JPH0587768B2 - - Google Patents

Info

Publication number
JPH0587768B2
JPH0587768B2 JP13819187A JP13819187A JPH0587768B2 JP H0587768 B2 JPH0587768 B2 JP H0587768B2 JP 13819187 A JP13819187 A JP 13819187A JP 13819187 A JP13819187 A JP 13819187A JP H0587768 B2 JPH0587768 B2 JP H0587768B2
Authority
JP
Japan
Prior art keywords
sealed container
value
point
box
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13819187A
Other languages
Japanese (ja)
Other versions
JPS63302337A (en
Inventor
Hisaichi Shibazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP13819187A priority Critical patent/JPS63302337A/en
Publication of JPS63302337A publication Critical patent/JPS63302337A/en
Publication of JPH0587768B2 publication Critical patent/JPH0587768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はびん詰、缶詰類などの密封容器の内圧
力を非破壊で検査を行う為の装置に関し、殊に段
ボール紙箱に納められた缶を箱を開かずに外部か
ら検査可能な装置の改良に関するものである。 (従来の技術) 飲食品の缶詰類は、炭酸飲料など特殊な場合の
外は、一般に内容品の保存期間を長くする為に、
ゲージ圧30cmHg程度の減圧状態で充填されるが、
容器にピンホールによる漏洩がある場合は外気の
流入によつて、あるいは内容品の変敗による炭酸
ガスや水素ガスの発生によつて減圧の低下あるい
は正圧力にまで加圧されたいわゆる膨張缶になる
ことがある。 従つて正常な減圧缶では、缶蓋の面が凹面状
に、不良品では平面ないしは凸面状となる。 このような不良缶の変形を自動的に検出するた
め、缶蓋の凹凸程度を電磁コイルのインダクタン
ス変化として測定する方法は、従来から単一の缶
がコンベヤ上を搬送される過程で検査する方法が
種々実用化されてきた。 段ボール箱は電気的に絶縁体で且つ磁気的に非
磁性体であるから、電磁気的には何も無いに等し
いので、段ボール箱に詰められた複数の缶の検査
も可能であり、これを実現するための方法と装置
は本発明者等によつて開発され、特公昭59−
25170号公報に開示されている。 これらの検査方法の原理は第1図に見るよう
に、コンベヤ1で直立搬送される缶2の蓋面2a
の直近定位置に配置された渦電流式距離計3によ
り、蓋面までの距離を複数点で測定し、蓋面中心
Bに於ける距離をb、それより互いに逆方向に一
定間隔離れたA,C点に於ける距離をa,cとす
るとき、蓋面の凹凸度合hを演算処理装置4にお
ける h=b−(a+c)/2 なる計算によつて求め、hが大きい程減圧が大き
いのでこれを良品と判定し、hが小さいものを不
良品と判定して、次の仕合け工程への出力信号d
を発している。 (この発明が解決しようとする問題点) 前記測定点A,B,Cは幾何学的な点ではな
く、ある広がりを持つた領域であり、これに対応
する距離a,b,cはこの領域の平均的な値とな
る。それはセンサ3にある程度の大きさが有り、
且つセンサ3の発する磁力線は距離と共に広がる
性質を有することになる。 従つて距離a,b及びcには缶胴と蓋との巻締
部2b,2b′の凸出部が加算的に影響しており、
センサ3の出力信号eはコンベヤー1の進行と共
に第2図に示す通り、巻締部2b,2b′は広い
幅を持つてなだらかに凸出したものとなる。 更に缶を段ボール箱に整列収納した場合は隣合
う缶の巻締部が互いに接しており、センサ出力e
は第2図に示す通り巻締部の凸出は約2倍の高
さとなる。従つて算出される凹凸度合hは隣合う
缶の存在によつて見かけ上大きな値を示す事とな
る。 さて、段ボール箱に収納した缶を、箱の蓋を糊
付閉止したまゝでコンベヤー上で、箱外部から缶
蓋の凹凸度合で缶内圧力検査を行なう場合、箱内
缶列の内、コンベヤー進行方向の最前列及び最後
列の缶は隣合う缶が片側にしか無い。従つてセン
サ出力eは第2図に示す通り、一方の巻締部の
凸出のみが拡がり、中程の列の多数の缶に比べ、
最前列及び最後列の缶ではhの値が少なめに測定
され、正常な良品を不良品と誤判別して排斥して
しまう不都合があつた。 また、段ボール箱の構造は、第3図に示すよう
に、飲料缶を5行、6列の合計30缶を収納する場
合、横方向から折り込んだ糊代となる内側フラツ
プ7が箱寸法よりも短いので、両側端の行はゆる
み無く収納されるが、中程の行では前後に段ボー
ル紙1枚分の厚みだけのゆるみ8,8′が有り、
缶列が乱れ、隣合う缶との距離が最大5mm程にな
り得る。 隣合う缶との距離が大きくなるにつれ、第4図
に示すように、検出される巻締部の凸出が次第に
低くなり、隣合う缶が無い場合に近い形となり、
ますます誤判別し易くなる。 更に、経済的なコスト低減の要求から、より軽
量の段ボール紙を用いる傾向に有り、箱は更に変
形し易くなつて誤排斥の多発で作業性を損ねるば
かりか、検査装置の不信感の増大を招く恐れがあ
る。 本発明の目的は、この様な不都合を解消し、誤
排斥の少ない密封容器の内圧検査を得ようとする
ものである。 本発明の他の目的は、段ボール箱の紙質をより
低級なものを用いても前記目的と同様、誤非斥の
少ない装置を得ようとするものである。 (問題を解決するための手段) この発明の密封容器内圧検査方法は、密封容器
が箱詰された箱をコンベヤで搬送しながら、該搬
送装置の上方の直近定位置に配置された位置セン
サーにより、箱外から箱内の各容器蓋の中心部の
1点と該点を対称点として一定間隔離れた2点と
の3点で容器蓋の位置測定を行い、前記離れた2
点の平均測定値と中心部の1点の測定値との差に
よつて蓋面の凹凸度合を測定することによつて密
封容器の内圧を検査する方法において、搬送方向
に並んで配置されている箱内の密封容器の先頭の
密封容器及び末尾の密封容器については、密封容
器蓋の前記2点の平均測定値と中心部の1点の測
定値との差に、予め設定された補正値を加算して
凹凸度合値とし、中間部の密封容器については、
密封容器蓋の前記2点の平均測定値と中心部の1
点の測定値との差を凹凸度合値とし、各密封容器
の前記凹凸度合値と予め設定された基準凹凸度合
値とを比較することにより、各密封容器の内圧良
否を判別するようにしたことを特徴とする技術的
手段によつて、前記問題点を解決した。 そして、この方法を実施するための密封容器内
圧検査装置は、箱詰された密封容器を搬送する搬
送装置の直近定位置に配置され、箱の先端の検出
信号によつて得られる測定開始信号によつて一定
の間隔で密封容器の蓋の位置を検出する位置セン
サーと、該位置センサーから順次入力される位置
情報を一次記憶するレジスタと、このレジスタか
ら読出された容器蓋の中心部の1点と該点を対称
点として一定間隔離れた2点との3点を一組とす
る測定値から凹凸度合を算出する演算回路と、先
頭の密封容器及び末尾の密封容器に加算する値を
設定する数値設定器と、前記箱の先端の検出信号
によつて先頭の密封容器及び末尾の密封容器にの
み前記算出された出力に前記数値設定器の出力を
加算する加算回路と、逐次入力される凹凸度合値
を基準値と比較する比較回路を備えていることを
特徴とするものである。 (作用) 隣り合う缶の有無により、缶内圧力と検出され
る見掛け上の蓋面凹凸度合hの相関関係を第5図
に示す。同図に於いて曲線aは両側に隣合う缶が
ある場合、bは片側にのみ缶がある場合、cは隣
合う缶がない場合を示す。横軸は缶内圧力を水銀
柱の高さで表わし、縦軸はhの値をセンサ出力電
圧であるmVで表示してある。 同図で明らかな様に曲線a,b,cは縦軸方向
に20mVづつ平行移動したものとなつている。従
つて、箱内缶列の最前列及び最後列の缶に対する
hの検出値に20〜40mVの適当な補正を加算する
ことにより、箱内全缶に対して誤判別の少ない検
査が可能となる。 (実施例) 本発明の実施例を第6図に示す。 一般に缶詰は多行、多列の配列で段ボール箱に
収納されるが、従来からの装置及び本発明の装置
も各行ごとにセンサ及び記憶装置を有し、演算処
理部、判別、排斥の制御部は共用されている。従
つて説明を簡単にする為、同一の装置が箱内缶の
行数だけ並列に動作していると考えて差し支えな
く、本実施例では1行6缶入りの箱を例に取つて
説明する。 第6図に於いて、段ボール箱101に1行6缶
の被検缶C1〜C6が整列して収納され、コンベヤ
102に乗つて矢印103の方向へ直進搬送され
る。コンベヤーの上方、固定した距離に配置した
渦電流式距離センサ104は缶C1〜C6までの距
離に相当する距離信号S1を、増巾器105を経由
して出力する。その信号波形は1ケ目の缶C1
対して既に説明した第2図、2ケ目C2から5
ケ目のC5までは、最後のC6に対しては再び
の波形を左右逆転したものが連続したものとな
る。 一方、コンベヤ102の進行によつて箱101
の前端が光電スイツチ106の光ビームを遮断す
ると、コンベヤ駆動軸に取付けられたパルス発信
機107から発せられるコンベヤ移動量0.5mmご
とのパルスをタイミング回路108で受け、その
内部で缶C1〜C6に対して第1図で述べた測定点
A,B,Cに対応する読み込み命令パルスS2を発
する。 この命令パルスS2を発生するタイミングは、箱
101の内寸法に対して中心のズレは無視し得る
ので、箱前端からの距離で決めることができる。 アナログ、デジダル変換器109は読み込み命
令パルスS2に同期して距離信号S1をデジタル値に
変換して記憶装置110に読みこむ。記憶装置1
10は3ケの記憶ユニツトM1,M2,M3から成
り、それぞれ第1図に於ける距離a,b,cの値
を記憶する。 1ケ目の缶C1に対するa,b,cが読み込ま
れ、このc値の読込み終了と同時にタイミング回
路108から発せられる読出し命令信号S3によつ
て、次に来る2ケ目の缶の距離を読み込むまでの
間に1ケ目の缶C1に対するh値の演算が行なわ
れる。 命令信号S3によつて記憶ユニツトM1,M2
M3の記憶内容が読出され、演算ブロツク111
に与えられる。同ブロツク内の加算器112で
(a+c)の計算を行い。次に割算器113で
(a+c)/2となり、減算器114でb−(a+
c)/2となつて、h値を示す出力信号S4を得
る。 こゝまでの動作は従来装置と同じである。次に
本発明の缶C1、缶C6に対する補正値の加算につ
いて説明する。補正値加算ブロツク115内には
先頭の缶C1又は末尾の缶C6であるかを判断する
為のサイクリツクカウンタ116を設け、読出し
信号S3を計数し、1ケ目と6ケ目のパルスに対し
て出力S5を得、これをゲート117の開閉信号と
する。 補正値設定器118はデジタルスイツチ式の数
値設定器であり、その出力はゲート117に接続
されており、先頭の缶C1に対するゲート開閉信
号S5によつてゲート117が開かれ補正信号S6
得る。 缶蓋凹凸度合hに相当する信号S4と補正信号S6
は第2の加算器119で加算され、補正された凹
凸度合信号としてS7を得る。 次に来る2ケ目の缶C2からC5までの缶に対し
てはゲート開閉信号S5が発せられないので、補正
値は加えられず出力信号S7は信号S4がそのまま素
通りしたものとなつて、従来装置と全く同じ動作
をする。 最後に末尾の缶C6に対する読出しが終了する
と、カウンタ116は再びゲート開閉信号S5を発
し、前述の缶C1に対すると同様に補正値加算ブ
ロツク115が動作して補正値を加える。 尚、これらの演算処理は10ビツトのデジタル値
で行なわれ、論理集積回路素子で構成したが同様
の事をマイクロコンピユータを用いプログラムに
よつて行なう事が出きるのはもち論である。 判別レベル設定器120に主動設定した値S8
凹凸度合信号S7を信号比較器121で比較判別
し、S7<S8の条件で不良信号を発し、これをリジ
エクトメモリー122に1時記憶する。 段ボール箱101の後端を光電スイツチ106
で検出すると、タイミング回路108からケース
後端信号S9が発せられ、ゲート123を開いて不
良信号は遅延回路124でコンベヤの動きと同期
を取つた後電力増巾器125で増巾され、排斥装
置を駆動する信号S10を発して1箱分の良否検査
を終了する。 (発明の効果) 缶の直径53mm、内容量250グラム入りの果汁飲
料缶を5行、6列の30缶を段ボール箱に整列収納
し、すべての缶が内圧力28〜34cmHgゲージ圧の
圧にある正常製品であるものを300箱用意した。
これを従来通りの補正加算なしの場合と、前端、
後端の缶の検出値に補正値として20mVを加算し
た場合のh値の分布をそれぞれ第7図のa及びb
に示す。 図の横軸C1〜C6はそれぞれ最前列から最後列
までの缶列を示し、縦軸hは既述の缶蓋面の凹凸
度合を示す。 h=150の破線は不良判別レベルを示し、これ
以下の値を不良品と判別して排斥する。この値は
ゲージ圧10cmHgの低真空缶に相当する。 同図aに於て、C1及びC6の平均値は他のC2
C5に比べh値が15〜20低く、150を下廻つて不良
と誤判別されたものが16箱あつた。C2〜C5では
誤判別は無かつた。 次に本発明の補正値20mVをC1及びC6に加えた
場合はbに見る通りC1〜C6の全缶列がほぼ同じ
平均値を示し、誤判別はC6に於て、わずか2箱
となつた。 ところで、ピンホール等で完全に缶内圧が0cm
Hgとなつたもの、あるいは変敗によるガス発生
で正圧膨張となつた不良品ではh値が120mV以
下となるので、これを正常品として合格させてし
まう誤判別の危険は認められなかつた。 次にこれを実ラインに用いた場合の検証データ
を表1に示す。
(Industrial Application Field) The present invention relates to a device for non-destructively testing the internal pressure of sealed containers such as bottles and canned goods, and particularly relates to a device for non-destructively testing the internal pressure of sealed containers such as bottles and canned goods. This invention relates to the improvement of a device that can be inspected from the ground up. (Prior art) Canned food and beverages, except for special cases such as carbonated beverages, are generally packaged in order to prolong the shelf life of the contents.
It is filled in a reduced pressure state with a gauge pressure of about 30cmHg,
If there is a leak due to a pinhole in the container, the vacuum pressure will drop or the so-called expansion canister will be pressurized to positive pressure due to the inflow of outside air or the generation of carbon dioxide or hydrogen gas due to deterioration of the contents. It may happen. Therefore, a normal vacuum can has a concave lid surface, while a defective can has a flat or convex surface. In order to automatically detect such deformation of defective cans, the method of measuring the degree of unevenness of the can lid as a change in inductance of an electromagnetic coil has traditionally been a method of inspecting a single can while it is being conveyed on a conveyor. have been put into practical use in various ways. Cardboard boxes are electrically insulating and magnetically non-magnetic, so there is nothing electromagnetically, so it is possible to inspect multiple cans packed in a cardboard box, and this has been achieved. The method and device for this purpose were developed by the present inventors, and
It is disclosed in Publication No. 25170. The principle of these inspection methods is as shown in FIG.
The distance to the lid surface is measured at multiple points using the eddy current distance meter 3 placed at the closest position to the center B of the lid surface, and the distance A is a certain distance away from the center B of the lid surface in opposite directions. , when the distances at points C are a and c, the degree of unevenness h of the lid surface is determined by the calculation h=b-(a+c)/2 in the arithmetic processing unit 4, and the larger h is, the greater the reduced pressure is. Therefore, this is determined to be a good product, and one with a small h is determined to be a defective product, and an output signal d is sent to the next processing process.
is emitting. (Problems to be Solved by the Invention) The measurement points A, B, and C are not geometric points, but are areas with a certain extent, and the corresponding distances a, b, and c are in this area. is the average value. It is because sensor 3 has a certain size,
Moreover, the magnetic lines of force emitted by the sensor 3 have a property of expanding with distance. Therefore, the distances a, b, and c are additively influenced by the convex portions of the seaming portions 2b and 2b' between the can body and the lid.
As the conveyor 1 advances, the output signal e of the sensor 3 becomes such that the seaming portions 2b, 2b' have a wide width and gently protrude as shown in FIG. Furthermore, when the cans are arranged and stored in a cardboard box, the seams of adjacent cans are in contact with each other, and the sensor output e
As shown in FIG. 2, the protrusion of the seaming portion is about twice as high. Therefore, the calculated degree of unevenness h appears to have a large value due to the presence of adjacent cans. Now, when cans stored in a cardboard box are placed on a conveyor with the lid of the box closed with glue, and the pressure inside the can is tested from the outside of the box by checking the unevenness of the can lid, one of the rows of cans inside the box is placed on the conveyor. Among the cans in the front row and the last row in the direction of travel, adjacent cans are only on one side. Therefore, as shown in Fig. 2, the sensor output e is such that only the convexity of one of the seams has expanded, compared to the large number of cans in the middle row.
For the cans in the front row and the last row, the value of h was measured to be relatively low, and there was an inconvenience that normal non-defective products were mistakenly judged as defective products and rejected. As shown in Figure 3, the structure of a cardboard box is such that when storing a total of 30 beverage cans in 5 rows and 6 columns, the inner flap 7 that is folded in from the side and serves as the glue margin is larger than the box size. Because it is short, the rows at both ends are stored without any looseness, but in the middle row there is a slack 8, 8' equal to the thickness of one piece of cardboard paper at the front and back.
The rows of cans are disordered, and the distance between adjacent cans can be up to 5 mm. As the distance between adjacent cans increases, as shown in Fig. 4, the protrusion of the detected seaming portion gradually decreases, resulting in a shape similar to when there are no adjacent cans.
It becomes increasingly easy to misidentify. Furthermore, due to the demand for economical cost reduction, there is a trend to use lighter corrugated paperboard, which makes boxes more easily deformed, which not only impairs work efficiency due to frequent erroneous rejections, but also increases mistrust of inspection equipment. There is a risk of inviting An object of the present invention is to eliminate such inconveniences and to obtain an internal pressure test of a sealed container with less erroneous ejection. Another object of the present invention is to provide a device which, like the above-mentioned object, has fewer errors and rejections even when a lower quality paper is used for the corrugated box. (Means for Solving the Problem) The sealed container internal pressure inspection method of the present invention uses a position sensor disposed at the most recent position above the conveyor while conveying a box containing sealed containers on a conveyor. , the position of the container lid is measured at three points: one point at the center of each container lid inside the box from outside the box, and two points spaced a certain distance apart with this point as a symmetrical point.
In a method of inspecting the internal pressure of a sealed container by measuring the degree of unevenness of the lid surface based on the difference between the average measured value of a point and the measured value of one point in the center, For the first sealed container and the last sealed container in the box, a preset correction value is applied to the difference between the average measurement value of the two points on the lid of the sealed container and the measurement value of one point in the center. are added to obtain the unevenness degree value, and for the sealed container in the middle part,
Average measurement value of the above two points of the sealed container lid and 1 at the center
The difference between the measured value at a point is taken as an unevenness degree value, and by comparing the unevenness degree value of each sealed container with a preset standard unevenness degree value, it is determined whether the internal pressure of each sealed container is good or bad. The above-mentioned problem has been solved by a technical means characterized by: The sealed container internal pressure testing device for carrying out this method is placed at a predetermined position immediately before the transport device that transports the packed sealed container, and responds to the measurement start signal obtained from the detection signal at the tip of the box. Therefore, there is a position sensor that detects the position of the lid of the sealed container at regular intervals, a register that temporarily stores the position information sequentially input from the position sensor, and a point at the center of the container lid that is read from this register. An arithmetic circuit that calculates the degree of unevenness from the measured values of a set of three points, and two points spaced a certain distance apart with this point as a symmetrical point, and a value to be added to the first sealed container and the last sealed container. a numerical value setter; an addition circuit that adds the output of the numerical value setter to the calculated output only for the first sealed container and the last sealed container based on the detection signal at the tip of the box; The device is characterized in that it includes a comparison circuit that compares the degree value with a reference value. (Function) FIG. 5 shows the correlation between the can internal pressure and the detected apparent unevenness degree h of the lid surface depending on the presence or absence of adjacent cans. In the figure, curve a shows a case where there are adjacent cans on both sides, curve b shows a case where there is a can only on one side, and curve c shows a case where there is no adjacent can. The horizontal axis represents the pressure inside the can in terms of the height of the mercury column, and the vertical axis represents the value of h in mV, which is the sensor output voltage. As is clear from the figure, curves a, b, and c are shifted in parallel by 20 mV in the vertical axis direction. Therefore, by adding an appropriate correction of 20 to 40 mV to the detected value of h for the first and last row of cans in the row of cans in the box, it becomes possible to test all the cans in the box with fewer misclassifications. . (Example) An example of the present invention is shown in FIG. Generally, canned goods are stored in a cardboard box in a multi-row, multi-column arrangement, but the conventional device and the device of the present invention also have a sensor and a storage device for each row, and a calculation processing section, discrimination, and exclusion control section. are shared. Therefore, to simplify the explanation, it can be assumed that the same device operates in parallel as many times as there are rows of cans in the box, and in this embodiment, a box containing 6 cans per row will be explained as an example. . In FIG. 6, six test cans C 1 to C 6 are housed in a row in a cardboard box 101 and conveyed straight in the direction of an arrow 103 on a conveyor 102 . An eddy current distance sensor 104 placed at a fixed distance above the conveyor outputs a distance signal S 1 corresponding to the distance to the cans C 1 to C 6 via an amplifier 105 . The signal waveform is shown in Figure 2, which has already been explained for the first can C 1 , and the second can C 2 to 5.
Up to C 5 , the waveform for the last C 6 is left-right reversed and continues. On the other hand, as the conveyor 102 advances, the box 101
When the front end of the switch blocks the light beam of the photoelectric switch 106, the timing circuit 108 receives pulses for every 0.5 mm of conveyor movement emitted from the pulse transmitter 107 attached to the conveyor drive shaft, and internally the cans C 1 to C 6 , a read command pulse S2 corresponding to measurement points A, B, and C described in FIG. 1 is issued. The timing of generating this command pulse S2 can be determined by the distance from the front end of the box, since the center deviation with respect to the internal dimensions of the box 101 can be ignored. The analog/digital converter 109 converts the distance signal S 1 into a digital value in synchronization with the read command pulse S 2 and reads the digital value into the storage device 110 . Storage device 1
10 consists of three storage units M 1 , M 2 , and M 3 , which store the values of distances a, b, and c in FIG. 1, respectively. A, b, and c for the first can C1 are read, and at the same time as the reading of the c value is finished, the distance to the next second can is determined by the read command signal S3 issued from the timing circuit 108. The h value for the first can C1 is calculated until it is read. By command signal S 3 memory units M 1 , M 2 ,
The memory contents of M3 are read out, and the calculation block 111
given to. The adder 112 in the same block calculates (a+c). Next, the divider 113 divides (a+c)/2, and the subtracter 114 divides b−(a+
c)/2 to obtain an output signal S4 indicating the h value. The operation up to this point is the same as the conventional device. Next, the addition of correction values to can C 1 and can C 6 according to the present invention will be explained. A cycle counter 116 is provided in the correction value addition block 115 to determine whether it is the first can C1 or the last can C6 , and counts the readout signal S3 , and calculates the first and sixth cans. An output S 5 is obtained for the pulse, and this is used as an opening/closing signal for the gate 117. The correction value setter 118 is a digital switch type numerical value setter, and its output is connected to the gate 117. The gate 117 is opened by the gate opening/closing signal S5 for the first can C1 , and the correction signal S6 is output. get. Signal S 4 corresponding to can lid unevenness degree h and correction signal S 6
are added by the second adder 119 to obtain S7 as a corrected unevenness degree signal. Since the gate opening/closing signal S5 is not generated for the second cans C2 to C5 , no correction value is added and the output signal S7 is the signal S4 that passes through as is. Therefore, it operates exactly the same as the conventional device. Finally, when the reading for the last can C6 is completed, the counter 116 again issues the gate opening/closing signal S5 , and the correction value addition block 115 operates to add a correction value in the same manner as for the can C1 described above. Although these arithmetic operations were performed using 10-bit digital values and were constructed using logic integrated circuit elements, it is of course possible to perform similar operations using a microcomputer and a program. The signal comparator 121 compares and discriminates the value S 8 actively set in the discrimination level setter 120 and the unevenness degree signal S 7 , issues a defective signal under the condition of S 7 < S 8 , and stores it in the reject memory 122 at one time. Remember. The rear end of the cardboard box 101 is connected to the photoelectric switch 106.
When detected, a case rear end signal S9 is generated from the timing circuit 108, the gate 123 is opened, and the defective signal is synchronized with the movement of the conveyor in the delay circuit 124, and then amplified by the power amplifier 125 and rejected. A signal S10 is issued to drive the device, and the quality inspection for one box is completed. (Effect of the invention) Thirty fruit juice beverage cans with a diameter of 53 mm and a content of 250 grams were arranged and stored in a cardboard box in five rows and six columns, and all the cans had an internal pressure of 28 to 34 cmHg gauge pressure. We prepared 300 boxes of a certain normal product.
This is compared to the conventional case without correction addition, the front end,
The distribution of the h value when 20 mV is added as a correction value to the detected value of the can at the rear end is shown in Figure 7 a and b, respectively.
Shown below. The horizontal axes C 1 to C 6 in the figure each indicate the rows of cans from the front row to the last row, and the vertical axis h indicates the degree of unevenness of the can lid surface described above. The broken line at h=150 indicates the defective determination level, and values below this level are determined to be defective and rejected. This value corresponds to a low vacuum can with a gauge pressure of 10 cmHg. In Figure a, the average value of C 1 and C 6 is the same as that of other C 2 ~
The h value was 15 to 20 lower than that of C 5 , and there were 16 boxes that were below 150 and were incorrectly determined to be defective. There were no misclassifications for C 2 to C 5 . Next, when the correction value of 20 mV of the present invention is applied to C 1 and C 6 , as shown in b, all the can rows of C 1 to C 6 show almost the same average value, and the misclassification is only slight in C 6 . It became 2 boxes. By the way, the pressure inside the can is completely 0cm due to pinholes etc.
For defective products that have become Hg or that have undergone positive pressure expansion due to gas generation due to deterioration, the h value will be less than 120 mV, so there was no risk of misjudgment that would result in passing these as normal products. Next, Table 1 shows verification data when this was used on an actual line.

【表】 段ボール箱の紙質は従来から用いられて来たも
ので、平方メートル当り180グラムのものと、よ
り安価な150グラムのものについても比較したが、
いずれについても上記表で明らかな通り、良品の
誤排斥は10分の1以下となり、排斥品の再検査の
手間が大巾に減少した。 更に安価な段ボール箱を用いても、ほゞ同程度
の誤排斥率であり、経済的効果は極めて大きなも
のとなる事が確認された。
[Table] The paper quality of cardboard boxes has traditionally been used, and we compared the paper quality of 180 grams per square meter and the cheaper 150 grams per square meter.
In both cases, as is clear from the table above, the number of false rejects of non-defective products was reduced to less than one-tenth, and the time and effort required to re-inspect rejected products was greatly reduced. It was confirmed that even if a cheaper cardboard box was used, the false rejection rate would be approximately the same, and the economic effect would be extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の検査方法の原理説明図、第
2図は缶蓋の検出プロフイルの説明図、第3図は
函詰めされた缶の状態の説明図、第4図は隣合う
缶との距離の変化に伴う検出プロフイルの変化の
説明図、第5図は隣合う缶の有無による検出出力
の差を示すグラフ、第6図はこの発明に用いられ
る検出装置の1実施例を示すブロツク図、第7図
はこの発明装置と従来装置との出力の比較図であ
る。 1……コンベヤ、2……缶、3……渦電流式距
離計、7……段ボール箱の内側フラツプ、8……
ゆるみ、101……段ボール箱、102……コン
ベヤ、104……渦電流式距離センサ、105,
125……増巾器、106……光電スイツチ、1
07……パルス発信機、108……タイミング回
路、109……アナログ、デジタル変換器、11
0……記憶装置、111……演算ブロツク、11
2,119……加算器、113……割算器、11
4……減算器、115……補正値加算ブロツク、
116……サイクリツクカウンタ、117,12
3……ゲート、118……補正値設定器、120
……判別レベル設定器、121……信号比較器、
122……リジエクトメモリー、124……遅延
回路。
Fig. 1 is an explanatory diagram of the principle of the inspection method of the present invention, Fig. 2 is an explanatory diagram of the detection profile of a can lid, Fig. 3 is an explanatory diagram of the state of a packed can, and Fig. 4 is an explanatory diagram of the state of cans packed in a box. FIG. 5 is a graph showing the difference in detection output depending on the presence or absence of adjacent cans. FIG. 6 is a block diagram showing one embodiment of the detection device used in the present invention. 7 are comparison diagrams of the outputs of the device of this invention and the conventional device. 1...Conveyor, 2...Can, 3...Eddy current distance meter, 7...Inner flap of cardboard box, 8...
Looseness, 101...Cardboard box, 102...Conveyor, 104...Eddy current distance sensor, 105,
125...Amplifier, 106...Photoelectric switch, 1
07... Pulse transmitter, 108... Timing circuit, 109... Analog, digital converter, 11
0...Storage device, 111...Arithmetic block, 11
2,119... Adder, 113... Divider, 11
4...Subtractor, 115...Correction value addition block,
116...Cyclic counter, 117, 12
3...Gate, 118...Correction value setter, 120
...Discrimination level setter, 121...Signal comparator,
122... Reject memory, 124... Delay circuit.

Claims (1)

【特許請求の範囲】 1 密封容器が箱詰された箱をコンベヤで搬送し
ながら、該搬送装置の上方の直近定位置に配置さ
れた位置センサーにより、箱外から箱内の各密封
容器蓋の中心部の1点と該点を対称点として一定
間隔離れた2点との3点で密封容器蓋の位置測定
を行い、前記離れた2点の平均測定値と中心部の
1点の測定値との差によつて蓋面の凹凸度合を測
定して密封容器の内圧を検査する方法において、
搬送方向に並んで配置されている箱内の密封容器
の先頭の密封容器及び末尾の密封容器について
は、密封容器蓋の前記2点の平均測定値と中心部
の1点の測定値との差に、予め設定された補正値
を加算して凹凸度合値とし、中間部の密封容器に
ついては、密封容器蓋の前記2点の平均測定値と
中心部の1点の測定値との差を凹凸度合値とし、
各密封容器の前記凹凸度合値と予め設定された基
準凹凸度合値とを比較することにより、各密封容
器の内圧良否を判別するようにしたことを特徴と
する密封容器内圧検査方法。 2 箱詰された密封容器を搬送する搬送装置の直
近定位置に配置され、箱の先端の検出信号によつ
て得られる測定開始信号によつて一定の間隔で密
封容器の蓋の位置を検出する位置センサーと、該
位置センサーから順次入力される位置情報を一次
記憶するレジスタと、このレジスタから読出され
た密封容器蓋の中心部の1点と該点を対称点とし
て一定間隔離れた2点との3点を一組とする測定
値から凹凸度合を算出する演算回路と、先頭の密
封容器及び未尾の密封容器に加算する値を設定す
る数値設定器と、前記箱の先端の検出信号によつ
て先頭の密封容器及び末尾の密封容器にのみ前記
算出された出力に前記数値設定器の出力を加算す
る加算回路と、逐次入力される凹凸度合値を基準
値と比較する比較回路を備えていることを特徴と
する密封容器内圧検査装置。
[Scope of Claims] 1. While a box packed with sealed containers is transported by a conveyor, a position sensor placed at the most predetermined position above the transport device detects the lids of each sealed container inside the box from outside the box. The position of the sealed container lid is measured at three points: one point in the center and two points spaced a certain distance apart with this point as a symmetrical point, and the average measurement value of the two distant points and the measurement value of one point in the center are measured. In the method of testing the internal pressure of a sealed container by measuring the degree of unevenness of the lid surface based on the difference between
For the first sealed container and the last sealed container in the box arranged side by side in the conveyance direction, the difference between the average measurement value at the two points on the lid of the sealed container and the measurement value at one point in the center. A preset correction value is added to the unevenness degree value, and for the sealed container in the middle, the difference between the average measurement value of the two points on the lid of the sealed container and the measurement value of one point in the center is calculated as the unevenness degree value. As a degree value,
A sealed container internal pressure testing method, characterized in that the internal pressure of each sealed container is determined whether the internal pressure is good or bad by comparing the unevenness degree value of each sealed container with a preset reference unevenness degree value. 2. It is placed in the immediate vicinity of the transport device that transports packed sealed containers, and detects the position of the lid of the sealed container at regular intervals based on the measurement start signal obtained from the detection signal at the tip of the box. a position sensor, a register that temporarily stores position information sequentially inputted from the position sensor, a point at the center of the sealed container lid read from this register, and two points spaced apart by a certain distance with the point as a symmetrical point. an arithmetic circuit that calculates the degree of unevenness from a set of three measured values; a numerical setting device that sets the value to be added to the first sealed container and the remaining sealed containers; Therefore, only the first sealed container and the last sealed container are provided with an addition circuit that adds the output of the numerical value setter to the calculated output, and a comparison circuit that compares the successively input unevenness degree values with a reference value. A sealed container internal pressure testing device characterized by:
JP13819187A 1987-06-03 1987-06-03 Internal pressure inspecting instrument for hermetically sealed container Granted JPS63302337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13819187A JPS63302337A (en) 1987-06-03 1987-06-03 Internal pressure inspecting instrument for hermetically sealed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13819187A JPS63302337A (en) 1987-06-03 1987-06-03 Internal pressure inspecting instrument for hermetically sealed container

Publications (2)

Publication Number Publication Date
JPS63302337A JPS63302337A (en) 1988-12-09
JPH0587768B2 true JPH0587768B2 (en) 1993-12-17

Family

ID=15216206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13819187A Granted JPS63302337A (en) 1987-06-03 1987-06-03 Internal pressure inspecting instrument for hermetically sealed container

Country Status (1)

Country Link
JP (1) JPS63302337A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454750B2 (en) 2008-03-05 2014-03-26 東洋製罐株式会社 Internal pressure inspection method and apparatus for canned food
JP5707932B2 (en) * 2010-12-27 2015-04-30 東洋製罐株式会社 Sealed container inspection method and sealed container inspection device
JP2012189374A (en) * 2011-03-09 2012-10-04 Daiwa Can Co Ltd Can internal pressure determination method
CN103196627B (en) * 2013-03-28 2015-03-18 广州坚诺机械设备有限公司 Device and method for fast and nondestructive testing of vacuum degree of full container load (FCL) container
CN103196615B (en) * 2013-03-28 2015-03-18 广州坚诺机械设备有限公司 Container pressure fast nondestructive test device and test method
JP6352765B2 (en) * 2014-10-14 2018-07-04 日清食品株式会社 Can body top surface shape detection system.
WO2017065036A1 (en) * 2015-10-14 2017-04-20 東洋製罐株式会社 Internal pressure inspection system

Also Published As

Publication number Publication date
JPS63302337A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
US3751972A (en) Leak detector for sealed containers
US8922226B2 (en) Production line detection apparatus and method
US3392829A (en) Container locating and vacuum sensing system
US6335960B2 (en) Detection of variable manufacturing tolerance packages utilizing x-rays
JPH0587768B2 (en)
US4209387A (en) Contour and width gauge for paneled containers
CN101960279B (en) Method and equipment for inspecting internal pressure of can of canned goods
KR101582338B1 (en) Sealed container internal pressure inspection device and internal pressure inspection method
US6237418B1 (en) Method and apparatus for detecting misapplied caps on containers
US5033287A (en) Method for inspecting a sealing property of a plastic container
US4751386A (en) Lean detector for determining the offset of an axis of symmetry of a container from its norm
JPWO2011048781A1 (en) Container inspection device and container inspection method
US5566569A (en) Detection of unpressurized moving containers
JP2005009931A (en) Seal fault inspection apparatus
JP6526978B6 (en) Laser inspection system
JPH057654B2 (en)
JP3409692B2 (en) Can punching inspection system
JP4252411B2 (en) Sealed can inspection method and inspection apparatus, and sealed can case
JPH1194685A (en) Method and device for internal pressure inspection of sealed container
US5303169A (en) Method for calibrating a wall thickness inspection machine
JPS6363A (en) Packaging bag
JP2901790B2 (en) Inspection device for displacement detection device
JPH08219915A (en) Inner pressure inspection equipment for can
EP1424286B1 (en) Apparatus and method for checking number of aluminium packaging sheets packed into box
JP6820461B2 (en) Internal pressure inspection system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees