JPH0587949B2 - - Google Patents

Info

Publication number
JPH0587949B2
JPH0587949B2 JP761288A JP761288A JPH0587949B2 JP H0587949 B2 JPH0587949 B2 JP H0587949B2 JP 761288 A JP761288 A JP 761288A JP 761288 A JP761288 A JP 761288A JP H0587949 B2 JPH0587949 B2 JP H0587949B2
Authority
JP
Japan
Prior art keywords
electrode
heat dissipation
heat
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP761288A
Other languages
Japanese (ja)
Other versions
JPH01186768A (en
Inventor
Yasuo Kumai
Tadao Tamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP63007612A priority Critical patent/JPH01186768A/en
Publication of JPH01186768A publication Critical patent/JPH01186768A/en
Publication of JPH0587949B2 publication Critical patent/JPH0587949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inert Electrodes (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 本発明は、電解液循環形二次電池の電極構造に
関するものである。 B 発明の概要 本発明は、電解液循環形二次電池の電極構造に
おいて、良熱伝導性の材料からなる平板形状の放
熱部材をカーボン・プラスチツク電極で挾み込ん
で固定し、少なくとも前記放熱部材の一部を前記
電極枠から突出させた構成としたものであり、電
池の冷却手段として簡易かつ小型であつて消費電
力の小さいものを採用できるという効果を有する
ものである。 C 従来の技術 第4図は、電解液循環形二次電池、例えば臭素
亜鉛電池の基本構成の一例を示す説明図である。
図において、単セル1は隔膜4によつて正極室2
と負極室3とに隔てられ、正極室2及び負極室3
にはそれぞれ正極5、負極6が設けられている。
これらの正極室2及び負極室3にはそれぞれ正極
液貯蔵槽9及び負極液貯蔵槽10からポンプ1
1,12を介して正極液(例えばZnBr2溶液)及
び負極液(例えばZnBr2+Br2溶液)が供給され
て循環するようになつている。そして、単セル1
内におけるイオンの移動により、正極5と負極6
との間に電位差が生じ、起電力が発生する。 第5図は、上記のような単セル1を複数個積層
して構成した積層電池の一例を示す構成図であ
る。図において、電極20はスペーサメツシユ2
2を備えた2個のパツキン21に挾まれ、さら
に、隔膜26を設けるとともに、該隔膜26の外
周に形成した枠にマイクロチヤンネル(以下
「MC」という。)を備えた2個のMC付枠付膜2
3と対向している。この2個のMC付枠付膜23
に挾まれた領域が正極室又は負極室を構成する。
そして、これらの電極20、パツキン、及びMC
付枠付膜23は正極マニホールド24及び負極マ
ニホールド25を備え、各マニホールドを介して
正極液及び負極液が正極室及び負極室に供給され
る。なお、パツキン21は、電極20と隔膜26
とが密着して電解液の流路が狭まるのを防止する
ために設けられている。 第6図は、上記のような従来の積層電池におい
て使用される電極の一例を示し、aは正面図、b
は平面図である。図において、27はカーボンプ
ラスチツク等からなる電極本体であり、ポリエチ
レン等からなる電極枠28によつて周囲を縁取ら
れた構成となつている。なお、この電極枠28に
は上述の正極マニホールド24及び負極マニホー
ルド25が設けられている。 D 発明が解決しようとする課題 一般に電解液循環形二次電池、特に臭化亜鉛電
池においては、内部抵抗によるジユール熱、
自己放電(隔膜を通つて臭素イオンが負極側へ拡
散し、負極側の亜鉛を溶解する際に生じる反応
熱)、電解液を循環させるためのポンプから生
じる熱、等によつて循環する電解液やセルの温度
が上昇する。このような温度上昇は、電池のエネ
ルギー効率を低下させ、電池の性能を損なうもの
である。従つて、電池の最大性能(エネルギー効
率)を長期間に渡つて維持するためには、電解液
やセルの温度を一定範囲内に保つ必要があり、そ
のために冷却装置が不可欠となる。 しかし、かかる冷却装置を運転するための電力
は、該冷却装置を備えた電池自体のエネルギー損
失とみなされ、冷却装置の消費する電力が大きい
場合にはかえつて電池のエネルギー効率を低下さ
せることになる。従つて、このような冷却装置を
動作させるのに要する電力はできるだけ小さい方
が望ましいが、従来の電池の電極構造では消費電
力の小さい冷却装置ではセル内の温度を十分に冷
却できないという問題点があつた。 また、このような電池を例えば電気自動車等に
用いる場合には、限られた空間に収納するために
電池の軽量コンパクト化を図る必要があるので、
従来のような電力貯蔵用の冷却システム(冷却
塔、チラーユニツト等)は大型であるために適さ
ないという問題点があつた。 本発明は、上記のような問題点を解決するため
になされたものであり、電池を冷却するための冷
却手段が極めて簡易かつ小型のもので済み、消費
電力も低く抑えることができる電解液循環形二次
電池の電極構造を提供することを目的とする。 E 課題を解決するための手段 上記目的を達成するために、本発明に係る電解
液循環形二次電池の電極構造は、良熱伝導性の材
料からなる平板形状の放熱部材をカーボン・プラ
スチツク電極で挾み込んで固定し、少なくとも前
記放熱部材の一部を前記電極枠から突出させた構
造としたものである。 F 作用 本発明においては、上記のような構成としたこ
とにより、放熱部材が電極部材を介してセル内の
熱を直接熱伝導によつて受取り、該放熱部材の電
極枠から突出した部分に熱を伝導し、ここで熱を
外部に放出する。この熱の放出は、例えばフアン
等の簡易な空冷冷却手段によつて行うことができ
る。このように本発明においては、セル内の熱を
良熱伝導性の放熱部材を介して直接外部に放出す
るので、冷却効率が極めてよい。従つて、冷却手
段として小型かつ消費電力の小さなものを採用す
ることができる。 G 実施例 第1図は本発明に係る電極構造の一実施例を示
す図であり、aは正面図、bは平面図である。図
において電極30は、2個の電極本体31を備え
るとともに、該2個の電極本体31に挾まれた放
熱部材32を備えている。電極枠28は従来のも
のと同じである。 電極本体31は従来のものと同様、例えばポリ
エチレンにグラフアイト又はカーボンブラツクを
混練成形したものを使用する。また、放熱部材3
2は、熱伝導性のよい例えばカーボンフアイバー
をクロス状に織つたものを使用し、図のような形
状とすることで、電極30に取付けたときに該放
熱部材32の一部分である放熱フイン32aが電
極枠28から突出するようになつている。これら
電極本体31と放熱部材32とは、熱圧着等の方
法により接合され、これらが一体構造となつてい
る。なお、熱圧着による場合には、接合力を増強
すべく、放熱部材32の表面に電極本体31の母
材(例えばポリエチレン)と同じ材料を圧着コー
テイングしておくとよい。この処理により、放熱
フイン32aの電気的絶縁性を高める効果も得ら
れる。また、電極枠28は、ポリエチレンとフイ
ラーの混合材で構成するのが好ましい。この電極
枠28は、電気的な絶縁をとる役目を果たすと同
時に、熱的にも絶縁効果を有する。 第1表は、各材料物質の熱伝導率を比較して示
してものである。
A. Industrial Application Field The present invention relates to an electrode structure for a circulating electrolyte secondary battery. B. Summary of the Invention The present invention provides an electrode structure for an electrolyte circulation type secondary battery in which a flat plate-shaped heat dissipation member made of a material with good thermal conductivity is sandwiched and fixed between carbon plastic electrodes, and at least the heat dissipation member is fixed. A part of the electrode frame is made to protrude from the electrode frame, and this has the effect that a simple, compact, and low power consumption device can be used as a cooling means for the battery. C. Prior Art FIG. 4 is an explanatory diagram showing an example of the basic configuration of an electrolyte circulation type secondary battery, for example, a bromine zinc battery.
In the figure, a single cell 1 is connected to a positive electrode chamber 2 by a diaphragm 4.
and a negative electrode chamber 3, and a positive electrode chamber 2 and a negative electrode chamber 3.
are provided with a positive electrode 5 and a negative electrode 6, respectively.
A pump 1 is connected to these positive electrode chamber 2 and negative electrode chamber 3 from a positive electrode liquid storage tank 9 and a negative electrode liquid storage tank 10, respectively.
A positive electrode liquid (for example, ZnBr 2 solution) and a negative electrode liquid (for example, ZnBr 2 +Br 2 solution) are supplied and circulated through the electrodes 1 and 12 . And single cell 1
Due to the movement of ions within the positive electrode 5 and negative electrode 6
A potential difference occurs between the two and an electromotive force is generated. FIG. 5 is a configuration diagram showing an example of a stacked battery constructed by stacking a plurality of single cells 1 as described above. In the figure, the electrode 20 is connected to the spacer mesh 2
2, and further provided with a diaphragm 26, and a frame with a microchannel (hereinafter referred to as "MC") formed on the outer periphery of the diaphragm 26. Attached membrane 2
It is facing 3. These two MC framed membranes 23
The region sandwiched between the two constitutes a positive electrode chamber or a negative electrode chamber.
And these electrodes 20, packing, and MC
The framed membrane 23 includes a positive electrode manifold 24 and a negative electrode manifold 25, and a positive electrode liquid and a negative electrode liquid are supplied to the positive electrode chamber and the negative electrode chamber through each manifold. Note that the packing 21 connects the electrode 20 and the diaphragm 26.
This is provided to prevent the flow path of the electrolyte from narrowing due to close contact between the two. FIG. 6 shows an example of an electrode used in a conventional stacked battery as described above, where a is a front view and b is a front view.
is a plan view. In the figure, reference numeral 27 denotes an electrode body made of carbon plastic or the like, which is surrounded by an electrode frame 28 made of polyethylene or the like. Note that this electrode frame 28 is provided with the above-described positive electrode manifold 24 and negative electrode manifold 25. D Problems to be Solved by the Invention In general, in electrolyte circulation type secondary batteries, and in particular in zinc bromide batteries, Joule heat due to internal resistance,
Electrolyte that circulates due to self-discharge (reaction heat generated when bromine ions diffuse to the negative electrode side through the diaphragm and dissolve zinc on the negative electrode side), heat generated from the pump that circulates the electrolyte, etc. or cell temperature rises. Such a temperature increase reduces the energy efficiency of the battery and impairs the performance of the battery. Therefore, in order to maintain the maximum performance (energy efficiency) of the battery over a long period of time, it is necessary to maintain the temperature of the electrolyte and the cell within a certain range, and a cooling device is essential for this purpose. However, the power required to operate such a cooling device is considered an energy loss in the battery itself, which is equipped with the cooling device, and if the cooling device consumes a large amount of power, it may actually reduce the energy efficiency of the battery. Become. Therefore, it is desirable that the power required to operate such a cooling device be as small as possible, but the problem with conventional battery electrode structures is that a cooling device with low power consumption cannot sufficiently cool the temperature inside the cell. It was hot. In addition, when such batteries are used in, for example, electric vehicles, it is necessary to make the batteries lightweight and compact in order to store them in a limited space.
Conventional cooling systems for power storage (cooling towers, chiller units, etc.) have the problem of being unsuitable due to their large size. The present invention has been made in order to solve the above-mentioned problems, and it is an electrolyte circulation system that allows the cooling means for cooling the battery to be extremely simple and compact, and that can also keep power consumption low. The purpose of this invention is to provide an electrode structure for a rechargeable battery. E. Means for Solving the Problems In order to achieve the above object, the electrode structure of the electrolyte circulation type secondary battery according to the present invention is such that a flat heat dissipating member made of a material with good thermal conductivity is connected to a carbon plastic electrode. The electrode frame has a structure in which at least a part of the heat dissipating member protrudes from the electrode frame. F Effect In the present invention, with the above configuration, the heat dissipation member receives heat within the cell through the electrode member by direct heat conduction, and the heat is transferred to the portion of the heat dissipation member protruding from the electrode frame. conduction, and here the heat is released to the outside. This heat can be released by a simple air-cooling means such as a fan. As described above, in the present invention, the heat inside the cell is directly radiated to the outside through the heat radiating member having good thermal conductivity, so that the cooling efficiency is extremely high. Therefore, it is possible to use a cooling means that is small and consumes little power. G. Example FIG. 1 is a diagram showing an example of an electrode structure according to the present invention, in which a is a front view and b is a plan view. In the figure, the electrode 30 includes two electrode bodies 31 and a heat dissipation member 32 sandwiched between the two electrode bodies 31. The electrode frame 28 is the same as the conventional one. The electrode body 31 is made of, for example, polyethylene kneaded and molded with graphite or carbon black, as in conventional electrode bodies. In addition, the heat dissipation member 3
2 uses carbon fibers with good thermal conductivity, for example, woven in a cross shape, and has a shape as shown in the figure, so that when attached to the electrode 30, a heat dissipation fin 32a that is a part of the heat dissipation member 32 is formed. protrudes from the electrode frame 28. The electrode main body 31 and the heat dissipating member 32 are joined by a method such as thermocompression bonding to form an integral structure. In the case of thermocompression bonding, it is preferable that the surface of the heat dissipating member 32 is coated with the same material as the base material (for example, polyethylene) of the electrode body 31 in order to increase the bonding force. This treatment also provides the effect of increasing the electrical insulation of the heat dissipation fins 32a. Further, the electrode frame 28 is preferably made of a mixed material of polyethylene and filler. This electrode frame 28 not only serves to provide electrical insulation, but also has a thermal insulation effect. Table 1 shows a comparison of the thermal conductivity of each material.

