JPH0589723A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH0589723A
JPH0589723A JP3274542A JP27454291A JPH0589723A JP H0589723 A JPH0589723 A JP H0589723A JP 3274542 A JP3274542 A JP 3274542A JP 27454291 A JP27454291 A JP 27454291A JP H0589723 A JPH0589723 A JP H0589723A
Authority
JP
Japan
Prior art keywords
weight
parts
basic component
mol
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3274542A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
健司 柴田
Koichi Chazono
茶園広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3274542A priority Critical patent/JPH0589723A/en
Publication of JPH0589723A publication Critical patent/JPH0589723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a dielectric porcelain composition such that its relative dielectric constant epsilons at 25 deg.C is greater than 4,000, and its TC is within + or -15% in the range of -55 deg.C to 125 deg.C, its temperature coefficient of capacitance is within 3% after 1,000 hours from the heat-treatment at 150 deg.C for one hour, its tandelta is within 2.5% at 25 deg.C even when a thickness per one layer of a dielectric layer in a laminated porcelain capacitor. CONSTITUTION:The basic component is composed of a ternary component of BaTiO3-NbO2.5-NiO, the added component is composed of CaZrO3 and/or BaZrO3, Ln2O3 (Ln is Gd, Sm and/or Nd) and MnO, wherein BaTiO3 ranges from 95.0 to 99.0mol%, NbO2.5 ranges from 0.6 to 2mol%, NiO ranges from 0.2 to 2.0mol%. CaZrO3 and/or BaZrO3 ranges from 0.15 to 1.90 weight parts in 100 weight parts of the basic component, and Ln2O3 ranges from 0.08 to 0.30 weight parts, MnO ranges from 0.007 to 0.20 weight parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平坦な温度特性を有する
高誘電率系の誘電体磁器組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high dielectric constant type dielectric ceramic composition having flat temperature characteristics.

【0002】[0002]

【従来の技術】平坦な温度特性を有する高誘電率系の誘
電体磁器組成物としては、例えばチタン酸バリウム(B
aTiO3 )に錫酸ビスマスなどのビスマス酸化物を添
加したもの(例1)、チタン酸バリウム(BaTi
3)に五酸化ニオブ(Nb25)と酸化コバルト(C
oOやCo23 など)を添加したもの(例2)、チタ
ン酸バリウム(BaTiO3 )に五酸化ニオブ(Nb2
5 )と希土類(La,Nd,Dyなど)の酸化物を添
加したもの(例3)などが知られている。
2. Description of the Related Art As a dielectric ceramic composition of high dielectric constant having flat temperature characteristics, for example, barium titanate (B
aTiO 3 ) to which bismuth oxide such as bismuth stannate is added (Example 1), barium titanate (BaTi 3
O 3) to niobium pentoxide (Nb 2 O 5) and cobalt oxide (C
oO and Co, such as 2 O 3) obtained by adding (Example 2), niobium pentoxide, barium titanate (BaTiO 3) (Nb 2
It is known that O 5 ) and an oxide of a rare earth (La, Nd, Dy, etc.) are added (Example 3).

【0003】ところで、近年、電子回路の高密度化に伴
い、積層磁器コンデンサを更に小型化・大容量化するこ
とが求められている。積層磁器コンデンサを小型化・大
容量化する方法としては、誘電体層を形成している誘電
体磁器組成物自体の比誘電率εs を高める以外に、誘電
体層を薄層化・多層化することが知られている。そこ
で、上記誘電体磁器組成物を用いた積層磁器コンデンサ
についても小型化・大容量化のために誘電体層の薄層化
・多層化が図られている。
By the way, in recent years, with the increasing density of electronic circuits, it has been required to further reduce the size and capacity of laminated ceramic capacitors. To reduce the size and increase the capacity of laminated porcelain capacitors, in addition to increasing the relative permittivity ε s of the dielectric porcelain composition that forms the dielectric layer, the dielectric layer can be thinned or multilayered. Is known to do. Therefore, in order to reduce the size and increase the capacity of a laminated ceramic capacitor using the above-mentioned dielectric ceramic composition, the dielectric layer has been thinned / multilayered.

【0004】[0004]

【発明が解決しようとする課題】しかし、例1の誘電体
磁器組成物は比誘電率εs 自体が1000〜2000と
かなり低いので、誘電体層を薄層化・多層化しても積層
磁器コンデンサの小型化・大容量化には限界があった。
However, the dielectric ceramic composition of Example 1 has a relatively low relative permittivity ε s of 1000 to 2000, so that even if the dielectric layer is thinned or multilayered, a laminated ceramic capacitor is obtained. There was a limit to miniaturization and large capacity.

【0005】また、例2、3の誘電体磁器組成物につい
ても、誘電体層の薄層化・多層化に伴なって、同一の電
圧を印加した場合に単位厚さ当りにかかる電界強度が大
きくなるので、誘電体層を薄層化・多層化し過ぎると積
層磁器コンデンサの誘電体損失(以下、tanδ)が悪
化し、静電容量の温度変化率(以下、TC)が悪化する
という問題点があった。
Also, regarding the dielectric ceramic compositions of Examples 2 and 3, the electric field strength applied per unit thickness when the same voltage is applied is accompanied by the thinning and multilayering of the dielectric layers. Since it becomes large, the dielectric loss (hereinafter tan δ) of the laminated ceramic capacitor deteriorates if the dielectric layer is made too thin or multilayer, and the temperature change rate of capacitance (hereinafter TC) deteriorates. was there.

【0006】本発明は積層磁器コンデンサの誘電体層の
一層当たりの厚みが15μm以下になっても、25℃に
おける比誘電率εs が4000以上、−55℃から12
5℃の範囲におけるTCが±15%以内、150℃で1
hr熱処理した後、1000hr経過後の容量変化率が
3%以内、25℃におけるtanδが2.5%以内の誘
電体磁器組成物を提供することを目的とするものであ
る。
According to the present invention, the relative dielectric constant ε s at 25 ° C. is 4000 or more, and the dielectric constant ε s at 25 ° C. is 12 to 15 ° C. even if the thickness of each dielectric layer of the laminated ceramic capacitor is 15 μm or less.
TC within ± 15% in the range of 5 ° C, 1 at 150 ° C
An object of the present invention is to provide a dielectric ceramic composition having a capacity change rate of 3% or less after 1000 hours of heat treatment for 3 hours and a tan δ at 25 ° C. of 2.5% or less.

【0007】[0007]

【課題を解決するための手段】まず、本発明に係る誘電
体磁器組成物は基本成分と添加成分とからなり、基本成
分はBaTiO3 −NbO2.5 −NiOの三成分からな
り、添加成分は、CaZrO3 及び/又はBaZrO
3 、Ln23 (LnはGd,Sm及び/又はNd)並
びにMnOからなる。
First, a dielectric ceramic composition according to the present invention comprises a basic component and an additive component, the basic component comprises three components of BaTiO 3 --NbO 2.5 --NiO, and the additive component is: CaZrO 3 and / or BaZrO
3 , Ln 2 O 3 (Ln is Gd, Sm and / or Nd) and MnO.

【0008】ここで、基本成分及び添加成分を得るため
の出発原料としては実施例で示した酸化物以外の酸化
物、炭酸塩、水酸化物等を使用してもよい。
Here, oxides other than the oxides shown in the examples, carbonates, hydroxides and the like may be used as starting materials for obtaining the basic component and the additive component.

【0009】次に、基本成分中において、BaTiO3
は95.0〜99.0mol%、NbO2.5 は0.6〜
4.2mol%、NiOは0.2〜2.0mol%の割
合になっている。
Next, in the basic component, BaTiO 3
95.0~99.0mol% is, NbO 2.5 is 0.6
The ratio of 4.2 mol% and NiO is 0.2 to 2.0 mol%.

【0010】BaTiO3 の割合が95.0〜99.0
mol%であるとした理由は、BaTiO3 の割合が9
5.0mol%未満では比誘電率εs が4000を下回
ったり、−55℃〜125℃におけるTCが±15%を
外れ、またBaTiO3 の割合が99.0mol%を越
えると25℃におけるtanδが2.5%を越えたり、
−55℃〜125℃におけるTCが±15%を外れてし
まうからである。
The ratio of BaTiO 3 is 95.0 to 99.0.
The reason why it is mol% is that the ratio of BaTiO 3 is 9
If it is less than 5.0 mol%, the relative dielectric constant ε s is less than 4000, TC at −55 ° C. to 125 ° C. is out of ± 15%, and if the ratio of BaTiO 3 exceeds 99.0 mol%, tan δ at 25 ° C. Over 2.5%,
This is because the TC at −55 ° C. to 125 ° C. deviates from ± 15%.

【0011】また、NbO2.5 の割合が0.6〜4.2
mol%であるとした理由は、NbO2.5 の割合が0.
6mol%未満では比誘電率εs が4000を下回り、
tanδが2.5%を越え、−55℃〜125℃におけ
るTCが±15%を外れてしまい、またNbO2.5の割
合が4.2mol%を越えると比誘電率εs が4000
を下回り、−55℃〜125℃におけるTCが±15%
を外れてしまうからである。
Further, the ratio of NbO 2.5 is 0.6 to 4.2.
The reason why it is mol% is that the ratio of NbO 2.5 is 0.
If it is less than 6 mol%, the relative permittivity ε s is less than 4000,
tan δ exceeds 2.5%, TC at −55 ° C. to 125 ° C. deviates from ± 15%, and when the ratio of NbO 2.5 exceeds 4.2 mol%, the relative permittivity ε s is 4000.
And TC at -55 ° C to 125 ° C is ± 15%
Because it will be out of.

【0012】また、NiOの割合が0.2〜2.0mo
l%であるとした理由は、NiOの割合が0.2mol
%未満では比誘電率εs が4000を下回り、tanδ
が2.5%を越えてしまい、またNiOの割合が2.0
mol%を越えると比誘電率εs が4000を下回って
しまうからである。
Further, the proportion of NiO is 0.2 to 2.0 mo.
The reason why it is 1% is that the ratio of NiO is 0.2 mol.
%, The relative permittivity ε s is less than 4000, and tan δ
Exceeds 2.5%, and the NiO ratio is 2.0.
This is because the relative dielectric constant ε s falls below 4000 if it exceeds mol%.

【0013】次に、添加成分について、CaZrO3
び/又はBaZrO3 は基本成分100重量部に対して
0.15〜1.90重量部の割合で含有され、Ln2
3 は基本成分100重量部に対して0.08〜0.30
重量部の割合で含有され、MnOは基本成分100重量
部に対して0.007〜0.20重量部の割合で含有さ
れている。
Next, with respect to the additive components, CaZrO 3 and / or BaZrO 3 are contained in a proportion of 0.15 to 1.90 parts by weight relative to 100 parts by weight of the basic components, and Ln 2 O
3 is 0.08 to 0.30 with respect to 100 parts by weight of the basic component.
The MnO content is 0.007 to 0.20 parts by weight with respect to 100 parts by weight of the basic component.

【0014】ここで、CaZrO3 及び/又はBaZr
3 の含有割合を基本成分100重量部に対して0.1
5〜1.90重量部としたのは、CaZrO3 及び/又
はBaZrO3 の含有割合が基本成分100重量部に対
して0.15重量部未満では比誘電率εs が4000を
下回ったり、1000時間後の容量変化率が3.0%を
越えてしまい、またCaZrO3 及び/又はBaZrO
3 の含有割合が基本成分100重量部に対して1.9重
量部を越えるとTCが±15%を外れてしまうからであ
る。尚、CaZrO3 とBaZrO3 はほゞ同様の働き
をするので少なくともいずれか一方が含まれていればよ
い。
Here, CaZrO 3 and / or BaZr
The content ratio of O 3 is 0.1 with respect to 100 parts by weight of the basic component.
5 to 1.90 parts by weight means that when the content ratio of CaZrO 3 and / or BaZrO 3 is less than 0.15 parts by weight with respect to 100 parts by weight of the basic component, the relative dielectric constant ε s is less than 4000, or 1000 The capacity change rate after time exceeds 3.0%, and CaZrO 3 and / or BaZrO
This is because if the content ratio of 3 exceeds 1.9 parts by weight with respect to 100 parts by weight of the basic component, TC will deviate from ± 15%. It should be noted that CaZrO 3 and BaZrO 3 have almost the same functions, so at least one of them should be contained.

【0015】また、Ln23 の含有割合を基本成分1
00重量部に対して0.08〜0.30重量部としたの
は、Ln23 の含有割合が基本成分100重量部に対
して0.08重量部未満では1000時間後の容量変化
率が3%を越えたり、TCが±15%を外れてしまい、
またLn23 の含有割合が基本成分100重量部に対
して0.30重量部を越えると比誘電率εs が4000
を下回ってしまうからである。
Further, the content ratio of Ln 2 O 3 is set to the basic component 1
0.08 to 0.30 parts by weight with respect to 00 parts by weight means that when the content ratio of Ln 2 O 3 is less than 0.08 parts by weight with respect to 100 parts by weight of the basic component, the capacity change rate after 1000 hours Exceeds 3%, TC is out of ± 15%,
When the content ratio of Ln 2 O 3 exceeds 0.30 parts by weight with respect to 100 parts by weight of the basic component, the relative dielectric constant ε s is 4000.
Is less than.

【0016】また、MnOの含有割合を基本成分100
重量部に対して0.007〜0.20重量部としたの
は、MnOの含有割合が基本成分100重量部に対して
0.007重量部未満ではtanδが2.5%を越えて
しまい、またMnOの含有割合が基本成分100重量部
に対して0.2重量部を越えるとTCが±15%を外れ
たり、1000hr後の容量変化率が3%を越えてしま
うからである。
Further, the content ratio of MnO is 100
The amount of 0.007 to 0.20 parts by weight with respect to parts by weight means that tan δ exceeds 2.5% when the content ratio of MnO is less than 0.007 parts by weight with respect to 100 parts by weight of the basic component. Further, if the content ratio of MnO exceeds 0.2 parts by weight with respect to 100 parts by weight of the basic component, TC will deviate from ± 15%, and the capacity change rate after 1000 hours will exceed 3%.

【0017】尚、本発明においては、誘電体磁器組成物
の中にCeO2 ,Al23 ,SiO2 などの焼結助剤
を、電気特性を悪化させない範囲で微量添加してもよ
い。
In the present invention, a small amount of a sintering aid such as CeO 2 , Al 2 O 3 or SiO 2 may be added to the dielectric ceramic composition as long as the electrical characteristics are not deteriorated.

【0018】[0018]

【実施例】まず、試料No.1の場合について説明す
る。 原料粉末の調製: 基本成分の原料として、純度99.
99%以上のチタン酸バリウム(BaTiO3 )、五酸
化ニオブ(Nb25 )及び酸化ニッケル(NiO)を
次の割合で秤量した。 BaTiO3 …994.775g(99.0mol%) Nb23 …………4.581g(Nbで0.8mol
%) NiO………………0.644g(0.2mol%)
EXAMPLES First, sample No. The case of 1 will be described. Preparation of raw material powder: Purity of 99.
99% or more of barium titanate (BaTiO 3 ), niobium pentoxide (Nb 2 O 5 ) and nickel oxide (NiO) were weighed in the following proportions. BaTiO 3 --- 994.775 g (99.0 mol%) Nb 2 O 3 --- 4.581 g (0.8 mol in Nb)
%) NiO ……………… 0.644g (0.2mol%)

【0019】また、添加物の原料として、メタジルコニ
ウム酸カルシウム(CaZrO3 )、酸化ガドリニウム
(Gd23 )及び酸化マンガン(MnO)を、基本成
分1000gに対して次の割合で秤量した。 CaZrO3 …7.60g Gd23 ……1.50g MnO…………0.50g
As raw materials for the additives, calcium metazirconate (CaZrO 3 ), gadolinium oxide (Gd 2 O 3 ) and manganese oxide (MnO) were weighed in the following proportions with respect to 1000 g of the basic component. CaZrO 3 … 7.60 g Gd 2 O 3 …… 1.50 g MnO ………… 0.50 g

【0020】そして、これら基本成分の原料及び添加成
分の原料を3リットルの水とともにボールミル中に入
れ、15時間湿式混合し、この湿式混合した原料をボー
ルミルから取り出し、大気中において150℃で3時間
乾燥し、この乾燥した原料をらいかい器で粗粉砕し、原
料粉末を得た。
Then, the raw materials of these basic components and the raw materials of the additive components are put in a ball mill together with 3 liters of water and wet-mixed for 15 hours. The wet-mixed raw materials are taken out of the ball mill and kept in air at 150 ° C. for 3 hours. After drying, the dried raw material was roughly pulverized with a raker to obtain a raw material powder.

