JPH0588307B2 - - Google Patents

Info

Publication number
JPH0588307B2
JPH0588307B2 JP20000188A JP20000188A JPH0588307B2 JP H0588307 B2 JPH0588307 B2 JP H0588307B2 JP 20000188 A JP20000188 A JP 20000188A JP 20000188 A JP20000188 A JP 20000188A JP H0588307 B2 JPH0588307 B2 JP H0588307B2
Authority
JP
Japan
Prior art keywords
composite
ion
compound layer
base material
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20000188A
Other languages
Japanese (ja)
Other versions
JPH0250948A (en
Inventor
Tokiaki Hayashi
Shuji Hida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SURFACE HIGH PERFORMANCE RES
Original Assignee
SURFACE HIGH PERFORMANCE RES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SURFACE HIGH PERFORMANCE RES filed Critical SURFACE HIGH PERFORMANCE RES
Priority to JP20000188A priority Critical patent/JPH0250948A/en
Publication of JPH0250948A publication Critical patent/JPH0250948A/en
Publication of JPH0588307B2 publication Critical patent/JPH0588307B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複合超硬材料に関し、特に超硬合金
の母材表面に硬質の複合化合物層を被覆した切
削・耐摩耗工具等に有用な複合超硬材料に係わ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite cemented carbide material, and in particular to a composite cemented carbide material useful for cutting and wear-resistant tools etc. in which the surface of a cemented carbide base material is coated with a hard composite compound layer. Related to composite carbide materials.

[従来の技術及び課題] 超硬合金の母材表面に耐摩耗性の優れたTi、
Zr、Hfの窒化物を被覆した切削・耐摩耗工具は、
該母材のみからなる切削・耐摩耗工具に比べて更
に寿命向上を達成することができる。しかしなが
ら、工具の使用形態の多様化等によりその使用条
件がより苛酷になるに伴い、更に高性能化、超寿
命化が要望されてきている。
[Conventional technology and issues] Ti, which has excellent wear resistance, is coated on the surface of the cemented carbide base material.
Cutting and wear-resistant tools coated with Zr and Hf nitrides are
It is possible to achieve a further improvement in life compared to a cutting/wear-resistant tool made of only the base material. However, as the usage conditions of tools become more severe due to the diversification of usage patterns, there is a demand for even higher performance and longer tool life.

このような要望から、最近、各種の耐摩耗性に
富む炭化物、窒化物及び酸化物の多層膜、複合膜
のコーテイング技術が開発されている。その中
で、特公昭61−54872号公報にはHf及びTiの複合
化合物(Hf・Ti)C、(Hf・Ti)N、(Hf・Ti)
CNの被覆層を減圧CVD法で被覆することが開示
されている。しかしながら、かかる2種金属の窒
化物複合被覆層では母材に対する密着性や耐摩耗
性等において必ずしも充分満足するものではなか
つた。
In response to such demands, coating techniques for multilayer films and composite films of various types of highly wear-resistant carbides, nitrides, and oxides have recently been developed. Among them, Japanese Patent Publication No. 61-54872 describes composite compounds of Hf and Ti (Hf・Ti)C, (Hf・Ti)N, (Hf・Ti).
It is disclosed that a CN coating layer is coated by a low pressure CVD method. However, such two-metal nitride composite coating layers are not always fully satisfactory in terms of adhesion to the base material, wear resistance, etc.

また、特公昭61−57904号公報にはTi、Zr、Hf
等の金属蒸気雰囲気中にて母材表面に窒素イオン
を照射するイオンミキシング手法に似た方法によ
り被膜を被覆することが開示されている。しかし
ながら、かかる公報の実施例には単独の金属の窒
化物の事例しかなく、複数金属の窒化物からなる
複合化合物層の形成、及びその物性については全
く記載されていない。
Also, in Japanese Patent Publication No. 61-57904, Ti, Zr, Hf
It has been disclosed that a coating is applied by a method similar to an ion mixing method in which the surface of a base material is irradiated with nitrogen ions in a metal vapor atmosphere such as . However, the examples in this publication include only examples of nitrides of a single metal, and do not describe at all the formation of a composite compound layer made of nitrides of multiple metals and its physical properties.

本発明は、上記従来の課題を解決するためにな
されたもので、高硬質で耐酸化性に優れた三元系
金属の窒化物からなる複合化合物層が母材として
の超硬合金表面に密着性よく被覆された複合超硬
材料を提供しようとするものである。
The present invention was made to solve the above-mentioned conventional problems, and a composite compound layer made of nitrides of ternary metals with high hardness and excellent oxidation resistance adheres to the surface of the cemented carbide as a base material. The present invention aims to provide a composite carbide material coated with good properties.

[課題を解決するための手段] 本発明は、周期律表のa、a、a族金属
の炭化物、窒化物、炭窒化物とNi、Co及びFeの
少なくとも1種以上とからなる超硬合金の表面に
イオンビームミキシング法により下記式(I)に
て表わされる複合化合物層を被覆したことを特徴
とする複合超硬材料である。
[Means for Solving the Problems] The present invention provides a cemented carbide comprising a carbide, nitride, or carbonitride of a group a metal of the periodic table, and at least one or more of Ni, Co, and Fe. This is a composite superhard material characterized in that the surface of the material is coated with a composite compound layer represented by the following formula (I) using an ion beam mixing method.

〔(Ti)x(Zr)y(Hf)z〕(N)v …(I) 但し、式中のx、y、z、vはx+y+z=
1、0.4≦x≦0.95、0.05≦y≦0.5、0.05≦z≦
0.5、0.8≦v≦1.0を満足するものである。
[(Ti)x(Zr)y(Hf)z](N)v...(I) However, x, y, z, and v in the formula are x+y+z=
1, 0.4≦x≦0.95, 0.05≦y≦0.5, 0.05≦z≦
0.5, 0.8≦v≦1.0.

上記複合化合物層を表わす式(I)中のx、
y、z及びvを限定したのは、次のような理由に
よるものである。即ち、xの値を0.4未満にする
と耐酸化性の優れた複合化合物層を得ることがで
きず、かといつてxの値が0.95を越えると複合化
合物中の他の金属(Zr、Hf)の量が少なくなつ
て硬度等が低下するからである。yの値を0.05未
満すると、Zrの固溶における硬度向上効果が低
下し、かといつとyの値が0.5を越えると耐酸化
性や硬度が低下するからである。zの値を0.05未
満にすると、Hfの固溶における硬度向上効果が
低下し、かといつとzの値が0.5を越えると耐酸
化性や硬度が低下するからである。vの値を0.8
未満にすると、複合化合物層の欠陥量が増大して
硬度や靭性が低下し、かといつてvの値が1.0を
越えると金属欠陥による硬度低下を招くからであ
る。
x in formula (I) representing the composite compound layer,
The reasons for limiting y, z, and v are as follows. In other words, if the value of x is less than 0.4, a composite compound layer with excellent oxidation resistance cannot be obtained, while if the value of x exceeds 0.95, the other metals (Zr, Hf) in the composite compound This is because the amount decreases and the hardness etc. decrease. This is because if the value of y is less than 0.05, the effect of improving hardness due to solid solution of Zr decreases, and if the value of y exceeds 0.5, the oxidation resistance and hardness decrease. This is because if the value of z is less than 0.05, the effect of improving hardness due to solid solution of Hf decreases, and if the value of z exceeds 0.5, oxidation resistance and hardness decrease. The value of v is 0.8
If the value of v is less than 1.0, the amount of defects in the composite compound layer will increase and the hardness and toughness will decrease.On the other hand, if the value of v exceeds 1.0, the hardness will decrease due to metal defects.

上記複合化合物層の形成手段としては、ター
ゲツトを用いてイオンビームスパツタで蒸着と窒
素イオンの照射を同時に行なうイオンミキシング
法、電子ビーム蒸着源による真空蒸着と窒素イ
オンの照射を同時に行なうイオンミキシング法を
採用することができる。
The method for forming the above composite compound layer includes an ion mixing method in which vapor deposition and nitrogen ion irradiation are simultaneously performed using an ion beam sputter using a target, and an ion mixing method in which vacuum evaporation and nitrogen ion irradiation are simultaneously performed using an electron beam evaporation source. can be adopted.

上記のイオンミキシング法でのイオンビーム
スパツタにおいては、溶解法や粉末冶金法により
Ti、Zr、Hfを目的とする組成に容易かつ精度よ
く作製されたターゲツトを使用できるため、前記
式()にて表わされる複合化合物層を再現性よ
く形成することが可能となる。スパツタ用のイオ
ンビームとしては、通常、Arイオンが使用され
る。また、スパツタイオン源のイオン加速電圧、
イオン電流を制御することにより簡単かつ広範囲
でスパツタ速度を選択することが可能となる。一
方、照射する窒素イオンは独立のイオン源から供
給され、加速電圧、イオン電流の制御により照射
量等を広い範囲で調節することが可能である。更
に、別のイオン源からイオンアシストを行なうこ
と、母材である超硬合金を保持するホルダを回転
すること、窒素イオンを該母材に対して所定の角
度だけ持たせて照射すること等により複合化合物
層における柱状結晶の防止効果、結晶粒の微細
化、結晶物性の向上等を達成することが可能とな
る。
In the ion beam sputtering using the above ion mixing method, melting method or powder metallurgy method is used.
Since it is possible to use a target that is easily and accurately produced with the desired composition of Ti, Zr, and Hf, it is possible to form a composite compound layer represented by the above formula () with good reproducibility. Ar ions are usually used as the ion beam for sputtering. In addition, the ion acceleration voltage of the sputtering ion source,
By controlling the ion current, it becomes possible to easily select the sputtering speed over a wide range. On the other hand, the nitrogen ions to be irradiated are supplied from an independent ion source, and the irradiation amount etc. can be adjusted over a wide range by controlling the acceleration voltage and ion current. Furthermore, by performing ion assist from another ion source, rotating the holder that holds the cemented carbide base material, and irradiating the base material with nitrogen ions at a predetermined angle, etc. It becomes possible to achieve the effect of preventing columnar crystals in the composite compound layer, refinement of crystal grains, improvement of crystal physical properties, etc.

上記のイオンミキシング法での電子ビーム蒸
着源による真空蒸着においては、トリプルハース
方式で電子ビーム溶解することによりTi、Zr、
Hfを目的とする組成に容易かつ精度よく真空蒸
着できるため、前記式()にて表わされる複合
化合物層を再現性よく形成することが可能とな
る。一方、照射する窒素イオンは既述したの場
合と同様である。
In vacuum evaporation using an electron beam evaporation source in the above ion mixing method, Ti, Zr,
Since Hf can be easily and precisely vacuum-deposited to a desired composition, it becomes possible to form a composite compound layer represented by the above formula () with good reproducibility. On the other hand, the nitrogen ions to be irradiated are the same as those described above.

[作用] 本発明によれば、周期律表のa、a、a
族金属の炭化物、窒化物、炭窒化物とNi、Co、
及びFeの少なくとも1種以上とからなる超硬合
金の表面にイオンビームミキシング法により式
()にて表わされる複合化合物層を被覆するこ
とによつて、高硬質で耐酸化性に優れた三元系金
属の窒化物からなる複合化合物層が母材としての
超硬合金表面に密着性よく被覆され、切削・耐摩
耗工具等に有用な複合超硬材料を得ることができ
る。
[Operation] According to the present invention, a, a, a of the periodic table
Group metal carbides, nitrides, carbonitrides and Ni, Co,
By coating the surface of a cemented carbide consisting of at least one or more of Fe and Fe with a composite compound layer represented by the formula () using an ion beam mixing method, a ternary material with high hardness and excellent oxidation resistance can be obtained. A composite compound layer made of nitrides of metals is coated on the surface of the cemented carbide as a base material with good adhesion, and a composite cemented carbide material useful for cutting, wear-resistant tools, etc. can be obtained.

[実施例] 以下、本発明の実施例を詳細に説明する。[Example] Examples of the present invention will be described in detail below.

実施例 1 まず、WC−6%Co超硬合金の母材をイオンビ
ームスパツタ蒸着機能を備えたイオン注入装置の
チヤンバ内に設置した。つづいて、チヤンバ内の
ガスを真空排気して該チヤンバ内を1×10-4torr
の窒素雰囲気とし、スパツタイオン源よりArイ
オンを引き出してTi0.6Zr0.3Hf0.1組成のター
ゲツトに照射して前記母材表面に蒸着速度4.0
Å/secでスパツタ蒸着しながら、別のイオン源
から窒素イオンを該母材表面に照射するイオンミ
キシングにより母材表面に複合化合物層を被覆し
て複合超硬材料を製造した。なお、前記Arスパ
ツタにあたつては加速電圧3kV、ビーム電流2A
の条件で行ない、一方窒素イオンの照射にあたつ
ては加速電圧10kV、ビーム電流密度0.25mA/cm2
の条件で行なつた。
Example 1 First, a base material of WC-6% Co cemented carbide was placed in the chamber of an ion implanter equipped with an ion beam sputter deposition function. Next, the gas inside the chamber is evacuated to 1×10 -4 torr.
Argon ions are extracted from a sputtering ion source and irradiated onto a target with a composition of Ti 0.6 Zr 0.3 Hf 0.1 to achieve a deposition rate of 4.0 on the surface of the base material.
A composite cemented carbide material was manufactured by coating the surface of the base material with a composite compound layer by ion mixing in which the surface of the base material was irradiated with nitrogen ions from another ion source while sputter deposition was performed at Å/sec. For the Ar sputter mentioned above, the acceleration voltage is 3kV and the beam current is 2A.
On the other hand, when irradiating nitrogen ions, the acceleration voltage was 10 kV and the beam current density was 0.25 mA/ cm2.
It was conducted under the following conditions.

比較例 1 まず、WC−6%Co超硬合金の母材をマグネト
ロンスパツタ装置のチヤンバ内に設置した。つづ
いて、チヤンバ内のガスを真空排気して該チヤン
バ内をアルゴンと窒素の混合雰囲気とし、スパツ
タ電圧800VでTi0.6Zr0.3Hf0.1組成のターゲ
ツトを使用して前記母材表面にスパツタ蒸着して
母材表面に厚さ7μmの複合化合物層を被覆して複
合超硬材料を製造した。なお、母材の温度は300
℃とした。
Comparative Example 1 First, a base material of WC-6% Co cemented carbide was placed in a chamber of a magnetron sputtering device. Next, the gas in the chamber was evacuated to create a mixed atmosphere of argon and nitrogen, and the base material was sputtered using a target with a composition of Ti 0.6 Zr 0.3 Hf 0.1 at a sputtering voltage of 800 V. A composite cemented carbide material was manufactured by coating the base material surface with a composite compound layer with a thickness of 7 μm by sputter deposition on the surface. In addition, the temperature of the base material is 300
℃.

しかして、上述した各装置から取出した本実施
例1及び比較例1の複合超硬材料について
EPMA(Electron probe X−
raymycroanalyser)により表面の複合化合物層
の組成を定量分析したところ、実施例1では
(Ti0.6Zr0.3Ff0.1)N0.95、比較例1では
(Ti0.6Zr0.3Ff0.1)N0.9であつた。また、各
複合超硬材料の硬さを測定したところ、実施例1
ではHv=3800Kg/mm2、比較例1ではHv=2800
Kg/mm2であつた。更に、本実施例1の複合超硬材
料によりHB=280のSNCM8鋼をV=180m/
min、f=0.25mm/rev、t=1.5mm(1回の切削
時での切込み量)の条件で切削した時の耐摩耗性
を調べたところ、10分間でVB=0.12mmであつた。
これに対し、比較例1の複合超硬材料を用いて同
様な耐摩耗性を調べたところ、表面の複合化合物
層が剥離して、その耐摩耗効果を発揮することが
できなかつた。
Therefore, regarding the composite carbide materials of Example 1 and Comparative Example 1 taken out from each of the above-mentioned devices,
EPMA (Electron probe
raymycroanalyser), the composition of the composite compound layer on the surface was quantitatively analyzed and found to be (Ti 0.6 Zr 0.3 Ff 0.1 )N 0.95 in Example 1 and (Ti 0.6 Zr 0 ) in Comparative Example 1. .3 Ff 0.1 ) N 0.9 . In addition, when the hardness of each composite carbide material was measured, Example 1
In this case, Hv=3800Kg/mm 2 , and in Comparative Example 1, Hv=2800
It was Kg/ mm2 . Furthermore, using the composite carbide material of Example 1, SNCM8 steel with H B = 280 was heated to V = 180 m/
We investigated the wear resistance when cutting under the conditions of min, f = 0.25 mm/rev, and t = 1.5 mm (depth of cut in one cutting), and found that V B = 0.12 mm in 10 minutes. .
On the other hand, when similar wear resistance was investigated using the composite cemented carbide material of Comparative Example 1, the composite compound layer on the surface peeled off and the wear resistance effect could not be exhibited.

実施例 2 まず、WC−6%Co超硬合金の母材を真空蒸着
機能を有するイオン注入装置のチヤンバ内に設置
し、真空引きした後、EB蒸着法のトリプルハー
ス方式により3個のルツボからTiを3.3Å/secの
蒸着速度で、Zrを2.2Å/secの蒸着速度でHfを
2.1Å/secの蒸着速度で夫々母材表面に真空蒸着
を行ないながら、イオン源より窒素イオンを引出
し該母材表面に照射するイオンミキシングを行な
つた。同時に、別のイオン源から窒素イオンを引
出しイオンビームアシストを行ない、母材表面に
厚さ7.5μmの複合化合物層を被覆して複合超硬材
料を製造した。なお、前記窒素イオン照射にあた
つては加速電圧20kV、イオンビーム電流密度
0.5mA/cm2の条件で行ない、一方窒素イオンビー
ムアシストにあたつては加速電圧200V、ビーム
電流密度0.3mA/cm2の条件で行なつた。
Example 2 First, a base material of WC-6%Co cemented carbide was placed in the chamber of an ion implanter with a vacuum evaporation function, and after being evacuated, it was deposited from three crucibles using the triple hearth method of the EB evaporation method. Ti was deposited at a deposition rate of 3.3 Å/sec, Zr was deposited at a deposition rate of 2.2 Å/sec, and Hf was deposited at a deposition rate of 2.2 Å/sec.
While performing vacuum deposition on the surface of each base material at a deposition rate of 2.1 Å/sec, ion mixing was performed in which nitrogen ions were extracted from an ion source and irradiated onto the surface of the base material. At the same time, nitrogen ions were extracted from another ion source and ion beam assist was performed to coat the surface of the base material with a 7.5 μm thick composite compound layer to manufacture a composite superhard material. In addition, for the nitrogen ion irradiation, the acceleration voltage was 20 kV, and the ion beam current density was
The nitrogen ion beam assist was carried out at an acceleration voltage of 200 V and a beam current density of 0.3 mA/cm 2 .

比較例 2 まず、WC−6%Co超硬合金の母材を市販の
AREイオンプレーテイング装置のチヤンバ内に
設置した。つづいて、チヤンバ内のガスを真空排
気し、実施例2と同様にトリプルハース方式によ
る3個のルツボからTi、Zr、Hfを蒸着させなが
ら窒素雰囲気中でイオンプレーテイングを行なつ
て前記母材表面に厚さ7.5μmの複合化合物層を被
覆して複合超硬材料を製造した。
Comparative Example 2 First, the base material of WC-6%Co cemented carbide was
It was installed inside the chamber of ARE ion plating equipment. Next, the gas in the chamber was evacuated, and ion plating was performed in a nitrogen atmosphere while depositing Ti, Zr, and Hf from three crucibles using the triple hearth method as in Example 2. A composite superhard material was manufactured by coating the surface with a composite compound layer with a thickness of 7.5 μm.

しかして、上述した各装置から取出した本実施
例2及び比較例2の複合超硬材料について
EPMAにより表面の複合化合物層の組成を定量
分析したところ、実施例2では(Ti0.6Zr0.
3Hf0.1)N0.95、比較例2では(Ti0.6Zr0.
3Hf0.1)N0.9であつた。また、各複合超硬材
料の硬さを測定したところ、実施例2ではHv=
3850Kg/mm2、比較例2ではHv=2500Kg/mm2であ
つた。更に、本実施例2の複合超硬材料により
HB=280のSNCM8鋼をV=180m/min、f=
0.25mm/rev、t=1.5mmの条件で切削した時の耐
摩耗性を調べたところ、10分間でVB=0.10mmであ
つた。これに対し、比較例2の複合超硬材料を用
いて同様な耐摩耗性を調べたところ、10分間で
VB=0.25mmと耐摩耗性が劣るばかりか、試験後の
複合化合物層の一部に剥離が認められた。
Therefore, regarding the composite carbide materials of Example 2 and Comparative Example 2 taken out from each of the above-mentioned devices,
Quantitative analysis of the composition of the composite compound layer on the surface by EPMA revealed that in Example 2 (Ti 0.6 Zr 0.
3 Hf 0.1 )N 0.95 , and in Comparative Example 2 (Ti 0.6 Zr 0.
3 Hf 0.1 ) N 0.9 . In addition, when the hardness of each composite carbide material was measured, in Example 2, Hv=
Hv=3850Kg/mm 2 , and in Comparative Example 2, Hv=2500Kg/mm 2 . Furthermore, the composite carbide material of Example 2
H B = 280 SNCM8 steel, V = 180m/min, f =
When the wear resistance was examined when cutting under the conditions of 0.25 mm/rev and t = 1.5 mm, V B = 0.10 mm in 10 minutes. On the other hand, when similar wear resistance was investigated using the composite carbide material of Comparative Example 2, it was found that
Not only was the abrasion resistance inferior with V B =0.25 mm, but peeling was observed in part of the composite compound layer after the test.

[発明の効果] 以上詳述した如く、本発明によれば高硬質で耐
酸化性に優れた三元系金属の窒化物からなる複合
化合物層が母材としての超硬合金表面に密着性よ
く被覆された切削・耐摩耗工具等に有用な複合超
硬材料を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, a composite compound layer made of a nitride of a ternary metal that is highly hard and has excellent oxidation resistance has good adhesion to the surface of a cemented carbide as a base material. A composite carbide material useful for coated cutting and wear-resistant tools can be provided.

Claims (1)

【特許請求の範囲】 1 周期律表のa、a、a族金属の炭化
物、窒化物、炭窒化物とNi、Co及びFeの少なく
とも1種以上とからなる超硬合金の表面にイオン
ビームミキシング法により下記式(I)にて表わ
される複合化合物層を被覆したことを特徴とする
複合超硬材料。 〔(Ti)x(Zr)y(Hf)z〕(N)v …(I) 但し、式中のx、y、z、vはx+y+z=
1、0.4≦x≦0.95、0.05≦y≦0.5、0.05≦z≦
0.5、0.8≦v≦1.0を満足するものである。
[Scope of Claims] 1 Ion beam mixing on the surface of a cemented carbide made of carbides, nitrides, carbonitrides of metals in groups A, A, and A of the periodic table and at least one or more of Ni, Co, and Fe. 1. A composite superhard material coated with a composite compound layer represented by the following formula (I) by a method. [(Ti)x(Zr)y(Hf)z](N)v...(I) However, x, y, z, and v in the formula are x+y+z=
1, 0.4≦x≦0.95, 0.05≦y≦0.5, 0.05≦z≦
0.5, 0.8≦v≦1.0.
JP20000188A 1988-08-12 1988-08-12 Conjugated super hard material Granted JPH0250948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20000188A JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20000188A JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Publications (2)

Publication Number Publication Date
JPH0250948A JPH0250948A (en) 1990-02-20
JPH0588307B2 true JPH0588307B2 (en) 1993-12-21

Family

ID=16417145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20000188A Granted JPH0250948A (en) 1988-08-12 1988-08-12 Conjugated super hard material

Country Status (1)

Country Link
JP (1) JPH0250948A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364900A (en) * 1993-04-08 1994-11-15 Asahi Kasei Kogyo Kabushiki Kaisha Stabilized acetal resin compositions
DE10122329B4 (en) * 2001-05-08 2004-06-03 Tinox Gmbh Heat exchanger device with a surface-coated wall that separates medium 1 from medium 2
WO2009025112A1 (en) * 2007-08-22 2009-02-26 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool

Also Published As

Publication number Publication date
JPH0250948A (en) 1990-02-20

Similar Documents

Publication Publication Date Title
JP6222675B2 (en) Surface-coated cutting tool and method for manufacturing the same
EP2147132B1 (en) A coated cutting tool
EP2276874B1 (en) A coated cutting tool and a method of making thereof
EP1988190A2 (en) Coated cutting tool
JPH0588310B2 (en)
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
US5272014A (en) Wear-resistant coating for substrate and method for applying
JP2012505308A (en) Non-gamma phase cubic AlCrO
US5266389A (en) Surface-coated hard material for cutting tools or wear resistance tools
JP3480086B2 (en) Hard layer coated cutting tool
JP2021504567A (en) Al-Cr based ceramic coating with enhanced thermal stability
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
WO2019239654A1 (en) Surface-coated cutting tool and process for producing same
JP3572728B2 (en) Hard layer coated cutting tool
EP4093898A1 (en) Pvd coated cemented carbide cutting tool with improved coating adhesion
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JPH0588307B2 (en)
JP3572732B2 (en) Hard layer coated cutting tool
JP6583763B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
JP4808972B2 (en) Surface coated cutting tool
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JPH02138458A (en) Laminated hard material and production thereof
JP3454148B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer
JP6743350B2 (en) Cutting tools