JPH0585856B2 - - Google Patents

Info

Publication number
JPH0585856B2
JPH0585856B2 JP60295813A JP29581385A JPH0585856B2 JP H0585856 B2 JPH0585856 B2 JP H0585856B2 JP 60295813 A JP60295813 A JP 60295813A JP 29581385 A JP29581385 A JP 29581385A JP H0585856 B2 JPH0585856 B2 JP H0585856B2
Authority
JP
Japan
Prior art keywords
diamond
metal
single crystal
semiconductor
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60295813A
Other languages
Japanese (ja)
Other versions
JPS62151732A (en
Inventor
Tamotsu Hatsutori
Nobue Ito
Kazuhiro Inokuchi
Tadashi Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP60295813A priority Critical patent/JPS62151732A/en
Priority to US06/946,478 priority patent/US4768011A/en
Publication of JPS62151732A publication Critical patent/JPS62151732A/en
Publication of JPH0585856B2 publication Critical patent/JPH0585856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンド体を金属体に接合する接
合構造に関し、特にダイヤモンド半導体の歪ゲー
ジにより構成した圧力検出器に使用して好適な接
合構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bonding structure for bonding a diamond body to a metal body, and particularly relates to a bonding structure suitable for use in a pressure detector constructed of a diamond semiconductor strain gauge. .

[従来の技術] 半導体としては従来Siの半導体が多用されてい
る。ところで、Siはそのバンドギヤツプが約
1.1eVと小さいため、使用雰囲気が約150℃を越
えると半導体特性が消失してしまう。一方、ダイ
ヤモンドは上記Siに比してそのバンドギヤツプは
約5.5eVと非常に大きく、これを半導体として使
用すれば高い雰囲気温度に耐え得ることが予想さ
れる。
[Prior Art] Conventionally, Si semiconductors have been widely used as semiconductors. By the way, the band gap of Si is about
Because it is as small as 1.1eV, its semiconductor properties will be lost if the operating atmosphere exceeds approximately 150°C. On the other hand, diamond has a much larger band gap of about 5.5 eV than the above-mentioned Si, and if diamond is used as a semiconductor, it is expected that it will be able to withstand high ambient temperatures.

また、ダイヤモンドの単結晶体は電気絶縁性に
優れるとともに、熱伝導率が極めて大きく、半導
体基板として優れた性能を発揮することが期待で
きる。
In addition, single crystal diamond has excellent electrical insulation properties and extremely high thermal conductivity, so it can be expected to exhibit excellent performance as a semiconductor substrate.

[発明が解決しようとする問題点] ところで上記ダイヤモンドの半導体素子を実装
する際の問題点として、これと金属体との接合が
問題となる。というのは、ダイヤモンドの熱膨脹
率は約2.3×10-6/℃と非常に小さく、これと例
えばステンレス(熱膨脹率約15×10-6/℃(100
℃))等の他の金属との接合は、これらの熱膨脹
率の差が過大であるため雰囲気温度の変化により
接合部に破損を生じるおそれがある。
[Problems to be Solved by the Invention] By the way, one of the problems when mounting the above-mentioned diamond semiconductor element is the bonding between it and a metal body. This is because the coefficient of thermal expansion of diamond is extremely small at approximately 2.3 × 10 -6 /℃, and this is compared to, for example, stainless steel (which has a coefficient of thermal expansion of approximately 15 × 10 -6 /℃ (100
When bonding with other metals such as .degree. C.), there is a risk of damage to the bonded portion due to changes in ambient temperature since the difference in coefficient of thermal expansion is excessive.

本発明はかかる問題点に鑑み、ダイヤモンド体
と他の金属体を雰囲気温度の変化に無関係に確実
かつ容易に接合できる接合構造を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide a bonding structure that can reliably and easily bond a diamond body and another metal body regardless of changes in ambient temperature.

[問題点を解決するための手段] 本発明の構成を第1図により説明すると、ダイ
ヤモンド単結晶体47の上面にはダイヤモンド半
導体48が形成され、上記単結晶体47は少なく
ともチタン61、金63の各金属膜を介して他の
金属体31に接合してある。また、上記半導体4
8は少なくともチタン61、金63の各金属膜を
介して他の金属体52B,52Cに接合してあ
る。
[Means for Solving the Problems] The structure of the present invention will be described with reference to FIG. It is joined to another metal body 31 via each metal film. In addition, the semiconductor 4
8 is bonded to other metal bodies 52B and 52C via at least metal films of titanium 61 and gold 63.

[作用、効果] 上記構造において、チタン61、金63の熱膨
脹率はそれぞれ8.8×10-6/℃,9.1×10-6/℃、,
14.2×10-6/℃(100℃において)であり、ダイ
ヤモンド単結晶体47ないしダイヤモンド半導体
48の側より順次熱膨脹率を大きくして、他の金
属体31,52B,52C(これらの熱膨脹率は
通常約1.5×10-6/℃(100℃)である)に接合し
てある。これにより、ダイヤモンド体47,4
8、各金属膜61,63および金属体31,52
B,52C間の熱膨脹率の差は小さいものとな
り、雰囲気温度が大きく変化しても接合部に破損
を生じることはない。
[Function, Effect] In the above structure, the thermal expansion coefficients of titanium 61 and gold 63 are 8.8×10 -6 /℃ and 9.1×10 -6 /℃, respectively.
14.2×10 -6 /°C (at 100°C), and the coefficient of thermal expansion is increased sequentially from the side of the diamond single crystal 47 or the diamond semiconductor 48, and the coefficient of thermal expansion of the other metal bodies 31, 52B, 52C is The temperature is usually about 1.5×10 -6 /℃ (100℃). As a result, the diamond bodies 47, 4
8. Each metal film 61, 63 and metal body 31, 52
The difference in coefficient of thermal expansion between B and 52C is small, and the joint will not be damaged even if the ambient temperature changes greatly.

[実施例] 以下、本発明の接合構造を圧力検出器の半導体
歪ゲージに利用した例を説明する。
[Example] Hereinafter, an example in which the bonding structure of the present invention is used in a semiconductor strain gauge of a pressure detector will be described.

第4図において、圧力検出器の筒状ハウジング
1には小径の下端部11外周に取付用ネジ部11
aが形成され、中間部12外周はねじ込み用六角
面としてある。上記ハウジング1の上端開口には
コネクタ2がかしめ固定してある。ハウジング1
の下端部11内にはセンシングボデー3が設けて
ある。センシングボデー3は圧力室Pを形成する
一端閉鎖のステンレス製筒体であり、閉鎖端の大
径フランジ部31をハウジング1の内周段付面に
当接せしめ、その開口をハウジング1の下端に位
置せしめてある。
In FIG. 4, the cylindrical housing 1 of the pressure sensor has a mounting screw portion 11 on the outer periphery of the lower end portion 11 with a small diameter.
a is formed, and the outer periphery of the intermediate portion 12 is a hexagonal surface for screwing. A connector 2 is fixed to the upper opening of the housing 1 by caulking. Housing 1
A sensing body 3 is provided within the lower end portion 11 of. The sensing body 3 is a cylindrical body made of stainless steel with one end closed and forms a pressure chamber P. The large diameter flange 31 at the closed end is brought into contact with the inner peripheral stepped surface of the housing 1, and its opening is connected to the lower end of the housing 1. It is located.

センシングボデー3のフランジ部31中心は薄
肉となしてダイヤフラム311としてある。そし
て、該ダイヤフラム311の上面に構造を後述す
る半導体歪ゲージ4が設けてある。フランジ部3
1外周にはセラミツク基板5が設けてあり、該基
板5には上面に導電性ペーストを印刷焼成して信
号取出し電極(図略)を形成するとともに、取出
し電極に導通する金属ポスト51が立設してあ
る。そして、上記半導体歪ゲージ4と上記基板5
の取出し電極をワイヤ52で接続し、金属ポスト
51はリード線53により上記コネクタ2のピン
21に接続してある。
The center of the flange portion 31 of the sensing body 3 is made thin and serves as a diaphragm 311. A semiconductor strain gauge 4 whose structure will be described later is provided on the upper surface of the diaphragm 311. Flange part 3
1. A ceramic substrate 5 is provided on the outer periphery of the substrate 5, and a conductive paste is printed and fired on the upper surface of the substrate 5 to form a signal extraction electrode (not shown), and a metal post 51 that is electrically connected to the extraction electrode is erected. It has been done. The semiconductor strain gauge 4 and the substrate 5
The metal post 51 is connected to the pin 21 of the connector 2 through a lead wire 53.

歪ゲージ4は、第2図に示す如く、単一の矩形
ダイヤモンド単結晶板47上に4つの歪ゲージ4
A,4B,4C,4Dを形成してなる。各歪ゲー
ジ4A〜4Dは蛇行する線状のダイヤモンド半導
体膜48より成り、矩形面状電極41,42,4
3,44を介して順次互いに接続されている。上
記各電極41〜44にはそれぞれワイヤ52A,
52B,52C,52Dの一端が接続され、結局
上記歪ゲージ4A〜4Dは、第3図に示す如きブ
リツジ回路を構成している。
As shown in FIG.
A, 4B, 4C, and 4D are formed. Each strain gauge 4A to 4D is made of a meandering linear diamond semiconductor film 48, and has rectangular planar electrodes 41, 42, 4
They are sequentially connected to each other via 3 and 44. Each of the electrodes 41 to 44 has a wire 52A,
One ends of the strain gauges 52B, 52C, and 52D are connected, and the strain gauges 4A to 4D thus constitute a bridge circuit as shown in FIG.

上記ダイヤモンド単結晶板47は、第1図に示
す如く、センシングボデー3のフランジ部31の
中心部上面に位置しており、上記単結晶板47の
下面全面にこれに接する側より順次チタン61、
白金62、金63の各金属膜が積層形成されて、
上記金膜63をろう材49により上記フランジ部
31に接合してある。この状態で上記歪ゲージ4
A〜4Dのうち上記歪ゲージ4A,4Bがダイヤ
フラム311の直上に位置している(第2図)。
As shown in FIG. 1, the diamond single-crystal plate 47 is located on the upper surface of the center of the flange portion 31 of the sensing body 3, and the diamond single-crystal plate 47 is covered with titanium 61, titanium 61,
Metal films of platinum 62 and gold 63 are laminated,
The gold film 63 is bonded to the flange portion 31 with a brazing material 49. In this state, the strain gauge 4
Among the strain gauges A to 4D, the strain gauges 4A and 4B are located directly above the diaphragm 311 (FIG. 2).

ダイヤモンド単結晶板47上に形成された上記
ダイヤモンド半導体膜48は、不純物としてボロ
ン(B)を含むP型半導体膜である。これら半導
体膜48上に形成された上記各電極41〜44
は、半導体膜48に接する側より順次チタン6
1、白金62、金63の各金属膜を積層して構成
してある。
The diamond semiconductor film 48 formed on the diamond single crystal plate 47 is a P-type semiconductor film containing boron (B) as an impurity. Each of the electrodes 41 to 44 formed on these semiconductor films 48
titanium 6 in order from the side in contact with the semiconductor film 48
It is constructed by laminating metal films of 1, platinum 62, and gold 63.

上記歪ゲージ4は以下の如く製作する。すなわ
ち、半導体膜48形成部以外をマスキングしてダ
イヤモンド単結晶板47をマイクロ波CVD装置
内に置き、これにメタン(CH4)、水素、および
少量(0.1〜100ppm)のジボラン(B2H6)の混
合ガスを供給する。混合ガスはマイクロ波(本実
施例では2450MHz)により分解励起されてプラズ
マとなり、上記単結晶板47上にボロンを含むダ
イヤモンド半導体膜48として析出成長せしめら
れる。その後、半導体膜48の上面および単結晶
板47の下面に、蒸着ないしスパツタにより上記
各金属膜61〜63を順次形成する。なお、上記
各ワイヤ52A〜52Dはワイヤボンデイング等
により各電極41〜44の金膜63に容易に接続
できる。上記ワイヤ52A〜52Dは金製であ
る。
The strain gauge 4 is manufactured as follows. That is, the diamond single crystal plate 47 is placed in a microwave CVD apparatus with the area other than the area where the semiconductor film 48 is formed masked, and methane (CH 4 ), hydrogen, and a small amount (0.1 to 100 ppm) of diborane (B 2 H 6 ) is supplied. The mixed gas is decomposed and excited by microwaves (2450 MHz in this embodiment) to become plasma, which is deposited and grown on the single crystal plate 47 as a diamond semiconductor film 48 containing boron. Thereafter, the metal films 61 to 63 are sequentially formed on the upper surface of the semiconductor film 48 and the lower surface of the single crystal plate 47 by vapor deposition or sputtering. Note that each of the wires 52A to 52D can be easily connected to the gold film 63 of each electrode 41 to 44 by wire bonding or the like. The wires 52A to 52D are made of gold.

上記構造になる圧力検出器はハウジング1のネ
ジ部1aによりエンジン気筒壁に取り付けられ
る。気筒圧力はセンシングボデー3の筒内へ導入
されてそのダイヤフラム311に印加される。ダ
イヤフラム311は印加される圧力に応じて変形
し、その直上に位置する歪ゲージ4A,4Bは歪
を生じてその抵抗値が大きく変化する。この時、
他の歪ゲージ4C,4Dは、上記ダイヤフラム3
1より離れた位置に形成されていることにより歪
を生じず、その抵抗値は変化しない。しかして、
第3図の端子T1,T2間に電源を供給すると、
端子T3,T4間に上記変形量に応じた、すなわ
ち気筒圧力に応じた圧力信号が得られる。
The pressure sensor having the above structure is attached to the engine cylinder wall by the threaded portion 1a of the housing 1. Cylinder pressure is introduced into the cylinder of the sensing body 3 and applied to its diaphragm 311 . The diaphragm 311 deforms in response to the applied pressure, and the strain gauges 4A and 4B located directly above the diaphragm 311 are strained and their resistance values change greatly. At this time,
The other strain gauges 4C and 4D are connected to the diaphragm 3
Since it is formed at a position distant from 1, no distortion occurs and its resistance value does not change. However,
When power is supplied between terminals T1 and T2 in Fig. 3,
A pressure signal corresponding to the amount of deformation, that is, the cylinder pressure, is obtained between terminals T3 and T4.

かかる圧力検出器は約500℃の高温雰囲気でも
正常に作動する。これは従来半導体歪ゲージに使
用されていたSiのバンドギヤツプが約1.1eVであ
るのに対して、ダイヤモンドのそれは約5.5eVと
非常に大きく、高温でも半導体特性を失わないこ
とによる。
Such a pressure detector operates normally even in a high temperature atmosphere of approximately 500°C. This is because the band gap of Si, which is conventionally used in semiconductor strain gauges, is approximately 1.1 eV, whereas that of diamond is much larger at approximately 5.5 eV, and it does not lose its semiconductor properties even at high temperatures.

ところで、ダイヤモンドの熱膨脹率は約2.3×
10-6/℃(100℃)と極めて小さく、温度変化の
大きい雰囲気中では歪ゲージを構成するダイヤモ
ンド単結晶板47およびダイヤモンド半導体膜4
8と他の金属との接合が問題となる。ここにおい
て、上記歪ゲージにおいては、単結晶板47およ
び半導体膜48へのメタライズをこれらの側より
順次熱膨脹率が大きくなるチタン、白金、金の三
層で行なつて熱膨脹の整合性を維持し、これより
例えばエンジン始動時等の急加熱による歪ゲージ
の破壊を防止している。ちなみに、チタン、白
金、金の熱膨脹率はそれぞれ8.8×10-6/℃,9.1
×10-6/℃,14.2×10-6/℃(100℃)である。
By the way, the coefficient of thermal expansion of diamond is approximately 2.3×
10 -6 /℃ (100℃) is extremely small, and in an atmosphere with large temperature changes, the diamond single crystal plate 47 and the diamond semiconductor film 4 that constitute the strain gauge
8 and other metals becomes a problem. Here, in the strain gauge described above, the single crystal plate 47 and the semiconductor film 48 are metallized using three layers of titanium, platinum, and gold whose coefficients of thermal expansion increase sequentially from these sides to maintain consistency in thermal expansion. This prevents the strain gauge from being destroyed due to sudden heating, for example when starting the engine. By the way, the thermal expansion coefficients of titanium, platinum, and gold are 8.8×10 -6 /℃ and 9.1, respectively.
×10 -6 /℃, 14.2 ×10 -6 /℃ (100℃).

またステンレスの熱膨脹率は約15×10-6/℃
(100℃)であり、これは金属一般の熱膨脹率を代
表している。
Also, the coefficient of thermal expansion of stainless steel is approximately 15×10 -6 /℃
(100℃), which is representative of the coefficient of thermal expansion of metals in general.

上記ダイヤモンド単結晶板47をダイヤフラム
として使用することもできる。これを第5図、第
6図に示す。第6図において、センシングボデー
3のフランジ部31中心には開口31aが形成し
てあり、これに上記構造の歪ゲージ4が覆着して
ある。すなわち、第5図において、開口31aの
周縁に対向する単結晶板47の下面には、これに
接する側より順次チタン61、白金62、金63
の各金属膜が形成してあり、金膜63をろう材4
9により上記開口31a周縁に接合してある。し
かして、測定圧が導入されると、その圧力に応じ
てダイヤモンド単結晶板47が変形するのであ
る。
The diamond single crystal plate 47 can also be used as a diaphragm. This is shown in FIGS. 5 and 6. In FIG. 6, an opening 31a is formed at the center of the flange portion 31 of the sensing body 3, and the strain gauge 4 having the above structure is covered with the opening 31a. That is, in FIG. 5, titanium 61, platinum 62, and gold 63 are sequentially deposited on the lower surface of the single crystal plate 47 facing the periphery of the opening 31a from the side in contact with the lower surface of the single crystal plate 47.
Each metal film is formed, and the gold film 63 is used as the brazing material 4.
9 is joined to the periphery of the opening 31a. Thus, when a measurement pressure is introduced, the diamond single crystal plate 47 deforms in accordance with the pressure.

かかる構造としても上記実施例と同様の効果が
ある。
Such a structure also has the same effect as the above embodiment.

なお、上記三層の金属膜は、圧力検出器を比較
的低温(約400℃)で使用する場合には白金膜を
省略することができる。また、電極は必ずしも三
層構造とする必要はなく、チタン膜のみでも良い
が、ワイヤの接続を容易に行なう為には最外層を
金膜とした上記三層構造が優れている。
Note that, in the three-layer metal film described above, the platinum film can be omitted when the pressure detector is used at a relatively low temperature (approximately 400° C.). Further, the electrode does not necessarily have to have a three-layer structure, and only a titanium film may be used, but the above-mentioned three-layer structure with a gold film as the outermost layer is preferable in order to easily connect wires.

上記各実施例におけるダイヤモンド半導体膜4
8としては、ダイヤモンドに例えばリン(P)を
ドープしてn型半導体としたものでも良い。
Diamond semiconductor film 4 in each of the above embodiments
8 may be made by doping diamond with, for example, phosphorus (P) to make it an n-type semiconductor.

また、チタン、白金、金の金属膜は、各金属粉
末をテルピオネール等の溶剤と混合してペースト
となし、これをパターン印刷した後、水素、窒
素、あるいは水蒸気雰囲気中で焼成する方法、ま
たは溶射等の方法によつても形成できる。
Metal films of titanium, platinum, and gold can be produced by mixing each metal powder with a solvent such as terpionelle to form a paste, printing a pattern on the paste, and then firing it in a hydrogen, nitrogen, or water vapor atmosphere. It can also be formed by a method such as thermal spraying.

以上の如く、本発明の接合構造によれば、ダイ
ヤモンド体と他の金属を容易かつ確実に接合する
ことができ、例えば高温かつ温度変化の大きい雰
囲気で良好に作動する半導体歪ゲージを実現する
ことができる。
As described above, according to the bonding structure of the present invention, a diamond body and another metal can be easily and reliably bonded, and, for example, a semiconductor strain gauge that operates well in an atmosphere with high temperatures and large temperature changes can be realized. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示
し、第1図は歪ゲージの全体断面図、第2図はそ
の全体平面図、第3図は各歪ゲージの接続図、第
4図は圧力検出器の全体断面図、第5図、第6図
は本発明の他の例を示すそれぞれ歪ゲージの全体
断面図および圧力検出器の全体断面図である。 1……圧力検出器ハウジング、3……センシン
グボデー、31……フランジン部(他の金属体)、
31a……開口、311……ダイヤフラム、4,
4A,4B,4C,4D……歪ゲージ、41,4
2,43,44……電極、47……ダイヤモンド
単結晶板、48……ダイヤモンド半導体膜、49
……ろう材、52,52A,52B,52C,5
2D……ワイヤ(他の金属体)。
1 to 4 show one embodiment of the present invention, in which FIG. 1 is an overall sectional view of the strain gauge, FIG. 2 is an overall plan view thereof, FIG. 3 is a connection diagram of each strain gauge, and FIG. The figure is an overall sectional view of a pressure detector, and FIGS. 5 and 6 are an overall sectional view of a strain gauge and a pressure detector, respectively, showing other examples of the present invention. 1... Pressure detector housing, 3... Sensing body, 31... Flange part (other metal body),
31a...opening, 311...diaphragm, 4,
4A, 4B, 4C, 4D...Strain gauge, 41, 4
2, 43, 44...electrode, 47...diamond single crystal plate, 48...diamond semiconductor film, 49
...Brazing metal, 52, 52A, 52B, 52C, 5
2D...Wire (other metal object).