【表】 図から分るように、電極枠28の材料としてポ
リエチレン+フイラーの混合材を選択し、放熱部
材32の材料として炭素(グラフアイト)を選択
することにより、セル内の熱が放熱部材32によ
く伝わり、放熱フイン32aでの放熱効果が大き
くなる。 第2図は上述の構造の電極を用いた電池の積層
構成を示す斜視図である。図から分るように、放
熱部材32の複数の放熱フイン32aが外部に突
出している。 上記のような電極構造において、電池のセル内
に置かれる電極本体31は、セル内の熱を一体構
造となつている放熱部材32に伝える。放熱部材
32は良熱伝導性を有するので、セル外にある放
熱フイン32aに熱がよく伝導する。従つて、セ
ル外に任意の冷却手段を設け、放熱フイン32a
を冷却することにより、放熱部材32を介してセ
ル内の熱を効率よく取去ることができる。このよ
うに、この方法による熱の伝達効率は極めてよい
ので、冷却手段は例えばフアンによる空冷冷却等
の簡易なものが採用できる。 第3図は、例えばフアンを用いた冷却手段を採
用した場合を示す説明図である。図のようにフア
ン41を動作させて気流を起こし、空冷フード4
1によつて気流をガイドすることにより、電極3
0から突出した放熱フイン32aを空冷する。空
冷フード41は電気的絶縁性の良好なものが好ま
しい。 なお、上述の2個の電極本体が放熱部材を挾み
込む電極構造は、上記の放熱効果に加え、曲げ剛
性を高め、電極の劣化・たわみを防止するという
効果も有している。 H 発明の効果 本発明は以上説明した通り、電極構造を良熱伝
導性の材料からなる平板形状の放熱部材をカーボ
ン・プラスチツク電極で挾み込んで固定し、少な
くとも前記放熱部材の一部を前記電極枠から突出
させた構造としたことにより、電池のセル内の熱
を効率よく外部に放出することができるので、比
較的小型かつ簡易な冷却手段を採用することによ
つて冷却装置を運転するのに要する電力を少なく
することができるとともに、冷却システムをコン
パクト・軽量化することができるという効果があ
る。
[Table] As can be seen from the figure, by selecting a mixture of polyethylene and filler as the material for the electrode frame 28 and selecting carbon (graphite) as the material for the heat dissipation member 32, the heat inside the cell is transferred to the heat dissipation member. 32, and the heat dissipation effect at the heat dissipation fins 32a becomes large. FIG. 2 is a perspective view showing a stacked structure of a battery using electrodes having the above structure. As can be seen from the figure, a plurality of heat radiating fins 32a of the heat radiating member 32 protrude to the outside. In the electrode structure as described above, the electrode main body 31 placed inside the battery cell transmits heat within the cell to the heat radiating member 32 having an integral structure. Since the heat dissipation member 32 has good thermal conductivity, heat is well conducted to the heat dissipation fins 32a located outside the cell. Therefore, any cooling means is provided outside the cell, and the heat dissipation fins 32a
By cooling the cell, heat inside the cell can be efficiently removed via the heat radiating member 32. As described above, since the heat transfer efficiency by this method is extremely high, a simple cooling means such as air cooling using a fan can be employed. FIG. 3 is an explanatory diagram showing a case where cooling means using a fan, for example, is employed. As shown in the figure, operate the fan 41 to generate airflow, and
By guiding the airflow by electrode 3
The heat dissipation fins 32a protruding from 0 are air cooled. The air cooling hood 41 preferably has good electrical insulation. The electrode structure in which the heat dissipation member is sandwiched between the two electrode bodies has the effect of increasing bending rigidity and preventing deterioration and deflection of the electrode in addition to the heat dissipation effect described above. H Effects of the Invention As explained above, the present invention has an electrode structure in which a flat plate-shaped heat dissipating member made of a material with good thermal conductivity is sandwiched and fixed between carbon plastic electrodes, and at least a part of the heat dissipating member is By having a structure that protrudes from the electrode frame, the heat inside the battery cell can be efficiently released to the outside, so the cooling device can be operated by adopting a relatively small and simple cooling means. This has the effect of reducing the amount of power required for cooling, and making the cooling system more compact and lightweight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明に係る電解液循環形二次電池
の電極構造の一実施例を示す正面図、第1図bは
その平面図、第2図は上述の構造の電極を用いた
電池の積層構成を示す斜視図、第3図は例えばフ
アンを用いた冷却手段を採用した場合を示す説明
図、第4図は電解液循環形二次電池の基本構成の
一例を示す説明図、第5図は単セルを複数個積層
して構成した積層電池の一例を示す構成図、第6
図aは従来の積層電池において使用される電極の
一例を示す正面図、第6図bはその平面図であ
る。 図において、24は正極マニホールド、25は
負極マニホールド、28は電極枠、30は電極、
31は電極本体、32は放熱部材、32aは放熱
フインである。
FIG. 1a is a front view showing an example of the electrode structure of a circulating electrolyte secondary battery according to the present invention, FIG. 1b is a plan view thereof, and FIG. 2 is a battery using the electrode with the above structure. FIG. 3 is an explanatory diagram showing a case where a cooling means using a fan is used, for example; FIG. 4 is an explanatory diagram showing an example of the basic configuration of an electrolyte circulation type secondary battery; Figure 5 is a configuration diagram showing an example of a stacked battery constructed by stacking a plurality of single cells.
Figure a is a front view showing an example of an electrode used in a conventional stacked battery, and Figure 6b is a plan view thereof. In the figure, 24 is a positive electrode manifold, 25 is a negative electrode manifold, 28 is an electrode frame, 30 is an electrode,
31 is an electrode body, 32 is a heat radiation member, and 32a is a heat radiation fin.

Claims (1)

【特許請求の範囲】 1 隔膜によつて隔てられた正極室及び負極室か
らなる単セルを複数個積層するとともに、正極室
に正極液を供給する正極液貯蔵槽及び負極室に負
極液を供給する負極液貯蔵槽を備え、各単セルに
おいて起電力を生じさせる電解液循環型二次電池
の電極構造において、 良熱伝導性の材料からなる平板形状の放熱部材
をカーボン・プラスチツク電極で挾み込んで固定
し、少なくとも前記放熱部材の一部を前記電極枠
から突出させ、該放熱部材を介してセル内の熱を
放出することを特徴とする電解液循環形二次電池
の電極構造。
[Scope of Claims] 1. A plurality of single cells each consisting of a positive electrode chamber and a negative electrode chamber separated by a diaphragm are stacked, and a positive electrode storage tank supplies positive electrode liquid to the positive electrode chamber, and a negative electrode liquid is supplied to the negative electrode chamber. In the electrode structure of an electrolyte circulation type secondary battery, which is equipped with a negative electrode liquid storage tank and generates an electromotive force in each single cell, a flat plate-shaped heat dissipation member made of a material with good thermal conductivity is sandwiched between carbon plastic electrodes. An electrode structure for an electrolyte circulation type secondary battery, characterized in that the electrode frame is fixed in place, at least a part of the heat dissipation member protrudes from the electrode frame, and heat within the cell is radiated through the heat dissipation member.
JP63007612A 1988-01-19 1988-01-19 Electrode structure of electrolyte circulation type secondary battery Granted JPH01186768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007612A JPH01186768A (en) 1988-01-19 1988-01-19 Electrode structure of electrolyte circulation type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007612A JPH01186768A (en) 1988-01-19 1988-01-19 Electrode structure of electrolyte circulation type secondary battery

Publications (2)

Publication Number Publication Date
JPH01186768A JPH01186768A (en) 1989-07-26
JPH0587949B2 true JPH0587949B2 (en) 1993-12-20

Family

ID=11670633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007612A Granted JPH01186768A (en) 1988-01-19 1988-01-19 Electrode structure of electrolyte circulation type secondary battery

Country Status (1)

Country Link
JP (1) JPH01186768A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9026927D0 (en) * 1990-12-12 1991-04-03 Rolls Royce & Ass Metal/oxygen battery constructions
US6808834B2 (en) * 2000-01-19 2004-10-26 Manhattan Scientifics, Inc. Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
JP4292368B2 (en) * 2002-12-12 2009-07-08 ソニー株式会社 Fuel cell and electronic device equipped with the same
JP4553100B2 (en) * 2003-08-01 2010-09-29 日本電気株式会社 Flat type secondary battery and battery pack
JP5162937B2 (en) 2007-03-29 2013-03-13 ソニー株式会社 Fuel cell
US20100304257A1 (en) * 2009-05-26 2010-12-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method of operating an electrical energy storage device or an electrochemical energy generation device using microchannels and high thermal conductivity materials
US8715875B2 (en) 2009-05-26 2014-05-06 The Invention Science Fund I, Llc System and method of operating an electrical energy storage device or an electrochemical energy generation device using thermal conductivity materials based on mobile device states and vehicle states
US8802266B2 (en) 2009-05-26 2014-08-12 The Invention Science Fund I, Llc System for operating an electrical energy storage device or an electrochemical energy generation device using microchannels based on mobile device states and vehicle states
JP5740103B2 (en) * 2009-10-19 2015-06-24 日東電工株式会社 Thermally conductive member and assembled battery device using the same

Also Published As

Publication number Publication date
JPH01186768A (en) 1989-07-26

Similar Documents

Publication Publication Date Title
CN102315501B (en) Battery module
US10020549B2 (en) Battery module with novel structure
JP6581699B2 (en) Battery module
JP2006278330A (en) Secondary battery module
KR102058688B1 (en) Battery Module of Indirect Cooling
JP4221639B2 (en) battery
KR20130086018A (en) Battery module with compact structure and excellent heat radiation characteristics and middle or large-sized battery pack employed with the same
JP2003346924A (en) Cooling system and method for battery pack
JP2004273356A (en) Cooling device of battery pack
US10840484B2 (en) Heat-radiation module and electric vehicle battery pack using same
JP2012226995A (en) Battery assembly
JP2013222603A (en) Secondary battery, secondary battery module incorporating secondary battery and battery pack system incorporating secondary battery module
JP2014093240A (en) Battery module
JPH0587949B2 (en)
JP2014093239A (en) Battery module
US20190372185A1 (en) Cooling structure for vehicle battery
CN109860951A (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation
CN213692181U (en) Battery pack
JP2014093241A (en) Battery module
US11990592B2 (en) Battery, apparatus using battery, and manufacturing method and manufacturing device of battery
KR20180091579A (en) Battery module assembly having multiple cooling structure
JP3224790U (en) Storage battery and storage battery system
JP2007299660A (en) Electrical power storage device and its temperature control method
JP7246777B2 (en) BATTERY PACK INCLUDING COOLING MEMBER AND DEVICE INCLUDING THE SAME
CN209401799U (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation