JPH0587393B2 - - Google Patents

Info

Publication number
JPH0587393B2
JPH0587393B2 JP7483085A JP7483085A JPH0587393B2 JP H0587393 B2 JPH0587393 B2 JP H0587393B2 JP 7483085 A JP7483085 A JP 7483085A JP 7483085 A JP7483085 A JP 7483085A JP H0587393 B2 JPH0587393 B2 JP H0587393B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive
printing
force
hammer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7483085A
Other languages
Japanese (ja)
Other versions
JPS61233559A (en
Inventor
Tadayasu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7483085A priority Critical patent/JPS61233559A/en
Publication of JPS61233559A publication Critical patent/JPS61233559A/en
Publication of JPH0587393B2 publication Critical patent/JPH0587393B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires
    • B41J2/295Actuators for print wires using piezoelectric elements

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電歪または圧電素子を駆動源とするプ
リンタ用印字ハンマに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a printing hammer for a printer using an electrostrictive or piezoelectric element as a driving source.

(従来の技術とその問題点) 従来プリンタ用印字ハンマとして電磁石あるい
は永久磁石を用いたものが広く使われているが、
これらのものは銅損や鉄損の発生により電気・機
械エネルギ変換効率が低い問題がある。それに対
しエネルギ効率の高いものとして電歪素子あるい
は圧電素子を用いたハンマが考えられている。こ
の方式は電歪あるいは圧電素子に電圧を与えるこ
とによる伸縮動作を利用してハンマを動作するも
のであり、従来の電磁方式に比べエネルギ効率が
3〜4倍も向上できることが特長である。従来提
案されている印字ハンマとしては第5図に示す特
開昭53−113625号公報記載の機械がある。第5図
において、印字方向に湾曲した湾曲ばね27の両
端は保持要素28に固定され、また保持要素28
の一方は圧電結晶装置29に坐着され、他方は固
定保持部30に坐着する。この構造において、圧
電結晶装置29の励起により湾曲ばね27の軸方
向に変位が伝達され、湾曲ばね27の中央部にた
わみが生じる。そのたわみの量は軸方向の変位に
対して増幅されており、そのたわみによて湾曲ば
ね27に設けられた印字針31を前方に移動させ
印字動作を行なう。このような機構は圧電結晶装
置29の微少変位を容易に拡大でき、ハンマに必
要な所要変位量が得られるが、圧電結晶装置29
をはじめとする電歪あるいは圧電素子はジルコ
ン・チタン酸鉛に代表されるようなセラミツク材
であり、圧縮力で20Kg/mm2程度の強度がある一
方、引張り力には極めて弱く、引張力はたかだか
1Kg/mm2の強度である。このため、前記機構にお
いては駆動時において圧電結晶装置29自身の重
さを含む機構系のマスにより慣性力を生じて圧電
装置29に引張り力が作用する。この引張り力は
印加電圧を停止したときに発生するが、電圧印加
中にも湾曲ばね機構の振動系によつて発生する。
印加電圧停止時には抵抗挿入等の手段により復帰
動作を緩和して引張り力を減少する方法は可能で
あるが、この実施例においては通電中の引張り力
の減少は困難である。
(Conventional technology and its problems) Conventionally, printing hammers using electromagnets or permanent magnets have been widely used for printers, but
These devices have a problem of low electrical/mechanical energy conversion efficiency due to copper loss and iron loss. On the other hand, a hammer using an electrostrictive element or a piezoelectric element is considered to be highly energy efficient. This method operates the hammer using electrostriction or expansion/contraction motion by applying a voltage to a piezoelectric element, and its feature is that it can improve energy efficiency by three to four times compared to conventional electromagnetic methods. As a printing hammer that has been proposed in the past, there is a machine shown in FIG. 5 and described in Japanese Patent Application Laid-Open No. 113625/1983. In FIG. 5, both ends of a curved spring 27 curved in the printing direction are fixed to a holding element 28, and the holding element 28
One side is seated on the piezoelectric crystal device 29, and the other side is seated on the fixed holding part 30. In this structure, displacement is transmitted in the axial direction of the curved spring 27 by excitation of the piezoelectric crystal device 29, and a deflection occurs in the center of the curved spring 27. The amount of deflection is amplified with respect to the displacement in the axial direction, and the deflection causes the printing needle 31 provided on the curved spring 27 to move forward to perform a printing operation. Such a mechanism can easily magnify the minute displacement of the piezoelectric crystal device 29 and obtain the required amount of displacement necessary for the hammer, but the piezoelectric crystal device 29
Electrostrictive or piezoelectric elements such as are made of ceramic materials such as zircon and lead titanate, and have a compressive strength of about 20 kg/ mm2 , but are extremely weak in tensile force. The strength is at most 1Kg/ mm2 . Therefore, when the mechanism is driven, an inertial force is generated by the mass of the mechanical system including the weight of the piezoelectric crystal device 29 itself, and a tensile force acts on the piezoelectric device 29. This tensile force is generated when the applied voltage is stopped, but is also generated by the vibration system of the curved spring mechanism while the voltage is being applied.
When the applied voltage is stopped, it is possible to reduce the tensile force by relaxing the return operation by inserting a resistor or the like, but in this embodiment, it is difficult to reduce the tensile force while the current is flowing.

また印字ハンマはプラテン上の印字用紙、イン
クリボンを打撃するので、この種のハンマは慣性
力の最大の時点で打撃することが印字にとつて良
好となるが、このときプラテンにより印字針31
の移動量及びその印字針31と接合された湾曲ば
ね27の変位が制限される一方圧電結晶装置29
の慣性力が作用するため湾曲ばね27は振動の2
次モードに近いS字状に変形される。この結果、
湾曲ばね27は圧電結晶装置29にとつて緩衝材
の如き作用をおこし圧電結晶装置29には引張り
力が作用する。さらに、プリンタ用ハンマは製作
時、調整時においてプラテンなしの場合やプラテ
ンと印字針間の変更があり、特にプラテンなしの
場合にはさらに大きな引張り応力が生じ、この結
果圧電結晶装置29等の圧電体は破壊される問題
がある。このような問題は第6図に示すように従
来の提案されている特開昭59−45165号公報記載
のインパクト印字ヘツドのような印字針又はワイ
ヤをフライト(自由飛行)させるフライト方式に
は大きな問題となる。第6図において圧電体32
は一端が取付部材3に固着され、他端は力伝達部
材34が固着され、また力伝達部材34上にはワ
イヤーガイド35に貫通され、コイルばね36が
取付けられたワイヤ37が装着されている。この
構造において、圧電体32の励起によりワイヤ3
7には撃力が作用してワイヤ37はフライトし、
印字後コイルばね35の復帰力により元の位置に
戻る。このうなフライト方式ではワイヤ37に与
える撃力が必である反面、圧電体32には大きな
引張り力が作用し破に至らしめる問題がある。例
えば圧電体32に静的に電圧を与えたときの伸び
又は変位をX1とし、圧電体32、ワイヤ37等
の駆動系のマスをMとし、復帰ばね定数をKとす
ると、振動理論でも明らかなように動的な変位
X2はX21(1−coswt)、w=√となり、
X2は最大時にX1の2倍の値となる。駆動系には
一般にダンパーが入るためこれを考慮しても1.4
〜1.6倍の値となり、その差が圧電体32に作用
する引張り力となる。さらに具体的に説明すれば
圧電体32の長さがl=9mm、断面積がS=6mm2
で、ヤング率E=5000Kg/mm2で、静的な変位X1
=0.01mmでは駆動時に圧電体32に加わる引張り
応力はσ=E(0.6〜0.41)/l=3〜2Kg/mm2
なり引張り強さを越えてしまい破壊される。
Also, since the printing hammer hits the printing paper and ink ribbon on the platen, it is better for printing to hit this type of hammer at the point where the inertial force is maximum.
The amount of movement of the piezoelectric crystal device 29 and the displacement of the curved spring 27 connected to the printing needle 31 are limited.
Due to the inertial force of
It is deformed into an S-shape close to the next mode. As a result,
The curved spring 27 acts like a buffer for the piezoelectric crystal device 29, and a tensile force acts on the piezoelectric crystal device 29. Furthermore, when manufacturing and adjusting printer hammers, there are cases where there is no platen or the distance between the platen and the printing needle is changed, and especially when there is no platen, even greater tensile stress occurs, resulting in the piezoelectricity of the piezoelectric crystal device 29, etc. The problem is that the body is destroyed. As shown in Fig. 6, this problem is a big problem with the flight system that flies the printing needle or wire (free flight), such as the impact printing head described in Japanese Patent Application Laid-Open No. 59-45165. It becomes a problem. In FIG. 6, the piezoelectric body 32
One end is fixed to the mounting member 3, and the other end is fixed to a force transmitting member 34, and a wire 37 is mounted on the force transmitting member 34, passing through a wire guide 35 and having a coil spring 36 attached thereto. . In this structure, the wire 3 is
The impact force acts on 7 and the wire 37 flies,
After printing, it returns to its original position due to the restoring force of the coil spring 35. In such a flight method, it is necessary to apply an impact force to the wire 37, but on the other hand, there is a problem that a large tensile force acts on the piezoelectric body 32, which may lead to breakage. For example, if the elongation or displacement when a static voltage is applied to the piezoelectric body 32 is X 1 , the mass of the drive system of the piezoelectric body 32, wire 37, etc. is M, and the return spring constant is K, it is clear from vibration theory. dynamic displacement like
X 2 becomes X 2 = 1 (1-coswt), w = √,
X 2 becomes twice the value of X 1 at the maximum. Since a damper is generally included in the drive system, even if this is taken into account, it is 1.4
The value becomes ~1.6 times larger, and the difference becomes the tensile force acting on the piezoelectric body 32. More specifically, the length of the piezoelectric body 32 is l = 9 mm, and the cross-sectional area is S = 6 mm 2
So, Young's modulus E = 5000Kg/mm 2 and static displacement X 1
= 0.01 mm, the tensile stress applied to the piezoelectric body 32 during driving becomes σ = E (0.6 to 0.4 1 )/l = 3 to 2 Kg/mm 2 , which exceeds the tensile strength and is destroyed.

(発明の目的) 本発明の目的は上述の従来の欠点である電歪又
は圧電素子の引張り応力を低減し信頼性ある圧電
式ハンマを提供することにある。
(Objective of the Invention) An object of the present invention is to provide a reliable piezoelectric hammer that reduces the tensile stress of the electrostrictive or piezoelectric element, which is the drawback of the conventional art described above.

(発明の構成) 本発明によれば電歪あるいは圧電素子を駆動源
とする圧電式プリンタハンマにおいて、前記駆動
源となる第1の電歪あるいは圧電素子に検出器と
駆動源となることを兼用した第2の電歪あるいは
圧電素子を接合し、前記第1の素子に作用する力
を第2の素子で検出し、第1の素子の引張り力の
発生時に第2の素子が励起されることを特徴とす
る圧電式ハンマが得られる。
(Structure of the Invention) According to the present invention, in a piezoelectric printer hammer using an electrostrictive or piezoelectric element as a driving source, the first electrostrictive or piezoelectric element serving as the driving source serves both as a detector and as a driving source. a second electrostrictive or piezoelectric element, the second element detects the force acting on the first element, and the second element is excited when a tensile force of the first element is generated. A piezoelectric hammer is obtained.

(発明の作用・原理) 本発明は上述の構成をとることにより従来の問
題を解決した。電歪または圧電素子は電圧を与え
ることにより伸縮動作をおこす一方で、逆に力を
与えることによつて電荷又は電圧を生じるもので
ある。この力による電荷発生の原理は加速度計等
の検出器に応用されている。本発明では、印字ハ
ンマ機駆動系を動作させる電歪あるいは圧電素子
に検出器としての電歪あるいは圧電素子を接合す
る。動作時においては印字ハンマ駆動系はマスと
ばねにる振動系を形成し、その慣性力により駆動
源となる電歪あるいは圧電素子に圧縮力と引張り
力が作用する。そのとき前記検出器としての素子
はその慣性力により電荷又は電圧を生じ電歪ある
いは圧電素子に作用する力を検出できる。電歪あ
るいは圧電素子は引張り力には極めて弱いため、
検出器としての素子で引張り力となる電圧波形を
感知したとき、その信号によつてフリツプフロツ
プとワンシヨツトマルチ回路により駆動回路を動
作させる。この駆動回路により前記の検出器とし
ての電歪あるいは圧電素子を動作させる。このと
き検出器としての素子は前記の駆動源となる第1
の素子に対して第2の駆動素子となり第2の素子
の伸びによつて第1の素子に作用する引張り力を
減少し、素子の破壊を妨止する。
(Operation/Principle of the Invention) The present invention has solved the conventional problems by adopting the above-described configuration. Electrostrictive or piezoelectric elements cause expansion and contraction by applying a voltage, and conversely, generate electric charges or voltage by applying a force. This principle of charge generation by force is applied to detectors such as accelerometers. In the present invention, an electrostrictive or piezoelectric element as a detector is bonded to an electrostrictive or piezoelectric element that operates a printing hammer machine drive system. During operation, the printing hammer drive system forms a vibration system using masses and springs, and its inertial force exerts compressive force and tensile force on the electrostrictive or piezoelectric element serving as the drive source. At this time, the element serving as the detector generates a charge or voltage due to its inertial force, and can detect the force acting on the electrostrictive or piezoelectric element. Electrostrictive or piezoelectric elements are extremely weak against tensile force, so
When a voltage waveform that is a tensile force is sensed by a detector element, the signal operates a drive circuit using a flip-flop and a one-shot multi-circuit. This drive circuit operates the electrostrictive or piezoelectric element as the detector. At this time, the element serving as the detector is the first
The second driving element acts as a second driving element for the element, reduces the tensile force acting on the first element due to the elongation of the second element, and prevents the element from breaking.

(実施例) 以下本発明の実施例を図面を参照して説明す
る。第1図は本発明の一実施例である圧電式ハン
マと回路構成を示す図であり、第2−a図から第
2−g図までは第1図の使用形態を説明するため
の動作波形図である。第1図及び第2−a図より
第2−g図において、駆動源となる電歪あるいは
圧電素子1、(これを以降第1の素子とよぶ)は
他の電歪あるいは圧電素子2(これを以降第2の
素子とよぶ)に接合されベース3上に固定され
る。また第1の素子1の他端は座4を有する印字
針5に接触している。また印字針5はガイド6に
よりガイドされ、座4とガイド6間のばね7が設
けられている。一方、回路からみると第1の素子
1は駆動回路8に直結され、また第2の素子2は
他の駆動回路9と検出器10、及びパルス発生回
路11に接続されている。このような構成におい
て、駆動回路8によつて第2−a図のような印字
電圧12が第1の素子1に与えられると第1の素
子は第2−b図の破線に示す動作13となる。こ
の動作13は第1の素子1自身の動さ及び印字針
5、座4の重さを含むマスと第1の素子1の剛性
並びにばね7のばね定数により振動系が構成さ
れ、印加電圧12の応答として正弦波状の変位動
作13となる。このとき第1の素子1の速度の最
大時に印字針5、座4は第1の素子1を離れフラ
イト動作を行なう。印字針5はその後前方のプラ
テン、印字用紙、インクリボン(図示していな
い)を打撃し、印字動作が行なわれる。一方、こ
のとき、第1の素子1と第2の素子2には素子自
身の動さのため慣性力を生じ圧縮、引張りが作用
する。そこで第2の素子2は第2−c図に示す慣
性力波形14を検出する。その慣性力波形14は
正負の波形となり、正は第1の素子1及び第2の
素子2の圧縮力を示し、負は引張り力を示してい
る。前記したように電歪あるいは圧電素子は引張
り力に極めて弱いため、そこで慣性力波形14が
負の引張り力を示すのを検出器10で検出したと
きパルス発生回路11で第2−d図に示すパルス
15を発生させ駆動回路9を動作させる。このと
き、検出器は第1の素子1の駆動信号に同期さ
れ、1回の印字動作では第2の素子2の慣性力波
形14の検出後は駆動回路9の電圧を検出しな
い。この手段はフリツプフロツプ、ワンシヨツト
マルチ等の手段にり製作できる。次に第2の素子
2は第2−e図に示す印加電圧で動作され、その
動作は第2−5図に示す変位波形17となり、か
つその慣性力は第2−g図に示す慣性力波形18
となる。この第2の素子2の励起による動作と前
記の動作波形13、慣性力波形14が重ね合わさ
れ、動作波形19となり、この結果慣性力による
引張り力が減少された第1と第2の素子にる慣性
力波形20が得られる。ここで第2の素子2の励
起は慣性力波形14と対応させるため抵抗、又は
インダクタンス等を挿入して時定数を変えておく
ことが重要である。以上の第2の素子2は検出器
と駆動源を兼用しており、これにより電歪あるい
は圧電素子の引張り応力を低減し信頼性ある圧電
式ハンマが得られる。ここで、本発明では積層し
た電歪あるいは圧電素子を例示しているが、横効
果、縦効果のある単板の電歪又は圧電素子でも適
用でき同様の効果がある。
(Example) Examples of the present invention will be described below with reference to the drawings. Fig. 1 is a diagram showing a piezoelectric hammer and its circuit configuration as an embodiment of the present invention, and Figs. 2-a to 2-g show operating waveforms for explaining the usage pattern of Fig. 1. It is a diagram. 1 and 2-a to 2-g, an electrostrictive or piezoelectric element 1 (hereinafter referred to as the first element) serving as a driving source is connected to another electrostrictive or piezoelectric element 2 (hereinafter referred to as the first element). (hereinafter referred to as the second element) and fixed on the base 3. The other end of the first element 1 is in contact with a printing needle 5 having a seat 4. Further, the printing needle 5 is guided by a guide 6, and a spring 7 is provided between the seat 4 and the guide 6. On the other hand, when viewed from the circuit, the first element 1 is directly connected to a drive circuit 8, and the second element 2 is connected to another drive circuit 9, a detector 10, and a pulse generation circuit 11. In such a configuration, when the printing voltage 12 as shown in FIG. 2-a is applied to the first element 1 by the drive circuit 8, the first element performs the operation 13 shown by the broken line in FIG. 2-b. Become. In this operation 13, a vibration system is constructed by the mass including the movement of the first element 1 itself and the weight of the printing needle 5 and seat 4, the rigidity of the first element 1, and the spring constant of the spring 7, and the applied voltage 12 The response is a sinusoidal displacement motion 13. At this time, when the speed of the first element 1 is at its maximum, the printing needle 5 and the seat 4 leave the first element 1 and perform a flight operation. The printing needle 5 then strikes the front platen, printing paper, and ink ribbon (not shown), and a printing operation is performed. On the other hand, at this time, an inertial force is generated on the first element 1 and the second element 2 due to the movement of the elements themselves, and compression and tension are applied to the first element 1 and the second element 2. Therefore, the second element 2 detects the inertial force waveform 14 shown in FIG. 2-c. The inertial force waveform 14 has positive and negative waveforms, where positive indicates compressive force of the first element 1 and second element 2, and negative indicates tensile force. As mentioned above, electrostrictive or piezoelectric elements are extremely weak against tensile force, so when the detector 10 detects that the inertial force waveform 14 indicates a negative tensile force, the pulse generating circuit 11 generates a signal as shown in FIG. 2-d. A pulse 15 is generated to operate the drive circuit 9. At this time, the detector is synchronized with the drive signal of the first element 1, and does not detect the voltage of the drive circuit 9 after detecting the inertial force waveform 14 of the second element 2 in one printing operation. This means can be manufactured by means such as a flip-flop or a one-shot multi-layer. Next, the second element 2 is operated with the applied voltage shown in Fig. 2-e, and its operation becomes the displacement waveform 17 shown in Fig. 2-5, and its inertial force is the inertial force shown in Fig. 2-g. Waveform 18
becomes. The operation caused by the excitation of the second element 2, the operation waveform 13, and the inertial force waveform 14 are superimposed to form an operation waveform 19, and as a result, the tensile force due to the inertial force is reduced in the first and second elements. An inertial force waveform 20 is obtained. Here, in order to make the excitation of the second element 2 correspond to the inertial force waveform 14, it is important to change the time constant by inserting a resistance or inductance. The second element 2 described above serves both as a detector and as a driving source, thereby reducing the electrostrictive or tensile stress of the piezoelectric element and providing a reliable piezoelectric hammer. Here, in the present invention, a laminated electrostrictive or piezoelectric element is illustrated, but a single-plate electrostrictive or piezoelectric element having a transverse effect or a longitudinal effect can also be applied and the same effect can be obtained.

以上の本発明の他、第3図に示すような機械的
増幅機構を用いたハンマにも適用できる。第3図
において、第1の電歪あるいは圧電素子1と第2
の電歪あるいは圧電素子2が接合され、ベース2
1に取付けられる。また前記第1の素子1の他端
は第1の素子1の動作を伝達する手段22を介し
てレバーアーム23と接続される。またレバーア
ーム23とベース21とはもう一方の伝達手段2
4とに接続され、レバーアーム23の先端には梁
25を接続する。その梁25の他端はベース21
に接続され、かつ梁25の中央部には印字針26
が設けられている。このような構造において第1
の素子1の励起により動作がレバーアーム23に
伝達され、この原理で動作変位が拡大される。一
方、レバーアーム23に接続された梁25はその
軸方向に変位が与えられ、このとき梁25は座屈
理論の如く、中央部に最大たわみを生じ、その変
位量は梁25の軸方向の変位量より大きく拡大さ
れている。そこでその最大変位が得られる梁25
の中央部にある印字針26が前方へ移動し印字動
作を行なう。このように、第1の素子1の微少変
形を所要の変位量に増幅する方法は、その増幅機
構のマス、バネにより振動系を形成し、第1の素
子1に慣性力が作用する。第2の素子2はその慣
性力による引張り力を検出し、励起されその引張
り力を減少する。このような機構においても電歪
あるいは圧電素子の引張り応力を低減し、信頼性
ある圧電式ハンマが得られる。
In addition to the present invention described above, it can also be applied to a hammer using a mechanical amplification mechanism as shown in FIG. In FIG. 3, a first electrostrictive or piezoelectric element 1 and a second
The electrostrictive or piezoelectric element 2 is bonded to the base 2.
Attached to 1. The other end of the first element 1 is connected to a lever arm 23 via means 22 for transmitting the operation of the first element 1. Further, the lever arm 23 and the base 21 are connected to the other transmission means 2.
4, and a beam 25 is connected to the tip of the lever arm 23. The other end of the beam 25 is the base 21
, and a printing needle 26 is connected to the center of the beam 25.
is provided. In such a structure, the first
The motion is transmitted to the lever arm 23 by the excitation of the element 1, and the motion displacement is magnified on this principle. On the other hand, the beam 25 connected to the lever arm 23 is displaced in its axial direction, and at this time, the beam 25 causes maximum deflection at the center, as in the buckling theory, and the amount of displacement is the same as in the axial direction of the beam 25. It is enlarged to a greater extent than the amount of displacement. Beam 25 where the maximum displacement can be obtained
The printing needle 26 located at the center of the screen moves forward to perform printing. In this way, in the method of amplifying the minute deformation of the first element 1 to a required displacement amount, a vibration system is formed by the mass and spring of the amplification mechanism, and an inertial force acts on the first element 1. The second element 2 detects the tensile force due to its inertial force and is excited to reduce the tensile force. Even in such a mechanism, electrostriction or tensile stress of the piezoelectric element can be reduced, and a reliable piezoelectric hammer can be obtained.

また、他の実施例として第4図に示す印字ハン
マにも適用できる。第4図において、第1の電歪
あるいは圧電素子1を2個用いて第2の電歪ある
いは圧電素子2と接合する。さらに、第1の素子
両端には変位伝達手段22,24を介してそれぞ
れレバーアーム23が接続される。また2本のレ
バーアーム23の先端で梁25が挾まれ、かつ梁
25中央部には印字針26が設けられている。こ
のような構成はベース21に対し、第1の素子
1、第2の素子2、レバーアーム23、梁25等
が対称形となり、第1の素子1の励起によつて対
称にレバーアーム23が動作して梁25をたわま
せる。このような機構においても第2の素子2み
対称形となり、前記と同様に慣性力の検出並びに
引張り応力の低減ができる。このように第1の素
子1と第2の素子はその組合わせにより1つの圧
電体ブロツクとして形成でき、その第1の素子1・
と第2の素子の位置関係を逆にしても同様の効果
が得られる。以上本発明は電歪あるいは圧電素子
を駆動源とする機構に適用できる。
Further, the present invention can also be applied to a printing hammer shown in FIG. 4 as another embodiment. In FIG. 4, two first electrostrictive or piezoelectric elements 1 are used and joined to a second electrostrictive or piezoelectric element 2. In FIG. Further, lever arms 23 are connected to both ends of the first element via displacement transmitting means 22 and 24, respectively. A beam 25 is held between the tips of the two lever arms 23, and a printing needle 26 is provided at the center of the beam 25. In such a configuration, the first element 1, second element 2, lever arm 23, beam 25, etc. are symmetrical with respect to the base 21, and when the first element 1 is excited, the lever arm 23 is symmetrically moved. It operates to deflect the beam 25. In such a mechanism, only the second element 2 is symmetrical, and inertial force can be detected and tensile stress can be reduced in the same manner as described above. In this way, the first element 1 and the second element can be formed as one piezoelectric block by combining them, and the first element 1.
A similar effect can be obtained even if the positional relationship between the first element and the second element is reversed. As described above, the present invention can be applied to a mechanism using an electrostrictive or piezoelectric element as a driving source.

(発明の効果) 本発明によれば駆動源となる第1の電歪あるい
は圧電素子に作用する圧縮,引張り応力を第2の
電歪あるいは圧電素子で検出できるため、印字ハ
ンマの動作状態が解明できる。さらに、第1の素
子に引張応力が作用したときに第2の素子でその
引張り応力を減少できるので耐久性があり長寿命
の信頼性ある印字ハンマが得られる。
(Effects of the Invention) According to the present invention, the compressive and tensile stress acting on the first electrostrictive or piezoelectric element serving as a driving source can be detected by the second electrostrictive or piezoelectric element, so the operating state of the printing hammer can be clarified. can. Furthermore, when tensile stress is applied to the first element, the second element can reduce the tensile stress, resulting in a durable, long-life and reliable printing hammer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す印字ハンマの
側面図と回路構成図、第2−a図から第2−g図
は第1図の使用形態を説明するための動作波形図
であり第2−a図は印加電圧波形図、第2−b図
は動作波形図、第2−c図は慣性力波形図、第2
−d図はパルス発生図、第2−e図は印加電圧波
形図、第2−f図は動作波形図、第2−g図は慣
性力波形図を示し、第3図は本発明の他の一実施
例を示す模式的斜視図、第4図は本発明の他の一
実施例を示す模式的斜視図、第5図は従来の実施
例を示す側面図、第6図は従来の実施例を示す。 図中各記号はそれぞれ次のものを示す。1…第
1の電歪あるいは圧電素子、駆動源としての圧電
素子、2…第2の電歪あるいは圧電素子、検出器
と駆動源とを兼用した素子、3…ベース、4…
座、5…印字針、6…ガイド、7…ばね、8…駆
動回路、9…駆動回路、10…検出器、11…パ
ルス発生回路、12…第1の素子への印加電圧、
13…従来の動作、14…従来の慣性力、15…
パルス、16…第2の素子への印加電圧、17…
第2の素子の動作、18…第2の素子の慣性力、
19…第1、第2の素子の動作、20…第1、第
2の素子の慣性力、21…ベース、22…変位伝
達手段、23…レバーアーム、24…変位伝達手
段、25…梁、26…印字針、27…湾曲ばね、
28…保持要素、29…圧電結晶装置、30…固
定保持部、31…印字針、32…圧電体、33…
取付部材、34…力伝達部材、35…ワイヤガイ
ド、36…コイルばね、37…ワイヤ、また第2
−a図から第2−f図において、V…電圧、x…
変位、F…力、t…時間を示す。
FIG. 1 is a side view and circuit configuration diagram of a printing hammer showing an embodiment of the present invention, and FIGS. 2-a to 2-g are operation waveform diagrams for explaining the usage pattern of FIG. 1. Figure 2-a is an applied voltage waveform diagram, Figure 2-b is an operation waveform diagram, Figure 2-c is an inertial force waveform diagram, and Figure 2-c is an inertial force waveform diagram.
Fig. 2-d shows a pulse generation diagram, Fig. 2-e shows an applied voltage waveform diagram, Fig. 2-f shows an operation waveform diagram, Fig. 2-g shows an inertial force waveform diagram, and Fig. 3 shows the inertial force waveform diagram. FIG. 4 is a schematic perspective view showing another embodiment of the present invention, FIG. 5 is a side view showing a conventional embodiment, and FIG. 6 is a schematic perspective view showing a conventional embodiment. Give an example. Each symbol in the figure indicates the following. 1... First electrostrictive or piezoelectric element, piezoelectric element as a driving source, 2... Second electrostrictive or piezoelectric element, element serving as both a detector and a driving source, 3... Base, 4...
seat, 5... printing needle, 6... guide, 7... spring, 8... drive circuit, 9... drive circuit, 10... detector, 11... pulse generation circuit, 12... voltage applied to the first element,
13...Conventional operation, 14...Conventional inertia force, 15...
Pulse, 16... Voltage applied to the second element, 17...
Operation of the second element, 18... Inertial force of the second element,
19...Operation of the first and second elements, 20...Inertial force of the first and second elements, 21...Base, 22...Displacement transmitting means, 23...Lever arm, 24...Displacement transmitting means, 25...Beam, 26...Printing needle, 27...Curved spring,
28... Holding element, 29... Piezoelectric crystal device, 30... Fixed holding part, 31... Printing needle, 32... Piezoelectric body, 33...
Mounting member, 34... Force transmission member, 35... Wire guide, 36... Coil spring, 37... Wire, and second
In Figures -a to 2-f, V...voltage, x...
Displacement, F...force, t...time.

Claims (1)

【特許請求の範囲】[Claims] 1 電歪あるいは圧電素子を駆動源とする圧電式
プリンタハンマにおいて、前記駆動源となる第1
の電歪あるいは圧電素子に検出器と駆動源となる
ことを兼用した第2の電歪あるいは圧電素子を接
合し、前記第1の素子に作用する力を第2の素子
で検出し第1の素子の引張り力の発生時に第2の
素子が励起されることを特徴とする圧電式ハン
マ。
1 In a piezoelectric printer hammer that uses an electrostrictive or piezoelectric element as a driving source, the first
A second electrostrictive or piezoelectric element that serves both as a detector and a driving source is bonded to the electrostrictive or piezoelectric element, and the force acting on the first element is detected by the second element, and the force acting on the first element is detected. A piezoelectric hammer characterized in that a second element is excited when a tensile force of the element is generated.
JP7483085A 1985-04-09 1985-04-09 Piezoelectric type hammer Granted JPS61233559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7483085A JPS61233559A (en) 1985-04-09 1985-04-09 Piezoelectric type hammer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7483085A JPS61233559A (en) 1985-04-09 1985-04-09 Piezoelectric type hammer

Publications (2)

Publication Number Publication Date
JPS61233559A JPS61233559A (en) 1986-10-17
JPH0587393B2 true JPH0587393B2 (en) 1993-12-16

Family

ID=13558637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7483085A Granted JPS61233559A (en) 1985-04-09 1985-04-09 Piezoelectric type hammer

Country Status (1)

Country Link
JP (1) JPS61233559A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130154A (en) * 1988-10-31 1990-05-18 Internatl Business Mach Corp <Ibm> Striking type printer
US5046872A (en) * 1988-10-31 1991-09-10 Ibm Corporation Printer actuated by piezoelectrically generated shock wave
JP2806414B2 (en) * 1992-08-18 1998-09-30 富士通株式会社 Electromechanical transducer and printhead

Also Published As

Publication number Publication date
JPS61233559A (en) 1986-10-17

Similar Documents

Publication Publication Date Title
JPH0373468B2 (en)
EP0266977B1 (en) Print head for use in a wire matrix printer
JPH0587393B2 (en)
Chang et al. A high speed impact actuator using multilayer piezoelectric ceramics
JPS5862072A (en) Method and device for driving printing element
EP0267716B1 (en) Print head for use in a wire matrix printer
US5046872A (en) Printer actuated by piezoelectrically generated shock wave
JPS61193866A (en) Printing hammer
EP0366981B1 (en) Matrix printer actuator
JPS62204958A (en) Printing head of wire dot printer
JPS61193867A (en) Printing hammer
JPH0634112Y2 (en) Dot print head
JP3102157B2 (en) Piezoelectric / electromagnetic actuator with enlargement mechanism
JPH0257353A (en) Electromagnetic printing head
KR870000854Y1 (en) Head of dot matrix printer
JPH0422646A (en) Impact printer head
JPH0722998B2 (en) Print head
JPH05147237A (en) Print head
JPH0247017Y2 (en)
JPS5948168A (en) Printing hammer mechanism with intermediate pivot fulcrum
JPS63286373A (en) Drive method of piezoelectric printing hammer
JPS6351143A (en) Printing head of wire dot printer
JPH0439059A (en) Impact print head
JPH031954A (en) Impact printer
JPS61167582A (en) Printing hammer