【0021】グリーンシートの形成: 次に、この原料
粉末に有機バインダーを10重量%添加し、更に100
重量%の溶媒を加え、ボールミルを用いて24時間湿式
混合し、原料スラリーを得た。そして、この原料スラリ
ーを用い、リバースロールコータで10〜30μmの厚
さのグリーンシートを複数枚形成した。
Formation of green sheet: Next, 10% by weight of an organic binder was added to this raw material powder, and then 100
A wt% solvent was added, and wet mixing was performed for 24 hours using a ball mill to obtain a raw material slurry. Then, using this raw material slurry, a plurality of green sheets having a thickness of 10 to 30 μm were formed by a reverse roll coater.

【0022】内部電極の印刷: 次に、スクリーン印刷
機を用いて各グリーンシートの一方の面にPdペースト
からなる50個の内部電極パターン(1個の内部電極パ
ターンは長さ14mm×幅7mm)を印刷形成した。
Printing of internal electrodes: Next, using a screen printing machine, 50 internal electrode patterns made of Pd paste were formed on one surface of each green sheet (one internal electrode pattern was 14 mm long and 7 mm wide). Was printed.

【0023】積層チップの形成: 次に、内部電極パタ
ーンの乾燥後、内部電極パターンを上にして、グリーン
シートを10枚積層した。この際、隣り合うグリーンシ
ートの内部電極パターンはその長手方向に半分程ずれる
ようにした。そして、積層させたグリーンシートの上下
に厚さ30μmのグリーンシートをカバーシートとして
5枚ずつ積層した。更に、この積層物を金型に入れて熱
圧着させた。そして、この熱圧着により得られた積層物
を格子状に裁断し、50個の積層チップを得た。
Formation of Laminated Chip: Next, after drying the internal electrode pattern, 10 green sheets were laminated with the internal electrode pattern facing upward. At this time, the internal electrode patterns of the adjacent green sheets were displaced by about half in the longitudinal direction. Then, five green sheets each having a thickness of 30 μm were stacked as a cover sheet above and below the stacked green sheets. Further, this laminate was placed in a mold and thermocompression bonded. Then, the laminate obtained by this thermocompression bonding was cut into a lattice shape to obtain 50 laminated chips.

【0024】積層チップの焼成: 積層チップを焼成炉
に入れ、大気雰囲気下で、20℃/hrの速度で300
℃まで昇温させながら加熱し、この温度で3時間保持さ
せて積層チップ内の有機バインダーを分解燃焼させ、2
50℃/hrの速度で1280℃まで昇温させながら加
熱し、この温度で2時間保持させて十分緻密化させ、1
50℃/hrの速度で降温させ、室温まで冷却した。
Firing of laminated chips: The laminated chips are put in a firing furnace and placed in an air atmosphere at a rate of 20 ° C./hr for 300 times.
While heating up to ℃, it is heated at this temperature for 3 hours to decompose and burn the organic binder in the laminated chip.
Heat at a rate of 50 ° C./hr while raising the temperature to 1280 ° C., hold at this temperature for 2 hours to sufficiently densify, and
The temperature was lowered at a rate of 50 ° C./hr and cooled to room temperature.

【0025】外部電極の形成: この積層チップの両方
の端部(裁断によって内部電極の端部が露出している部
分)にAgペーストを塗布し、これを約800℃で焼き
付けて外部電極とし、積層磁器コンデンサを作成した。
Formation of External Electrodes: Ag paste is applied to both ends of the laminated chip (portions where the ends of the internal electrodes are exposed by cutting), and the paste is baked at about 800 ° C. to form external electrodes. A laminated porcelain capacitor was created.

【0026】電気特性の測定: 次に、このようにして
形成した積層磁器コンデンサについて、誘電体層の比誘
電率εs 、25℃におけるtanδ、TC及び1000
時間後の容量変化率ΔCを測定したところ、比誘電率ε
s が4200、tanδが1.90%、TCのΔCmax
が+10.4%、ΔCmin が−13.3%、容量変化率
ΔCが2.8%であった。なお、電気特性は次の要領で
測定した。
Measurement of electrical characteristics: Next, regarding the laminated ceramic capacitor thus formed, the relative dielectric constant ε s of the dielectric layer, tan δ at 25 ° C., TC and 1000
When the capacity change rate ΔC after time was measured, the relative permittivity ε
s is 4200, tan δ is 1.90%, and ΔC max of TC
Was + 10.4%, ΔC min was −13.3%, and the capacity change rate ΔC was 2.8%. The electrical characteristics were measured as follows.

【0027】(1) 比誘電率εs 温度25℃、周波数1kHz、電圧(実効値)1.0V
の条件で積層磁器コンデンサの静電容量を測定し、この
測定値、内部電極の有効交差面積及び電極間距離とから
計算で求めた。
(1) Specific permittivity ε s Temperature 25 ° C., frequency 1 kHz, voltage (effective value) 1.0 V
The electrostatic capacitance of the laminated ceramic capacitor was measured under the conditions of, and calculated from the measured value, the effective intersection area of the internal electrodes, and the distance between the electrodes.

【0028】(2) tanδ 比誘電率εs の測定と同一条件にて測定した。(2) tan δ The relative permittivity ε s was measured under the same conditions.

【0029】(3) 静電容量の温度特性 恒温槽の中に試料である積層磁器コンデンサを入れ、−
55℃,−25℃,0℃,20℃,25℃,40℃,6
0℃,85℃,105℃,125℃の各温度において周
波数1kHZ、電圧1.0V(実効値)の条件で静電容
量を測定し、25℃の時の静電容量Cに対する変化率を
求め、この変化率の最大値ΔCmax 及びこの変化率の最
小値ΔCmin を求めた。
(3) Temperature characteristics of capacitance Capacitance of a laminated ceramic capacitor as a sample in a constant temperature bath,
55 ° C, -25 ° C, 0 ° C, 20 ° C, 25 ° C, 40 ° C, 6
At each temperature of 0 ℃, 85 ℃, 105 ℃, and 125 ℃, the capacitance is measured under the condition of frequency 1kHz and voltage 1.0V (effective value), and the rate of change with respect to the capacitance C at 25 ℃ is obtained. The maximum value ΔC max of this change rate and the minimum value ΔC min of this change rate were determined.

【0030】(4) 1000時間後の容量変化率ΔC 試料である積層磁器コンデンサに150℃の熱処理を1
時間施した時の静電容量C1 とそれから1000時間後
の静電容量C2 を測定し、次式により1000時間後の
容量変化率ΔCを算出した。 ΔC=〔(C2 −C1 )/C1 〕×100(%)
(4) Capacitance change rate after 1000 hours ΔC A heat treatment at 150 ° C. was applied to a laminated ceramic capacitor as a sample.
The electrostatic capacity C 1 when applied for a time and the electrostatic capacity C 2 1000 hours after that were measured, and the capacity change rate ΔC after 1000 hours was calculated by the following formula. ΔC = [(C 2 −C 1 ) / C 1 ] × 100 (%)

【0031】以上、試料No.1の場合について説明し
たが、試料No2〜47についても基本成分及び添加成
分の組成を表1に示すように変えた他は試料No.1と
全く同一の方法で積層磁器コンデンサを作製し、同一の
方法で電気特性を測定した。結果は表1に示す通りとな
った。
As described above, the sample No. Although the case of Sample No. 1 has been described, Sample Nos. 2 to 47 are the same except that the compositions of the basic component and the additive component are changed as shown in Table 1. A laminated ceramic capacitor was manufactured by the same method as that of No. 1, and the electrical characteristics were measured by the same method. The results are shown in Table 1.

【0032】尚、表1の基本成分の欄の数値の単位はモ
ル%、添加成分の欄の数値の単位は基本成分100重量
部に対する重量部である。添加成分の欄におけるCZは
CaZrO3 の略、CBはBaZrO3 の略である。肉
厚tの欄の数値(μm)は誘電体層一層当たりの平均肉
厚である。また試料Noに※印を付けた試料は比較例で
ある。
The unit of the numerical value in the column of the basic component in Table 1 is mol% and the unit of the numerical value in the column of the added component is parts by weight based on 100 parts by weight of the basic component. In the column of additive components, CZ is an abbreviation for CaZrO 3 and CB is an abbreviation for BaZrO 3 . The numerical value (μm) in the column of wall thickness t is the average wall thickness per dielectric layer. The sample marked with * is a comparative example.

【0033】[0033]

【表1(1) 】 [Table 1 (1)]

【0034】[0034]

【表1(2) 】 [Table 1 (2)]

【0035】[0035]

【表1(3) 】 [Table 1 (3)]

【0036】次に、表1(1) 〜表1(3) の結果について
検討する。まず、BaTiO3 の割合が、試料No.
1,4に示すように99.0mol%の場合は所望の電
気特性のものが得られるが、BaTiO3 の割合が、試
料No.5に示すように99.1mol%の場合は、2
5℃におけるtanδが2.5%よりも大きくなり、−
55℃〜125℃における静電容量の25℃を基準とし
た変化率の最小値が−15%を下回ってしまい、所望の
電気特性のものを得ることができない。従って、BaT
iO3 の割合の上限値は99.0mol%ということに
なる。
Next, the results of Tables 1 (1) to 1 (3) will be examined. First, the ratio of BaTiO 3 is the same as sample No.
As shown in Nos. 1 and 4, when 99.0 mol% is obtained, desired electrical characteristics are obtained, but the ratio of BaTiO 3 is the same as that of sample No. As shown in 5, when 99.1 mol%, 2
Tan δ at 5 ° C becomes larger than 2.5%,
The minimum value of the rate of change of the capacitance between 55 ° C. and 125 ° C. with reference to 25 ° C. is less than −15%, and it is not possible to obtain the desired electrical characteristics. Therefore, BaT
The upper limit of the ratio of iO 3 is 99.0 mol%.

【0037】また、BaTiO3 の割合が、試料No.
2,3に示すように95.0mol%の場合は所望の電
気特性のものが得られるが、BaTiO3 の割合が、試
料No.6に示すように94.9mol%の場合は誘電
率εs が4000を下回り、−55℃〜125℃におけ
る静電容量の25℃を基準とした変化率の最小値が−1
5%を下回ってしまう。従って、BaTiO3 の割合の
下限値は95.0mol%ということになる。
The proportion of BaTiO 3 is the same as that of sample No.
As shown in Nos. 2 and 3, when 95.0 mol% is obtained, desired electric characteristics are obtained, but the ratio of BaTiO 3 is the same as that of Sample No. As shown in 6, when the dielectric constant ε s is less than 4000 in the case of 94.9 mol%, the minimum value of the change rate of the electrostatic capacitance at −55 ° C. to 125 ° C. based on 25 ° C. is −1.
It will be below 5%. Therefore, the lower limit of the ratio of BaTiO 3 is 95.0 mol%.

【0038】また、Nb25 の割合が、試料No.2
に示すように4.2mol%の場合は所望の電気特性の
ものが得られるが、NbO2.5 の割合が、試料No.8
に示すように4.3mol%の場合は誘電率εs が40
00を下回り、−55℃〜125℃における静電容量の
25℃を基準とした変化率の最小値が−15%を大きく
下回ってしまう。従って、Nb25 の割合の上限値は
4.2mol%ということになる。
The ratio of Nb 2 O 5 is the same as that of sample No. Two
As shown in Fig. 4, when 4.2 mol% is obtained, desired electrical characteristics can be obtained, but the ratio of NbO 2.5 is about No. 8
As shown in, when the dielectric constant is 4.3 mol%, the dielectric constant ε s is 40
00, and the minimum value of the rate of change of the electrostatic capacitance at -55 ° C to 125 ° C with reference to 25 ° C is much lower than -15%. Therefore, the upper limit of the ratio of Nb 2 O 5 is 4.2 mol%.

【0039】また、Nb25 の割合が、試料No.4
に示すように0.6mol%の場合は所望の電気特性の
ものが得られるが、NbO2.5 の割合が、試料No.7
に示すように0.5mol%の場合はTcの最小値が−
15%を下回り、誘電率εsが4000を下回ってしま
う。従って、Nb25 の割合の下限値は0.6mol
%ということになる。
The proportion of Nb 2 O 5 was the same as that of sample No. Four
As shown in FIG. 6, when the content is 0.6 mol%, desired electrical characteristics are obtained, but the ratio of NbO 2.5 is equal to that of sample No. 7
As shown in, the minimum Tc value is −0.5 mol%.
It falls below 15%, and the dielectric constant ε s falls below 4000. Therefore, the lower limit of the ratio of Nb 2 O 5 is 0.6 mol.
%It turns out that.

【0040】また、NiOの割合が、試料No.3に示
すように2.0mol%の場合は所望の電気特性のもの
が得られるが、NiOの割合が、試料No.10に示す
ように2.1mol%の場合は比誘電率εs が4000
を下回ってしまう。従って、NiOの割合の上限値は
2.0mol%ということになる。
The proportion of NiO was the same as that of sample No. As shown in FIG. 3, when 2.0 mol%, desired electrical characteristics are obtained, but the proportion of NiO is the same as that of sample No. As shown in 10, the relative permittivity ε s is 4000 at 2.1 mol%.
Less than. Therefore, the upper limit of the proportion of NiO is 2.0 mol%.

【0041】また、NiOの割合が、試料No.1に示
すように0.2mol%の場合は所望の電気特性のもの
が得られるが、NiOの割合が、試料No.9に示すよ
うに0.1mol%の場合はtanδが2.5%を越
え、誘電率εs が4000を下回ってしまう。従って、
NiOの割合の下限値は0.2mol%ということにな
る。
The proportion of NiO was the same as that of sample No. As shown in FIG. 1, when the content is 0.2 mol%, the desired electrical characteristics are obtained, but the proportion of NiO is the same as that of sample No. As shown in FIG. 9, when 0.1 mol%, tan δ exceeds 2.5%, and the dielectric constant ε s falls below 4000. Therefore,
The lower limit of the proportion of NiO is 0.2 mol%.

【0042】また、CaZrO3 の添加量が、試料N
o.21に示すように1.9重量部の場合は所望の電気
特性を得ることができるが、CaZrO3 の添加量が、
試料No.22に示すように1.96重量部の場合はT
Cが−15%を下回ってしまう。従って、CaZrO3
又はBaZrO3 の添加量の上限値は基本成分100重
量部に対して1.9重量部ということになる。
Further, the amount of CaZrO 3 added was the same as that of sample N
o. As shown in 21, when 1.9 parts by weight, desired electrical characteristics can be obtained, but the amount of CaZrO 3 added is
Sample No. In the case of 1.96 parts by weight as shown in 22,
C falls below -15%. Therefore, CaZrO 3
Alternatively, the upper limit of the amount of BaZrO 3 added is 1.9 parts by weight with respect to 100 parts by weight of the basic component.

【0043】また、CaZrO3 の添加量が、試料N
o.17に示すように基本成分100重量部に対して
0.15重量部の場合は所望の電気特性を得ることがで
きるが、CaZrO3 又はBaZrO3 の添加量が、試
料No.16に示すように零の場合は1000hr後の
容量変化率が3.0%を越えてしまう。従って、CaZ
rO3 又はBaZrO3 の添加量の下限値は基本成分1
00重量部に対して0.15重量部ということになる。
The amount of CaZrO 3 added was the
o. As shown in 17, when 0.15 parts by weight is used with respect to 100 parts by weight of the basic component, desired electrical characteristics can be obtained, but the addition amount of CaZrO 3 or BaZrO 3 is the same as that of sample No. As shown in 16, in the case of zero, the capacity change rate after 1000 hours exceeds 3.0%. Therefore, CaZ
The lower limit of the addition amount of rO 3 or BaZrO 3 is the basic component 1
This means 0.15 parts by weight with respect to 00 parts by weight.

【0044】尚、試料No.11〜15で示すようにC
aZrO3 とBaZrO3 とはほゞ同様の働きをしてい
る。従って、CaZrO3 とBaZrO3 のうちの少な
くとも一方が基本成分100重量部に対して0.15〜
1.9重量部含まれていれば、所望の電気特性を得るこ
とができる。
Sample No. C as shown by 11 to 15
aZrO 3 and BaZrO 3 have almost the same functions. Therefore, at least one of CaZrO 3 and BaZrO 3 is 0.15 to 100 parts by weight of the basic component.
If the content is 1.9 parts by weight, desired electrical characteristics can be obtained.

【0045】また、Gdの添加量が、試料No.28に
示すように0.30重量部の場合は所望の電気特性を得
ることができるが、Gdの添加量が、試料No.29に
示すように0.32重量部の場合は比誘電率εs が40
00を下回ってしまう。従って、Gdの添加量の上限値
は0.30重量部ということになる。
The amount of Gd added was the same as that of sample No. As shown in FIG. 28, when 0.30 parts by weight, desired electrical characteristics can be obtained, but the addition amount of Gd is the same as that of sample No. 29, in the case of 0.32 parts by weight, the relative permittivity ε s is 40
It will be less than 00. Therefore, the upper limit of the amount of Gd added is 0.30 parts by weight.

【0046】また、Gd23 の添加量が、試料No.
23に示すように零の場合にはTCが−15%を下回
り、容量変化率が3%を越えてしまうが、Gd23
添加量が、試料No.24に示すように基本成分100
重量部に対して0.08重量部の場合は所望の電気特性
を得ることができる。従って、Gd23 の添加量の下
限値は基本成分100重量部に対してGdで0.08重
量部ということになる。なお、Nd,Smについてもほ
ゞ同様の傾向を示した。
The addition amount of Gd 2 O 3 was the same as that of sample No.
In the case of zero, as shown in 23 TC is below -15%, the capacity change rate exceeds 3%, the added amount of Gd 2 O 3 is, Sample No. 100 as shown in 24
When the content is 0.08 parts by weight with respect to the parts by weight, desired electrical characteristics can be obtained. Therefore, the lower limit of the amount of Gd 2 O 3 added is 0.08 part by weight of Gd with respect to 100 parts by weight of the basic component. Incidentally, Nd and Sm showed almost the same tendency.

【0047】また、MnOの添加量が、試料No.35
に示すように0.20重量部の場合は所望の電気特性の
ものを得ることができるが、MnOの添加量が、試料N
o.36に示すように0.21重量部の場合はTcが−
15%を下回り、熱処理して1000hr経過後の容量
変化率が3%を越えてしまう。従って、MnOの上限値
は基本成分100重量部に対して0.20重量部という
ことになる。
The amount of MnO added was the same as the sample No. 35
As shown in Fig. 10, when 0.20 parts by weight, desired electrical characteristics can be obtained, but the amount of MnO added is
o. As shown in 36, when Tc is 0.21 parts by weight, Tc is-.
If it is less than 15% and heat treated for 1000 hours, the capacity change rate exceeds 3%. Therefore, the upper limit of MnO is 0.20 parts by weight with respect to 100 parts by weight of the basic component.

【0048】また、MnOの添加量が、試料No.31
に示すように基本成分100重量部に対して0.007
重量部の場合は所望の電気特性を得ることができるが、
MnOの添加量が、試料No.30に示すように零の場
合は、25℃におけるtanδが2.5%を越えてしま
う。従って、MnOの下限値は基本成分100重量部に
対して0.007重量部ということになる。
The amount of MnO added was the same as that of sample No. 31
As shown in, 0.007 is added to 100 parts by weight of the basic component.
In the case of parts by weight, desired electrical characteristics can be obtained,
The addition amount of MnO was the same as that of sample No. As shown in 30, when it is zero, tan δ at 25 ° C. exceeds 2.5%. Therefore, the lower limit of MnO is 0.007 parts by weight with respect to 100 parts by weight of the basic component.

【0049】また、本発明の組成範囲に入らない誘電体
磁器組成物では、試料No.37〜39及び43,44
に示すように、誘電体層の厚さが15μm以下になる
と、tanδが2.5%を越え、TCが±15%の範囲
から外れてしまうが、本発明の組成範囲に入る誘電体磁
器組成物では、試料No.41,42,46,47に示
すように誘電体層の厚さが15μm以下になっても所望
の電気特性のものが得られている。
Further, in the dielectric ceramic composition which does not fall within the composition range of the present invention, sample No. 37-39 and 43,44
As shown in FIG. 5, when the thickness of the dielectric layer is 15 μm or less, tan δ exceeds 2.5% and TC is out of the range of ± 15%. However, the dielectric ceramic composition within the composition range of the present invention. Sample No. As shown by 41, 42, 46 and 47, desired electric characteristics are obtained even when the thickness of the dielectric layer is 15 μm or less.

【0050】なお、上記実施例では内部電極用の導電性
ペーストとしてAgペーストを使用したが、焼成温度に
応じてAg/Pdペーストを用いることもできる。焼成
温度が上記実施例のように1280℃の場合、Ag/P
dペーストとしてはAg/Pd=30/70の組成のも
のが好ましい。
Although the Ag paste is used as the conductive paste for the internal electrodes in the above embodiment, an Ag / Pd paste may be used depending on the firing temperature. When the firing temperature is 1280 ° C. as in the above example, Ag / P
It is preferable that the d paste has a composition of Ag / Pd = 30/70.

【0051】[0051]

【発明の効果】本発明によれば誘電体層の一層当たりの
厚みが15μmより小さくなっても、25℃における比
誘電率が4000以上、−55℃〜125℃の範囲にお
ける25℃を基準にした静電容量の温度変化率が±15
%以内、1000時間後の容量変化率が3%以内、25
℃におけるtanδが2.5%以内の特性を有する誘電
体磁器組成物が得られる。
According to the present invention, even if the thickness of each dielectric layer is less than 15 μm, the relative dielectric constant at 25 ° C. is 4000 or more, and the relative dielectric constant is 25 ° C. in the range of −55 ° C. to 125 ° C. The temperature change rate of the electrostatic capacity is ± 15
%, Capacity change rate after 1000 hours is 3% or less, 25
A dielectric ceramic composition having a tan δ at 2.5 ° C. of 2.5% or less is obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基本成分と添加成分とからなり、基本成
分はBaTiO3−NbO2.5 −NiOの三成分からな
り、添加成分は、CaZrO3 及び/又はBaZrO
3 、Ln23 (LnはGd,Sm及び/又はNd)並
びにMnOからなり、 基本成分中において、BaTiO3 は95.0〜99.
0mol%、NbO2. 5 は0.6〜4.2mol%、N
iOは0.2〜2.0mol%の割合になっており、 CaZrO3 及び/又はBaZrO3 は基本成分100
重量部に対して0.15〜1.90重量部の割合で含ま
れ、Ln23 は基本成分100重量部に対して0.0
8〜0.30重量部の割合で含まれ、MnOは基本成分
100重量部に対して0.007〜0.20重量部の割
合で含まれている誘電体磁器組成物。
1. A basic component and an additive component, the basic component comprises three components of BaTiO 3 —NbO 2.5 —NiO, and the additive component is CaZrO 3 and / or BaZrO.
3 , Ln 2 O 3 (Ln is Gd, Sm and / or Nd) and MnO, and BaTiO 3 is 95.0 to 99.
0mol%, NbO 2. 5 is 0.6~4.2mol%, N
The ratio of iO is 0.2 to 2.0 mol%, and CaZrO 3 and / or BaZrO 3 is 100% of the basic component.
It is contained in a proportion of 0.15 to 1.90 parts by weight with respect to parts by weight, and Ln 2 O 3 is 0.0 to 100 parts by weight of the basic component.
A dielectric ceramic composition in which the MnO content is 8 to 0.30 parts by weight, and MnO is 0.007 to 0.20 parts by weight with respect to 100 parts by weight of the basic component.
JP3274542A 1991-09-26 1991-09-26 Dielectric porcelain composition Pending JPH0589723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274542A JPH0589723A (en) 1991-09-26 1991-09-26 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274542A JPH0589723A (en) 1991-09-26 1991-09-26 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH0589723A true JPH0589723A (en) 1993-04-09

Family

ID=17543168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274542A Pending JPH0589723A (en) 1991-09-26 1991-09-26 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH0589723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982004487A1 (en) * 1981-06-12 1982-12-23 Tokuyama Keiichi Power source for automotive electronic equipment
JP2016113355A (en) * 2014-12-16 2016-06-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor including the same
KR20180038429A (en) * 2018-04-02 2018-04-16 삼성전기주식회사 Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536308A (en) * 1991-07-30 1993-02-12 Tdk Corp High permittivity dielectric ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536308A (en) * 1991-07-30 1993-02-12 Tdk Corp High permittivity dielectric ceramic composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982004487A1 (en) * 1981-06-12 1982-12-23 Tokuyama Keiichi Power source for automotive electronic equipment
JP2016113355A (en) * 2014-12-16 2016-06-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor including the same
KR20160073243A (en) * 2014-12-16 2016-06-24 삼성전기주식회사 Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
KR20180038429A (en) * 2018-04-02 2018-04-16 삼성전기주식회사 Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same

Similar Documents

Publication Publication Date Title
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
JP3568030B2 (en) Method for producing dielectric ceramic composition and method for producing electronic component containing dielectric layer
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JP3878778B2 (en) Dielectric porcelain composition and electronic component
KR101274331B1 (en) Electronic part and process for producing the same
JP3503568B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
JPH08295559A (en) Dielectric porcelain composition
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP6089770B2 (en) Dielectric porcelain composition and electronic component
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP2005022891A (en) Dielectric porcelain and laminated electronic component
KR100859264B1 (en) Dielectric ceramic and multilayer ceramic capacitor
KR100859058B1 (en) Laminated electronic component and method for manufacturing the same
JP2010208905A (en) Method for manufacturing dielectric ceramic, dielectric ceramic, method for manufacturing laminated ceramic capacitor and the laminated ceramic capacitor
JP2007261913A (en) Dielectric porcelain composition, electronic part and multilayer ceramic capacitor
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP7262640B2 (en) ceramic capacitor
JP4614656B2 (en) Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component
JP3678072B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP3250923B2 (en) Dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JP4487476B2 (en) Dielectric porcelain composition and electronic component
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960416