JPH0590247A - Method and device for forming insulating film - Google Patents

Method and device for forming insulating film

Info

Publication number
JPH0590247A
JPH0590247A JP27481991A JP27481991A JPH0590247A JP H0590247 A JPH0590247 A JP H0590247A JP 27481991 A JP27481991 A JP 27481991A JP 27481991 A JP27481991 A JP 27481991A JP H0590247 A JPH0590247 A JP H0590247A
Authority
JP
Japan
Prior art keywords
chamber
insulating film
gas
ecr plasma
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27481991A
Other languages
Japanese (ja)
Other versions
JP2648746B2 (en
Inventor
Michio Ishikawa
道夫 石川
Akira Shimizu
昭 清水
Kazuyuki Ito
一幸 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G T C KK
GTC KK
Original Assignee
G T C KK
GTC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G T C KK, GTC KK filed Critical G T C KK
Priority to JP27481991A priority Critical patent/JP2648746B2/en
Publication of JPH0590247A publication Critical patent/JPH0590247A/en
Application granted granted Critical
Publication of JP2648746B2 publication Critical patent/JP2648746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a method, which lessens damage to an insulating film due to high-energy ions and is capable of obtaining the insulating film of good quality by heating a substrate at 650 deg.C or lower utilizing ECR plasma, by a method wherein with the high-density ECR plasma led in a treating chamber, the temperature of a material to be treated is maintained within a specified extent, and so forch. CONSTITUTION:A material 9 to be treated is arranged in a treating chamber 1 and after the interior of the chamber 1 is evacuated, reaction gas is introduced in the chamber 1 in such a way that the pressure to gas for excitation use in an ECR plasma chamber 11, which is connected to the chamber 1, reaches a prescribed pressure. A microwave of a prescribed frequency is introduced in the chamber 11, whereby high-density ECR plasma is made to produce and with that plasma led to the vicinity of the material 9 to be treated in the chamber 1, a film is formed on the material 9 to be treated by maintaining the temperature of the material 9 to be treated at 450 to 650 deg.C. For example, silane or disilane-containing gas is used as reaction gas, N2O-containing gas is used as excitation gas and an SiO2 film is formed on a glass substrate 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、絶縁膜を形成する方
法および装置に関するものであり、特に、TFT(薄膜
トランジスタ)のゲート絶縁膜に用いられるSiO2
などの酸化物薄膜の形成にきわめて有用な方法および装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming an insulating film, and is particularly useful for forming an oxide thin film such as a SiO 2 film used as a gate insulating film of a TFT (thin film transistor). Method and apparatus.

【0002】[0002]

【従来の技術】近年、高画質の液晶ディスプレィを得る
ために、a−SiTFT(アモルファスシリコン薄膜ト
ランジスタ)などの3端子素子からなる電極構造が多く
用いられるようになってきており、小型の液晶テレビな
どに実用化されている。しかしながら、a−SiTFT
における電子の電界効果移動度は小さいため、a−Si
TFTを、高品位テレビに要求されるような大画面、高
精細な表示を行なうために用いることには限界がある。
これは、走査線が増えると走査線1本当りの書き込み時
間が短くなるためTFTの応答速度を上げる必要がある
とともに、高精細化により画素面積が小さくなると所定
の開口率を得るためにTFT部の面積を小さくしなけれ
ばならず、その結果、TFTの高性能化が必要となるか
らである。
2. Description of the Related Art In recent years, in order to obtain a high quality liquid crystal display, an electrode structure composed of a three-terminal element such as an a-Si TFT (amorphous silicon thin film transistor) has been widely used, and a small liquid crystal television or the like. Has been put into practical use. However, a-Si TFT
Since the field effect mobility of electrons in is low, a-Si
There is a limit in using the TFT for displaying a large screen and a high definition as required for a high definition television.
This is because it is necessary to increase the response speed of the TFT because the writing time per scanning line is shortened as the number of scanning lines is increased. In addition, when the pixel area is reduced due to high definition, the TFT area is required to obtain a predetermined aperture ratio. This is because the area of the TFT must be reduced, and as a result, it is necessary to improve the performance of the TFT.

【0003】この限界を打ち破るため、電子移動度の大
きなpoly−Si(ポリシリコン)を用いたpoly
−SiTFTを液晶ディスプレィ電極として使用するこ
とが提案されており、すでにビューファインダ,CCD
を用いたディスプレイ,液晶プロジェクタ等に使用され
ている。このpoly−SiTFTはLSIプロセスを
用いて製造され、基板にゲート絶縁膜を熱酸化法で形成
する際1000℃以上のプロセス温度が加わるため、こ
の基板には耐熱性の高い高価な石英ガラスを使わざるを
得ないというのが現状である。poly−SiTFTが
大画面のOA機器、民生機器などに用いられるには安価
であることが不可欠であり、このためには安価なガラス
基板にゲート絶縁膜を形成できるよう低温プロセスによ
ってpoly−SiTFTが製造できることが望まれ
る。
In order to overcome this limitation, poly-Si (polysilicon) having a high electron mobility is used.
-It has been proposed to use a SiTFT as a liquid crystal display electrode, and already has a viewfinder, a CCD.
It is used in displays, liquid crystal projectors, etc. This poly-Si TFT is manufactured by using the LSI process, and since a process temperature of 1000 ° C. or higher is applied when the gate insulating film is formed on the substrate by the thermal oxidation method, expensive heat-resistant quartz glass is used for this substrate. The current situation is that there is no choice but to avoid it. In order for poly-Si TFTs to be used in large-screen OA equipment, consumer equipment, etc., it is essential that they be inexpensive. For this purpose, poly-Si TFTs can be formed by a low temperature process so that a gate insulating film can be formed on an inexpensive glass substrate. It is desirable to be able to manufacture.

