本発明の複合繊維の場合には両成分の界面
での接着力が優れる上に、B成分を構成する高融点成分
が耐熱的及び力学的強度を支えるために、見掛け上の耐
熱性が著しく向上するものと考えられる。
Further, when both components are blended, a transesterification reaction occurs in a molten state to produce a random copolymer of both components, so that only a slight increase in melting point is expected, whereas the composite fiber of the present invention In this case, it is considered that the apparent heat resistance is remarkably improved because the high melting point component constituting the B component supports heat resistance and mechanical strength in addition to the excellent adhesive strength at the interface between the two components.

【0023】[0023]

【実施例】次に、本発明を実施例によりさらに具体的に
説明する。なお、引張強度はJISL 1013に準じて測定し
た。
EXAMPLES Next, the present invention will be described more specifically by way of examples. The tensile strength was measured according to JIS L 1013.

【0024】実施例1 メルトフロレートが4のポリ−ε−カプロラクトンをA
成分に用い、分子量が約50,000のポリ−3−ヒドロキシ
ブチレート/ポリ−3−ヒドロキシバリレート共重合体
(共重合モル比:約90/10) をB成分に用いて、紡糸温
度265℃で、直径0.5mmの紡糸孔を36個有する紡糸口金を
使用して、複合重量比1/1のサイドバイサイド型複合
繊維を溶融紡出し、20℃の空気で冷却した後、油剤を付
与し、1200m/minの速度で一旦巻き取った。その後、室
温のローラにより延伸倍率2.5倍で延伸を行い、引き続
きスタフィンボックスで18個/25mmの機械捲縮を付与し
た後、長さ51mmにカットし、単糸繊度約2デニールのス
テープルを得た。得られたステープルの引張強度は3.8
g/dであった。次に、このステープルを梳綿機でカー
ディングして33g/m2の目付けのウエブを作製し、こ
のウエブを70℃の熱ロールに通し、引き続き100℃のオ
ーブン中で弛緩熱処理を行い不織布を得た。得られた不
織布は、優れた伸縮性と弾性回復性を示した。また、こ
の不織布を2カ月間土中に埋込しておいたところ、もは
や不織布としての形態はとどめておらず、極めて優れた
微生物分解性を示した。
Example 1 Poly-ε-caprolactone having a melt florate of 4 was added to A
A poly-3-hydroxybutyrate / poly-3-hydroxyvalerate copolymer having a molecular weight of about 50,000 (copolymerization molar ratio: about 90/10) is used as the component B at a spinning temperature of 265 ° C. Using a spinneret having 36 spinning holes with a diameter of 0.5 mm, a side-by-side type composite fiber with a composite weight ratio of 1/1 was melt-spun and cooled with air at 20 ° C., and then an oil agent was added to the fiber, and then 1200 m / It was wound up at a speed of min. After that, it was drawn at a draw ratio of 2.5 times with a roller at room temperature, and then 18 crimps / 25 mm were mechanically crimped with a stuffing box and then cut into a length of 51 mm to obtain staples with a single yarn fineness of about 2 denier. It was The tensile strength of the obtained staple is 3.8.
It was g / d. Next, this staple is carded with a carding machine to produce a web with a basis weight of 33 g / m 2 , and the web is passed through a 70 ° C. heat roll, and subsequently subjected to relaxation heat treatment in an oven at 100 ° C. to form a nonwoven fabric. Obtained. The obtained non-woven fabric exhibited excellent stretchability and elastic recovery. Further, when this non-woven fabric was embedded in soil for 2 months, the non-woven fabric was no longer in the form and showed extremely excellent microbial degradability.

【0025】[0025]

【発明の効果】本発明によれば、実用に耐え得る一定の
耐熱性と強度特性を有し、かつ潜在捲縮能を有する微生
物分解性繊維が提供される。そして、この繊維は、伸縮
性と弾性回復性に優れた織編物や不織布に加工され、お
むつや生理用ナプキンのような衛生材、使い捨ておしぼ
り、ワイピングクロス、ハップ材基布、家庭用又は業務
用生ゴミ補集袋その他廃棄物処理材等として使用され
る。これらは、使用後微生物が存在する環境(土中又は
水中)に放置しておけば一定期間後には完全に生分解さ
れるため、特別な廃棄物処理を必要とせず、公害防止に
有用である。
EFFECTS OF THE INVENTION According to the present invention, there is provided a microbial-degradable fiber which has a certain level of heat resistance and strength characteristics that can be practically used and has a latent crimping ability. This fiber is processed into woven and knitted fabrics and non-woven fabrics that have excellent elasticity and elastic recovery properties, and is used for sanitary materials such as diapers and sanitary napkins, disposable hand towels, wiping cloths, base cloths for domestic use, or for commercial use. It is used as a garbage collection bag and other waste treatment material. Since these are completely biodegraded after a certain period of time if left in an environment (soil or water) where microorganisms are present after use, they do not require special waste treatment and are useful for pollution prevention. ..

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金元 直貴 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Naoki Kanemoto 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリ−ε−カプロラクトン及び/又はポ
リ−β−プロピオラクトンからなるA成分とポリ(β−
ヒドロキシアルカノエート) 又はその共重合体からなる
B成分とが偏心的に接合している潜在捲縮能を有する微
生物分解性複合繊維。
1. An A component comprising poly-ε-caprolactone and / or poly-β-propiolactone and poly (β-
A biodegradable conjugate fiber having a latent crimping ability, which is eccentrically joined with a B component comprising a hydroxyalkanoate) or a copolymer thereof.
【請求項2】 A成分がポリ−ε−カプロラクトンであ
り、B成分がポリ−3−ヒドロキシブチレート共重合体
である請求項1記載の複合繊維。
2. The composite fiber according to claim 1, wherein the component A is poly-ε-caprolactone and the component B is a poly-3-hydroxybutyrate copolymer.
JP3277248A 1991-09-27 1991-09-27 Microorganism degradable conjugate fiber having latently crimping ability Pending JPH0593317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277248A JPH0593317A (en) 1991-09-27 1991-09-27 Microorganism degradable conjugate fiber having latently crimping ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277248A JPH0593317A (en) 1991-09-27 1991-09-27 Microorganism degradable conjugate fiber having latently crimping ability

Publications (1)

Publication Number Publication Date
JPH0593317A true JPH0593317A (en) 1993-04-16

Family

ID=17580883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277248A Pending JPH0593317A (en) 1991-09-27 1991-09-27 Microorganism degradable conjugate fiber having latently crimping ability

Country Status (1)