【0004】低温プロセスでSiO2膜を形成する方法
としては、P(プラズマ)−CVD法、スパッタ法、E
CR(Electron Cyclotron Resonance)−CVD法が知
られている。特に、ECR−CVD法は成膜時の動作圧
力が10-3Torr以下と低く、またプラズマ密度が高
いため、成膜時に大量のイオンが基板に対して、P−C
VDと比べて高いエネルギで入射する。このようにP−
CVD法は成膜時にイオンの運動エネルギを用いるもの
であるため、室温あるいは200℃程度の低い基板温度
でもSiO2 膜を得ることができるという長所がある。
しかしながら、同時に、高エネルギイオンによるダメー
ジがSiO2膜に発生し、低電界領域におけるリーク電
流が大きくなってしまうという問題もあった。
As a method of forming a SiO 2 film by a low temperature process, P (plasma) -CVD method, sputtering method, E
A CR (Electron Cyclotron Resonance) -CVD method is known. In particular, the ECR-CVD method has a low operating pressure of 10 −3 Torr or less during film formation and a high plasma density.
The incident energy is higher than that of VD. Thus P-
Since the CVD method uses kinetic energy of ions during film formation, it has an advantage that a SiO 2 film can be obtained even at room temperature or a low substrate temperature of about 200 ° C.
However, at the same time, there is also a problem that damage due to high-energy ions occurs in the SiO2 film and the leak current in the low electric field region becomes large.

【0005】一方、従来より行なわれている常圧CVD
法あるいは減圧CVD法によると、安価なガラス基板の
耐熱温度である600℃以下では成膜速度がきわめて遅
く、これらの方法を安価なガラス基板に適用することは
工業的に不可能と言えるものであった。また、ジシラ
ン、トリシランなどの高次シランと亜酸化窒素または反
応性の高い酸素ガスを利用し、熱CVD法によって比較
的低い温度でSiO2 膜を得る方法もあるが、この方法
により600℃以下で良質の膜を得ることは困難であっ
た。また、この方法によると、大きな面積の基板にSi
2 膜を均一に形成するために、酸素ガスでなく反応性
の低い亜酸化窒素を使用しなければならない問題もあ
る。
On the other hand, the conventional atmospheric pressure CVD
Method or low pressure CVD method, the film formation rate is extremely slow at 600 ° C. or lower, which is the heat resistant temperature of an inexpensive glass substrate, and it is industrially impossible to apply these methods to an inexpensive glass substrate. there were. There is also a method of obtaining a SiO 2 film at a relatively low temperature by a thermal CVD method using a high-order silane such as disilane and trisilane and nitrous oxide or a highly reactive oxygen gas. It was difficult to obtain a good quality film. In addition, according to this method, Si can be applied to a large-area substrate.
There is also a problem that nitrous oxide having low reactivity must be used instead of oxygen gas in order to uniformly form the O 2 film.

【0006】一般的に、絶縁膜としてはリーク電流が小
さく絶縁耐圧が大きいことが、ゲート絶縁膜としては、
これに加えて固定電高密度、界面準位密度が小さいこと
が要求される。しかしながら、上述のように、従来の方
法によってこのような特性を満足する良質のSiO2
を得るためには900℃以上の熱プロセスを利用しなけ
ればならなかった。これは、成膜時に必要とするエネル
ギを、熱、イオンによる運動エネルギあるいは光など、
単一の手段に頼っていたためである。このように単一の
手段に頼らざるを得なかったのは、基板温度を400℃
以上に維持しながら、プラズマ、光など、他のエネルギ
源を均一に大面積に導入し成膜を行なうことができる装
置を作ることが困難であることもその理由の一つであっ
た。
Generally, an insulating film has a small leak current and a large withstand voltage.
In addition to this, it is required that the fixed charge density and the interface state density be small. However, as described above, in order to obtain a good quality SiO 2 film satisfying such characteristics by the conventional method, a thermal process at 900 ° C. or higher had to be used. This is because the energy required for film formation is changed to heat, kinetic energy by ions, or light.
This is because it relied on a single means. In this way, it was necessary to rely on a single method because the substrate temperature was 400 ° C.
One of the reasons is that it is difficult to make an apparatus capable of performing film formation by uniformly introducing other energy sources such as plasma and light into a large area while maintaining the above.

【0007】[0007]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、高エネルギイオンによる絶縁膜のダメー
ジを少なくすることができるとともに、650℃以下の
基板加熱によって良質の絶縁膜を得ることのできるEC
Rプラズマを利用した絶縁膜形成方法および装置を提供
することにある。
The problem to be solved by the present invention is to reduce damage to the insulating film due to high-energy ions, and to obtain a high-quality insulating film by heating the substrate at 650 ° C. or lower. EC that can
An object of the present invention is to provide an insulating film forming method and apparatus using R plasma.

【0008】[0008]

【課題を解決するための手段】本発明の絶縁膜を形成す
る方法は、前記課題を解決するためになされたものであ
り、被処理体を処理室内に配置する工程と、処理室内を
排気する工程と、処理室内に反応ガスを、この処理室に
連通するECRプラズマ室内に励起用ガスを所定圧力に
なるよう導入する工程と、所定周波数のマイクロ波を前
記ECRプラズマ室に導入することにより高密度プラズ
マを生じさせ、これを処理室内の被処理体近傍に導くと
ともに、前記被処理体の温度を450℃〜650℃に維
持することによって、この被処理体上に成膜する工程と
からなるものである。
The method of forming an insulating film according to the present invention is made to solve the above-mentioned problems, and includes a step of disposing an object to be processed in a processing chamber and exhausting the processing chamber. A process, a step of introducing a reaction gas into the processing chamber, a step of introducing the excitation gas into the ECR plasma chamber communicating with the processing chamber so as to have a predetermined pressure, and a microwave of a predetermined frequency into the ECR plasma chamber Density plasma is generated, guided to the vicinity of the object to be processed in the processing chamber, and the temperature of the object is maintained at 450 ° C. to 650 ° C. to form a film on the object. It is a thing.

【0009】また、前記反応ガスとしてはシランもしく
はジシランなどの高次シランガス、または、これに希釈
ガスとして窒素、酸素、アルゴン、ヘリウム、水素のう
ち少なくとも1種類を加えたガスを、励起ガスとしては
2 Oガス、または、これに希釈ガスとして窒素、アル
ゴン、ヘリウム、水素のうち少なくとも1種類を加えた
ガスを用いることが好ましい。
Further, as the reaction gas, a higher order silane gas such as silane or disilane, or a gas obtained by adding at least one of nitrogen, oxygen, argon, helium, and hydrogen as a diluent gas to it is used as an excitation gas. It is preferable to use N 2 O gas or a gas obtained by adding at least one of nitrogen, argon, helium, and hydrogen as a diluent gas to the N 2 O gas.

【0010】本発明の絶縁膜を形成する装置は、内部に
被処理体を配置し、かつ、真空に保持することができる
真空容器と、マイクロ波を発生する手段と、前記真空容
器に連通し、マイクロ波の空洞共振器を構成するととも
に前記発生したマイクロ波を導入してプラズマを発生す
るECRプラズマ室と、前記真空容器に反応ガスをEC
Rプラズマ室に励起用ガスを導入する手段と、前記被処
理体を少なくとも650℃まで加熱することができる手
段とを設けたものである。
The apparatus for forming an insulating film according to the present invention has a vacuum container in which an object to be processed is placed and which can be maintained in a vacuum, a means for generating a microwave, and a communication with the vacuum container. , An ECR plasma chamber that constitutes a microwave cavity resonator and introduces the generated microwaves to generate plasma, and a reaction gas EC in the vacuum container.
A means for introducing an exciting gas into the R plasma chamber and a means for heating the object to be processed to at least 650 ° C. are provided.

【0011】この発明の絶縁膜形成方法は、poly−
SiTFT用ゲート絶縁膜だけでなく、MISトランジ
スタ一般のゲート絶縁膜、キャパシタ用絶縁膜、層間絶
縁膜など各種絶縁膜の形成に用いることができる。絶縁
膜としては、SiO2 だけでなく、Si34、Ta2
5、 Al23など各種絶縁材料を用いることができ
る。また、処理室およびECRプラズマ室内に導入され
るガス圧力は1x10-3〜5x10-4Torrの適切な
値に維持される。ECRプラズマ室の形状、これに導入
されるマイクロ波の周波数、磁気コイルによる磁束密度
などは、ECRを生じさせるために一般に使用されてい
る条件を用いればよい。
The method of forming an insulating film of the present invention is a poly-
It can be used not only for forming a gate insulating film for SiTFT but also for forming various insulating films such as a general gate insulating film for MIS transistors, an insulating film for capacitors, and an interlayer insulating film. As the insulating film, not only SiO 2 but also Si 3 N 4 , Ta 2
Various insulating materials such as O 5 and Al 2 O 3 can be used. Further, the gas pressure introduced into the processing chamber and the ECR plasma chamber is maintained at an appropriate value of 1 × 10 −3 to 5 × 10 −4 Torr. Regarding the shape of the ECR plasma chamber, the frequency of the microwave introduced therein, the magnetic flux density by the magnetic coil, etc., the conditions generally used for producing ECR may be used.

【0012】[0012]

【作用】poly−SiTFT用基板などの被処理体が
処理室の所定位置にセットされ、処理室内が排気された
後、処理室内に反応ガスが、また、この処理室に連通す
るECRプラズマ室内に励起用ガスが所定圧力になるよ
う導入される。そして、外部から所定周波数のマイクロ
波が、石英などのマイクロ波を透過する材料からなる窓
を通してECRプラズマ室に導入される。このECRプ
ラズマ室はマイクロ波の空洞共振器を構成するため、E
CRプラズマ室内部には高密度ECRプラズマが生じ
る。このプラズマ中の電子は、その磁場による電子の回
転とマイクロ波とが共振することによりマイクロ波のエ
ネルギを効率よく吸収することになる。
After the object to be processed such as the substrate for the poly-Si TFT is set at the predetermined position of the processing chamber and the inside of the processing chamber is exhausted, the reaction gas is introduced into the processing chamber and the ECR plasma chamber communicating with the processing chamber is also introduced. The exciting gas is introduced so as to have a predetermined pressure. Then, a microwave having a predetermined frequency is externally introduced into the ECR plasma chamber through a window made of a material that transmits microwaves such as quartz. Since this ECR plasma chamber constitutes a microwave cavity resonator,
High-density ECR plasma is generated inside the CR plasma chamber. The electrons in the plasma efficiently absorb the microwave energy due to the resonance of the microwaves and the rotation of the electrons due to the magnetic field.

【0013】また、前記被処理体は、加熱手段によって
450℃〜650℃に加熱、維持されており、このよう
な被処理体近傍に前記プラズマが達すると、前記加熱に
よる熱エネルギとプラズマ内のイオン、電子などが持つ
運動エネルギとにより、被処理体近傍の反応ガスが活性
化されて化学反応を起こし、被処理体上にSiO2
ど、所望の絶縁膜が生成されることになる。この生成反
応はECRプラズマによって反応ガスを活性化するもの
であるため、従来の熱酸化法による場合と比べ低い温度
での成膜が可能となる。また、450℃〜650℃の温
度で反応を行なうものであるため、プラズマ内のイオ
ン、電子などが持つ運動エネルギをさほど大きくしない
で必要な反応を起こさせることが可能となり、生成され
た絶縁膜のイオン、高エネルギ電子などの衝撃による損
傷を最小限に抑えることができる。
Further, the object to be processed is heated and maintained at 450 ° C. to 650 ° C. by a heating means, and when the plasma reaches the vicinity of the object to be processed, the thermal energy due to the heating and the inside of the plasma. The reaction gas in the vicinity of the object to be processed is activated by the kinetic energy of the ions and electrons to cause a chemical reaction, and a desired insulating film such as SiO 2 is formed on the object to be processed. Since this generation reaction activates the reaction gas by ECR plasma, it is possible to form a film at a lower temperature than in the case of the conventional thermal oxidation method. Further, since the reaction is performed at a temperature of 450 ° C. to 650 ° C., it becomes possible to cause a necessary reaction without significantly increasing the kinetic energy of ions, electrons, etc. in the plasma, and the generated insulating film It is possible to minimize damage due to impact of ions, high-energy electrons, etc.

【0014】[0014]

【実施例】以下、実施例に基づいてこの発明を詳細に説
明する。図1は、この発明の絶縁膜を形成するECRプ
ラズマCVD装置の一実施例を示す断面図である。この
図において、1は、その一部にSiH4などの反応ガス
を導入するガス導入口6を有する真空容器であり、ま
た、この真空容器1はポンプバルブを介して排気口に接
続されている。これらの排気口、ガス導入口6を通るガ
スの流量は、マスフローコントローラ(図示せず)など
によってそれぞれ独立に制御されるように構成されてい
る。この真空容器1は、その内部で高温処理が可能とな
るように、外壁2とによって2重構造を形成しており、
これらの間には冷媒3が循環している。真空容器1の内
部には、搬送系7によってこの真空容器1の内部と外部
(他の真空系)との間を搬送することができるように構
成されたトレイ8上に、安価な材料で作られたpoly
−SiTFT用ガラス基板9がセットされるようになっ
ている。この基板9の背後には、カンタルヒータを内蔵
したヒータユニット10が設けられており、基板9を少
なくとも650℃まで加熱することができるようになっ
ている。
EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a sectional view showing an embodiment of an ECR plasma CVD apparatus for forming an insulating film of the present invention. In this figure, 1 is a vacuum container having a gas inlet 6 for introducing a reaction gas such as SiH 4 in a part thereof, and the vacuum container 1 is connected to an exhaust port via a pump valve. .. The flow rate of the gas passing through the exhaust port and the gas introduction port 6 is configured to be independently controlled by a mass flow controller (not shown) or the like. The vacuum container 1 has a double structure with the outer wall 2 so that high temperature processing can be performed inside the vacuum container 1.
The refrigerant 3 circulates between them. The inside of the vacuum container 1 is made of an inexpensive material on a tray 8 configured so that it can be transferred between the inside and outside of the vacuum container 1 (another vacuum system) by a transfer system 7. Was poly
The glass substrate 9 for SiTFT is set. Behind the substrate 9, a heater unit 10 having a built-in Kanthal heater is provided so that the substrate 9 can be heated to at least 650 ° C.

【0015】11は、前記ガラス基板9に対向する位置
に設けられたECRプラズマ室であり、このプラズマ室
11にN2 Oなどの励起ガスを導入するためのガス導入
口5、マイクロ波を導入するための石英窓12、ECR
プラズマ室11内に磁場を発生させるためのコイル13
を有している。このECRプラズマ室11はマイクロ波
の空洞共振器を構成するような構造となっており、外部
に設けられたマイクロ波発振器(図示せず)から導波管
(図示せず)および石英窓12を通して、所定周波数の
マイクロ波がECRプラズマ室11に導入されると、こ
の内部に高密度ECRプラズマが生じるようになってい
る。このECRプラズマ中の電子は、コイル13により
生じた磁場による電子の回転とマイクロ波とが共振を起
こすことによって、マイクロ波のエネルギを効率よく吸
収し、大きな運動エネルギを持つことになる。また、真
空容器1内部における加熱の均一性を図り、他の部分の
加熱防止を図るため、真空容器1内部の適切な位置に、
鏡面仕上げされたステンレスなどの材料で作られたリフ
レクタ4が設けられている。
Reference numeral 11 denotes an ECR plasma chamber provided at a position facing the glass substrate 9, and a gas inlet 5 for introducing an exciting gas such as N 2 O and a microwave are introduced into the plasma chamber 11. Quartz window 12 for ECR, ECR
A coil 13 for generating a magnetic field in the plasma chamber 11.
have. The ECR plasma chamber 11 has a structure that constitutes a microwave cavity resonator, and a microwave oscillator (not shown) provided externally passes through a waveguide (not shown) and a quartz window 12. When a microwave having a predetermined frequency is introduced into the ECR plasma chamber 11, a high density ECR plasma is generated inside the microwave. Electrons in the ECR plasma efficiently absorb microwave energy and have large kinetic energy due to resonance of the microwave and the rotation of electrons due to the magnetic field generated by the coil 13. In addition, in order to achieve uniform heating inside the vacuum container 1 and to prevent heating of other parts, at an appropriate position inside the vacuum container 1,
A reflector 4 made of a mirror-finished material such as stainless steel is provided.

【0016】次に、上記ECRプラズマCVD装置の動
作および絶縁膜形成方法の一実施例について説明する。
まず、真空ポンプを動作させることにより真空容器1内
部を1x10-6Torr以下になるまで排気し、同時に
ヒータユニット10を動作させることにより450℃〜
650℃の所定の温度まで加熱する。その後、poly
−SiTFT用ガラス基板9を搭載したトレイ8を搬送
系7によって他の真空室から真空容器1内部の所定位置
に搬送する。次に、SiH4 ガス、N2 Oガスを、それ
ぞれガス導入口6、5から真空容器1、ECRプラズマ
室11に導入する。この流量はマスフローコントローラ
によってそれぞれ制御され、真空容器1内部の圧力は、
排気ユニット(図示せず)に設けられた可変バルブを調
節することにより1x10-3〜5x10-4Torrの間
の所定圧力に維持する。その後、外部から所定周波数の
マイクロ波を石英窓12を通してECRプラズマ室11
に導入し、高密度ECRプラズマを生じさせればよい。
このようにすることによりプラズマがガラス基板9近傍
に達すると、前記加熱による熱エネルギとプラズマ中の
イオン、電子などが持つ運動エネルギとにより、ガラス
基板9近傍の反応ガスが活性化されて化学反応を起こ
し、ガラス基板9上にSiO2 絶縁膜が生成されること
になる。
Next, an embodiment of the operation of the ECR plasma CVD apparatus and the insulating film forming method will be described.
First, by operating the vacuum pump, the inside of the vacuum container 1 is evacuated to 1 × 10 −6 Torr or less, and at the same time, by operating the heater unit 10, 450 ° C.
Heat to a predetermined temperature of 650 ° C. Then poly
The tray 8 on which the glass substrate 9 for SiTFT is mounted is transported from another vacuum chamber to a predetermined position inside the vacuum container 1 by the transport system 7. Next, SiH 4 gas and N 2 O gas are introduced into the vacuum container 1 and the ECR plasma chamber 11 through the gas introduction ports 6 and 5, respectively. This flow rate is controlled by the mass flow controller, and the pressure inside the vacuum container 1 is
By adjusting the variable valve provided in the exhaust unit (not shown) 1x10 - maintaining a predetermined pressure between the 3~5x10 -4 Torr. After that, microwave of a predetermined frequency is externally passed through the quartz window 12 to the ECR plasma chamber 11
To produce high-density ECR plasma.
By doing so, when the plasma reaches the vicinity of the glass substrate 9, the reaction gas in the vicinity of the glass substrate 9 is activated by the thermal energy due to the heating and the kinetic energy of the ions, electrons, etc. in the plasma to cause a chemical reaction. Then, a SiO 2 insulating film is formed on the glass substrate 9.

【0017】図2は、上記の装置および方法を用いて形
成した絶縁膜のガラス基板温度−リーク電流の関係を示
すグラフである。これは、poly−SiTFT用ガラ
ス基板9上にSiO2 膜を形成し、さらにその上に蒸着
によりAl電極を形成してMOS構造とした後、これに
2MV/cmの電界を印加して測定したものである。な
お、この図中には、参考のため、同一のガスを用い20
0°CでプラズマCVD法によって成膜した場合のリー
ク電流を黒丸で示してある。また、従来の熱酸化法(約
1100°C)によって得られた熱酸化膜のリーク電流
を矢印で示した。このグラフから明らかなように、リー
ク電流は、ガラス基板温度が室温から400°C近辺ま
では基板温度の増加とともにゆるやかに減少するが、4
00°C以上になると基板温度の増加に伴い急激に減少
し、きわめて良好な特性を示している。これによれば、
基板温度600°C近辺では1100°Cで熱酸化法に
よって得られた膜にかなり近いリーク電流を持つSiO
2 膜が得られる。また、プラズマCVD法と比較して
も、同一の温度であればこの発明の方法による方がより
優れた絶縁膜を得ることができることが分かる。このよ
うに、この発明の絶縁膜を形成する方法によれば、EC
Rプラズマによるイオン照射と熱エネルギが有効に働い
て相乗効果をもたらしていることが分かる。
FIG. 2 is a graph showing the relationship between the glass substrate temperature and the leak current of the insulating film formed by using the above apparatus and method. This was measured by forming a SiO 2 film on the glass substrate 9 for poly-Si TFT, further forming an Al electrode by vapor deposition thereon to form a MOS structure, and then applying an electric field of 2 MV / cm thereto. It is a thing. In this figure, the same gas is used for reference.
The leakage current when the film is formed by the plasma CVD method at 0 ° C. is shown by a black circle. Further, the leakage current of the thermal oxide film obtained by the conventional thermal oxidation method (about 1100 ° C.) is shown by an arrow. As is clear from this graph, the leakage current gradually decreases as the substrate temperature increases from room temperature to around 400 ° C.
When the temperature is higher than 00 ° C, the temperature sharply decreases with an increase in the substrate temperature, and excellent characteristics are exhibited. According to this
At a substrate temperature of around 600 ° C, SiO having a leak current at 1100 ° C, which is considerably close to that of the film obtained by the thermal oxidation method.
Two films are obtained. Further, even when compared with the plasma CVD method, it can be seen that a more excellent insulating film can be obtained by the method of the present invention at the same temperature. Thus, according to the method for forming an insulating film of the present invention, EC
It can be seen that the ion irradiation by R plasma and the thermal energy work effectively to bring about a synergistic effect.

【0018】図3は、この発明の絶縁膜を形成する方法
により成膜したSiO2 膜の基板温度とBHFエッチン
グレートの関係を示すグラフである。この図によれば、
この発明を用いて成膜したSiO2膜のBHFエッチン
グレートは、基板温度の増加とともに減少し、400°
C以上では一定値に近づいている。これから、基板温度
400°C以上では緻密な膜となっていることが分か
る。
FIG. 3 is a graph showing the relationship between the substrate temperature of the SiO 2 film formed by the method of forming an insulating film of the present invention and the BHF etching rate. According to this figure
The BHF etching rate of the SiO 2 film formed by using the present invention decreases with the increase of the substrate temperature to 400 °
Above C, it approaches a certain value. From this, it is understood that a dense film is formed at a substrate temperature of 400 ° C. or higher.

【0019】図4は、この発明のECRプラズマCVD
装置の他の実施例を示す断面図である。上述の実施例に
おいてはECRプラズマ源を1台のみとしたが、ECR
プラズマ源1台の有効成膜面積は最大でも200mm角
程度であるため、それ以上の大きな面積の基板に均一に
成膜する場合には、図4に示すようにECRプラズマ源
を複数個並べて用いることが好ましい。この場合、マイ
クロ発振器もこれに合わせて複数台用意してもよいが、
1台のみ用いて分配器により分配するようにしてもよ
い。なお、この図4において、図1における部品と同じ
部品には同一の番号を付してある。
FIG. 4 shows the ECR plasma CVD of the present invention.
It is sectional drawing which shows the other Example of an apparatus. Although only one ECR plasma source is used in the above embodiment,
Since the effective film forming area of one plasma source is about 200 mm square at the maximum, a plurality of ECR plasma sources are used side by side as shown in FIG. 4 when uniformly forming a film on a substrate having a larger area. Preferably. In this case, you may prepare multiple micro-oscillators according to this,
You may make it distribute | distribute by a distributor using only one unit. In FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals.

【0020】なお、上記実施例においては、poly−
SiTFT用SiO2 ゲート絶縁膜を形成する場合につ
いてのみ述べてきたが、この発明をMISトランジスタ
一般のゲート絶縁膜、キャパシタ用絶縁膜、層間絶縁膜
など各種絶縁膜の形成に用いることができることはもち
ろんである。また、この発明によりSi34,Ta2
5, Al23など、SiO2以外の絶縁膜を形成して
も、SiO2の場合と同様の効果を得ることができる。
In the above embodiment, poly-
Although only the case of forming the SiO 2 gate insulating film for SiTFT has been described, it goes without saying that the present invention can be used for forming various insulating films such as general gate insulating films for MIS transistors, insulating films for capacitors, and interlayer insulating films. Is. In addition, according to the present invention, Si 3 N 4 , Ta 2
Even if an insulating film other than SiO 2 , such as O 5 or Al 2 O 3 , is formed, the same effect as that of SiO 2 can be obtained.

【0021】[0021]

【発明の効果】この発明によれば、ECRプラズマCV
D法により絶縁膜を成膜する際に、基板を650°Cま
で加熱可能としたため、ECRプラズマのイオン照射に
よるエネルギと基板の加熱エネルギの相乗効果により緻
密な絶縁膜が得られるとともに、イオン照射によるミク
ロな膜へのダメージを熱エネルギで緩和しているため、
リーク電流の小さな電気的に優れた絶縁膜を得ることが
できる。さらに、絶縁膜の成膜温度が650°C以下で
よいため、従来、高価な石英ガラスを用いなければ得ら
れなかった高品位絶縁膜を安価なガラス基板により得る
ことが可能となる。
According to the present invention, ECR plasma CV
Since the substrate can be heated up to 650 ° C. when the insulating film is formed by the D method, a dense insulating film can be obtained by the synergistic effect of the energy of the ion irradiation of ECR plasma and the heating energy of the substrate and the ion irradiation. Since the damage to the microscopic film due to is mitigated by heat energy,
An electrically excellent insulating film with a small leak current can be obtained. Furthermore, since the film formation temperature of the insulating film may be 650 ° C. or lower, it becomes possible to obtain a high-quality insulating film using an inexpensive glass substrate, which has heretofore been obtained without using expensive quartz glass.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の絶縁膜を形成する装置の一実施例を
示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of an apparatus for forming an insulating film of the present invention.

【図2】上記実施例の装置および方法を用いて形成した
絶縁膜のガラス基板温度−リーク電流の関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a glass substrate temperature and a leak current of an insulating film formed by using the apparatus and method of the above-mentioned embodiment.

【図3】上記実施例の装置および方法を用いて形成した
絶縁膜の基板温度とBHFエッチングレートの関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a substrate temperature of an insulating film formed by using the apparatus and method of the above-mentioned embodiment and a BHF etching rate.

【図4】この発明の絶縁膜を形成する装置の他の実施例
を示す断面図である。
FIG. 4 is a sectional view showing another embodiment of an apparatus for forming an insulating film of the present invention.

【符号の説明】[Explanation of symbols]

1…真空容器 4…リフレクタ 5…ガス導入口 6…ガス導入口 7…搬送系 8…トレイ 9…ガラス基板 10…ヒータユニット 11…ECRプラズマ室 12…石英窓 13…コイル DESCRIPTION OF SYMBOLS 1 ... Vacuum container 4 ... Reflector 5 ... Gas inlet 6 ... Gas inlet 7 ... Transport system 8 ... Tray 9 ... Glass substrate 10 ... Heater unit 11 ... ECR plasma chamber 12 ... Quartz window 13 ... Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理体を処理室内に配置する工程と、 処理室内を排気する工程と、 処理室内に反応ガスを、この処理室に連通するECRプ
ラズマ室内に励起用ガスを所定圧力になるよう導入する
工程と、 所定周波数のマイクロ波を前記ECRプラズマ室に導入
することにより高密度ECRプラズマを生じさせ、これ
を処理室内の被処理体近傍に導くとともに、前記被処理
体の温度を450℃〜650℃に維持することによっ
て、この被処理体上に成膜する工程とからなることを特
徴とする被処理体上に絶縁膜を形成する方法。
1. A step of placing an object to be processed in a processing chamber, a step of exhausting the processing chamber, a reaction gas in the processing chamber, and an excitation gas at a predetermined pressure in an ECR plasma chamber communicating with the processing chamber. And a microwave of a predetermined frequency is introduced into the ECR plasma chamber to generate high-density ECR plasma, which is introduced near the object to be treated in the processing chamber, and the temperature of the object to be treated is set to 450 C. to 650.degree. C., and a step of forming a film on the object to be processed by maintaining the insulating film on the object to be processed.
【請求項2】 前記反応ガスとしてシランもしくはジシ
ランを含有するガスを、励起ガスとしてN2Oを含有す
るガスを用いる請求項1記載の絶縁膜を形成する方法。
2. The method for forming an insulating film according to claim 1, wherein a gas containing silane or disilane is used as the reaction gas, and a gas containing N 2 O is used as the excitation gas.
【請求項3】 内部に被処理体を配置し、かつ、真空に
保持することができる真空容器と、マイクロ波を発生す
る手段と、前記真空容器に連通し、マイクロ波の空洞共
振器を構成するとともに前記発生したマイクロ波を導入
してECRプラズマを発生するECRプラズマ室と、前
記真空容器に反応ガスをECRプラズマ室に励起用ガス
を導入する手段と、前記被処理体を少なくとも650℃
まで加熱することができる手段とを設けたことを特徴と
する被処理体上に絶縁膜を形成する装置。
3. A microwave cavity resonator in which an object to be processed is placed and a vacuum container capable of holding a vacuum, a means for generating a microwave, and the vacuum container are communicated with each other. In addition, an ECR plasma chamber for introducing the generated microwave to generate ECR plasma, a means for introducing a reaction gas into the vacuum container and an exciting gas into the ECR plasma chamber, and the object to be treated at least 650 ° C.
An apparatus for forming an insulating film on an object to be processed, which is provided with means capable of heating up to.
JP27481991A 1991-09-26 1991-09-26 Insulating film formation method Expired - Lifetime JP2648746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27481991A JP2648746B2 (en) 1991-09-26 1991-09-26 Insulating film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27481991A JP2648746B2 (en) 1991-09-26 1991-09-26 Insulating film formation method

Publications (2)

Publication Number Publication Date
JPH0590247A true JPH0590247A (en) 1993-04-09
JP2648746B2 JP2648746B2 (en) 1997-09-03

Family

ID=17547011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27481991A Expired - Lifetime JP2648746B2 (en) 1991-09-26 1991-09-26 Insulating film formation method

Country Status (1)

Country Link
JP (1) JP2648746B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device
WO2002033741A1 (en) * 2000-10-18 2002-04-25 Sony Corporation Method for forming insulation film and method for manufacturing semiconductor device
JP2003142470A (en) * 2001-10-31 2003-05-16 Applied Materials Inc Method and apparatus for depositing silicon nitride film
JP2004111506A (en) * 2002-09-17 2004-04-08 Anelva Corp Method of manufacturing silicon oxide film
WO2007032128A1 (en) * 2005-09-16 2007-03-22 Sharp Kabushiki Kaisha Thin film transistor
WO2007111075A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111074A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111098A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing same
US7491659B2 (en) 1995-09-08 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
US8383208B2 (en) 2005-04-06 2013-02-26 Samsung Display Co., Ltd. Method of fabricating organic light emitting device
JP2014216474A (en) * 2013-04-25 2014-11-17 コバレントマテリアル株式会社 Nitride semiconductor substrate
JP2021072422A (en) * 2019-11-01 2021-05-06 東京エレクトロン株式会社 Information processing device, information processing method, information processing program, and semiconductor manufacturing device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491659B2 (en) 1995-09-08 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. APCVD method of forming silicon oxide using an organic silane, oxidizing agent, and catalyst-formed hydrogen radical
JP2001257206A (en) * 1999-12-07 2001-09-21 Applied Materials Inc Method and apparatus for reducing fixed charge in a semiconductor device
WO2002033741A1 (en) * 2000-10-18 2002-04-25 Sony Corporation Method for forming insulation film and method for manufacturing semiconductor device
JP2003142470A (en) * 2001-10-31 2003-05-16 Applied Materials Inc Method and apparatus for depositing silicon nitride film
JP2004111506A (en) * 2002-09-17 2004-04-08 Anelva Corp Method of manufacturing silicon oxide film
US8383208B2 (en) 2005-04-06 2013-02-26 Samsung Display Co., Ltd. Method of fabricating organic light emitting device
US7859055B2 (en) 2005-09-16 2010-12-28 Sharp Kabushiki Kaisha Thin film transistor
JPWO2007032128A1 (en) * 2005-09-16 2009-03-19 シャープ株式会社 Thin film transistor
WO2007032128A1 (en) * 2005-09-16 2007-03-22 Sharp Kabushiki Kaisha Thin film transistor
WO2007111092A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111074A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111098A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing same
WO2007111076A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
WO2007111075A1 (en) 2006-03-24 2007-10-04 Konica Minolta Medical & Graphic, Inc. Transparent barrier sheet and method for producing transparent barrier sheet
JP2014216474A (en) * 2013-04-25 2014-11-17 コバレントマテリアル株式会社 Nitride semiconductor substrate
JP2021072422A (en) * 2019-11-01 2021-05-06 東京エレクトロン株式会社 Information processing device, information processing method, information processing program, and semiconductor manufacturing device

Also Published As

Publication number Publication date
JP2648746B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR101512761B1 (en) Plasma CVD apparatus method for manufacturing microcrystalline semiconductor layer and method for manufacturing thin film transistor
CN101310036B (en) Multi-layer high quality gate dielectric for low-temperature poly-silicon tfts
US7977255B1 (en) Method and system for depositing a thin-film transistor
JP2648746B2 (en) Insulating film formation method
JP3080843B2 (en) Thin film forming method and apparatus
JP2001131741A (en) Thin film deposition method by catalyst sputtering and thin film deposition system as well as method for manufacturing semiconductor device
US6130118A (en) Plasma reaction apparatus and plasma reaction
JP2002246381A (en) Cvd method
JP2009164519A (en) Method of forming protective film for low-temperature polysilicon, apparatus for forming protective film for low-temperature polysilicon, and low-temperature polysilicon tft
JPH07135093A (en) Plasma processing device and processing method
JP2002170820A (en) Method for manufacturing thin-film transistor and plasma-processing apparatus used for it
JP3837718B2 (en) CVD apparatus and method for performing a post-treatment step after film formation in the CVD apparatus
JP2005252012A (en) Deposited film forming method, forming method of semiconductor element, semiconductor device and display device
JP2003273033A (en) Plasma reaction apparatus
JP3690287B2 (en) Semiconductor film forming method and manufacturing method of thin film semiconductor device
JP2009194018A (en) Atomic layer growth apparatus and method of growing atomic layer
JPS6417869A (en) Microwave plasma chemical vapor deposition device
JP3130661B2 (en) Thin film transistor and method of manufacturing the same
JP3786580B2 (en) Chemical vapor deposition apparatus and semiconductor film manufacturing method using the same
JP3406386B2 (en) Single wafer type plasma CVD equipment
JP2609866B2 (en) Microwave plasma CVD equipment
JP3261514B2 (en) Insulation film forming equipment
JPH04259225A (en) Manufacture of thin film transistor
JPH036028A (en) Manufacture of thin-film transistor
JP3130659B2 (en) Thin film transistor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 15