Country Link
JP (1) JPH0593317A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016135A1 (en) * 1993-01-07 1994-07-21 Unitika Ltd Binder fiber and nonwoven fabric produced therefrom
US5489470A (en) * 1994-01-28 1996-02-06 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US5498692A (en) * 1994-01-28 1996-03-12 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US5502116A (en) * 1994-01-28 1996-03-26 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate
US5646077A (en) * 1993-01-07 1997-07-08 Unitika Ltd Binder fiber and nonwoven fabrics using the fiber
US5685756A (en) * 1994-01-28 1997-11-11 The Procter & Gamble Company Nonwoven materials comprising biodegradable copolymers
US5990271A (en) * 1994-01-28 1999-11-23 The Procter & Gamble Company Films and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate comonomer units
US6143947A (en) * 1996-01-29 2000-11-07 The Procter & Gamble Company Fibers, nonwoven fabrics and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate
WO2019194243A1 (en) 2018-04-03 2019-10-10 Spiber株式会社 Composite fibers and method for manufacturing same
WO2022202397A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Multifilament, method for manufacturing multifilament, staple, and method for manufacturing staple
CN115380136A (en) * 2020-04-09 2022-11-22 株式会社钟化 Process for producing aliphatic polyester fiber, and multifilament
WO2023157915A1 (en) * 2022-02-17 2023-08-24 株式会社カネカ Biodegradable nonwoven fabric and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554442A (en) * 1993-01-07 1996-09-10 Unitika Ltd. Binder fiber and nonwoven fabrics using the fiber
WO1994016135A1 (en) * 1993-01-07 1994-07-21 Unitika Ltd Binder fiber and nonwoven fabric produced therefrom
US5646077A (en) * 1993-01-07 1997-07-08 Unitika Ltd Binder fiber and nonwoven fabrics using the fiber
US5685756A (en) * 1994-01-28 1997-11-11 The Procter & Gamble Company Nonwoven materials comprising biodegradable copolymers
US5990271A (en) * 1994-01-28 1999-11-23 The Procter & Gamble Company Films and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate comonomer units
US5602227A (en) * 1994-01-28 1997-02-11 The Procter & Gamble Company Biodegradable copolymers
US5618855A (en) * 1994-01-28 1997-04-08 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US5498692A (en) * 1994-01-28 1996-03-12 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US5489470A (en) * 1994-01-28 1996-02-06 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers
US5747584A (en) * 1994-01-28 1998-05-05 The Procter & Gamble Company Nonwoven materials comprising biodegradable copolymers
US5502116A (en) * 1994-01-28 1996-03-26 The Procter & Gamble Company Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate
US6013590A (en) * 1994-01-28 2000-01-11 The Procter & Gamble Company Fibers, nonwoven fabrics, and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate
USRE36548E (en) * 1994-01-28 2000-02-01 The Procter & Gamble Company Biodegradable copolymers
US6027787A (en) * 1994-01-28 2000-02-22 The Procter & Gamble Company Films and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate comonomer units
US6143947A (en) * 1996-01-29 2000-11-07 The Procter & Gamble Company Fibers, nonwoven fabrics and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate
WO2019194243A1 (en) 2018-04-03 2019-10-10 Spiber株式会社 Composite fibers and method for manufacturing same
CN115380136A (en) * 2020-04-09 2022-11-22 株式会社钟化 Process for producing aliphatic polyester fiber, and multifilament
WO2022202397A1 (en) * 2021-03-26 2022-09-29 株式会社カネカ Multifilament, method for manufacturing multifilament, staple, and method for manufacturing staple
WO2023157915A1 (en) * 2022-02-17 2023-08-24 株式会社カネカ Biodegradable nonwoven fabric and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH07133511A (en) Biodegradable conjugate yarn and nonwoven fabric using the same
JPH0593317A (en) Microorganism degradable conjugate fiber having latently crimping ability
JP2004353161A (en) Polyester conjugated fiber
JPH0593318A (en) Microorganism degradable conjugate fiber and its nonwoven fabric
JP2006200085A (en) Polylactic acid short fiber, method for producing the same and nonwoven fabric
JPH0748769A (en) Degradable nonwoven fabric and its production
JP4418869B2 (en) Biodegradable composite short fiber, method for producing the same, and heat-bonding nonwoven fabric using the same
JPH0578914A (en) Bio-degradable staple fiber
JP2003213529A (en) Biodegradable conjugated fiber and fiber structure and absorption article using the same
JP3880073B2 (en) Biodegradable staples and fibers
JP3465752B2 (en) Biodegradable short fiber
JP4578929B2 (en) Polylactic acid composite binder fiber
JP3886808B2 (en) Polylactic acid spontaneous crimped fiber
JPH0921018A (en) Biodegradable fiber and nonwoven fabric using the same
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP4033698B2 (en) Polylactic acid composite fiber
JPH0593316A (en) Microorganism degradable conjugate fiber
JPH09142485A (en) Biodegradable bag
JP3663678B2 (en) Biodegradable fiber and non-woven fabric using the same
JP3557027B2 (en) Naturally degradable composite yarn and its product
JP4091781B2 (en) Degradable nonwoven fabric and method for producing the same
JPH0913259A (en) Biodegradable staple fiber nonwoven fabric and its production
JP2005089937A (en) Biodegradable conjugated fiber, fiber structure using the same and absorbent article
JPH09209216A (en) Self-crimping conjugate fiber
JP2004003073A (en) Biodegradable conjugate fiber, and fibrous structure using the same,and absorptive article comprising fibrous structure