Claims (1)

【特許請求の範囲】 1 ダイヤモンド単結晶体ないしダイヤモンドに
不純物を混入せしめてなるダイヤモンド半導体
を、これら単結晶体ないし半導体側より順次積層
した少なくともチタン、金の各金属膜を介して他
の金属体に接合したことを特徴とするダイヤモン
ド体と金属体の接合構造。 2 上記ダイヤモンド半導体は、ダイヤモンドに
ボロン(B)ないしリン(P)を混入せしめてな
る特許請求の範囲第1項記載のダイヤモンド体と
金属体の接合構造。 3 上記チタン膜と金膜の間に白金膜を介在せし
めた特許請求の範囲第1項記載のダイヤモンド体
と金属体の接合構造。 4 上記各金属膜を蒸着ないしスパツタにより形
成した特許請求の範囲第1項または第3項記載の
ダイヤモンド体と金属体の接合構造。 5 上記金膜を他の金属体にろう付けないしワイ
ヤボンデイングにより接合した特許請求の範囲第
1項記載のダイヤモンド体と金属体の接合構造。 6 上記ダイヤモンド半導体は上記ダイヤモンド
単結晶体上に形成した歪ゲージであり、上記単結
晶体を圧力検出器の圧力室壁の一部を構成するス
テンレス製ダイヤフラムに上記各金属膜を介して
接合した特許請求の範囲第1項記載のダイヤモン
ド体と金属体の接合構造。 7 上記ダイヤモンド半導体は上記ダイヤモンド
単結晶体上に形成した歪ゲージであり、上記単結
晶体を圧力検出器のステンレス製圧力室壁の一部
に設けた開口を覆うように、上記各金属膜を介し
て上記開口縁に接合した特許請求の範囲第1項記
載のダイヤモンド体と金属体の接合構造。
[Scope of Claims] 1. A diamond single crystal or a diamond semiconductor formed by mixing impurities into diamond, and another metal body through at least titanium and gold metal films sequentially stacked from the single crystal or semiconductor side. A bonded structure of a diamond body and a metal body, characterized in that they are bonded to each other. 2. The bonding structure of a diamond body and a metal body according to claim 1, wherein the diamond semiconductor is formed by mixing boron (B) or phosphorus (P) into diamond. 3. The bonding structure of a diamond body and a metal body according to claim 1, wherein a platinum film is interposed between the titanium film and the gold film. 4. A bonding structure between a diamond body and a metal body according to claim 1 or 3, wherein each of the metal films is formed by vapor deposition or sputtering. 5. The bonding structure of a diamond body and a metal body according to claim 1, wherein the gold film is bonded to another metal body by brazing or wire bonding. 6 The diamond semiconductor is a strain gauge formed on the diamond single crystal body, and the single crystal body is bonded to a stainless steel diaphragm that constitutes a part of the pressure chamber wall of a pressure detector via each of the metal films. A joining structure of a diamond body and a metal body according to claim 1. 7. The diamond semiconductor is a strain gauge formed on the single crystal diamond, and each of the metal films is formed on the single crystal so as to cover an opening provided in a part of the stainless steel pressure chamber wall of the pressure sensor. A bonding structure of a diamond body and a metal body according to claim 1, wherein the diamond body and the metal body are bonded to the edge of the opening via the diamond body.
JP60295813A 1985-12-24 1985-12-26 Joining structure for diamond body to metal body Granted JPS62151732A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60295813A JPS62151732A (en) 1985-12-26 1985-12-26 Joining structure for diamond body to metal body
US06/946,478 US4768011A (en) 1985-12-24 1986-12-24 Joint structure for diamond body and metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295813A JPS62151732A (en) 1985-12-26 1985-12-26 Joining structure for diamond body to metal body

Publications (2)

Publication Number Publication Date
JPS62151732A JPS62151732A (en) 1987-07-06
JPH0585856B2 true JPH0585856B2 (en) 1993-12-09

Family

ID=17825494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295813A Granted JPS62151732A (en) 1985-12-24 1985-12-26 Joining structure for diamond body to metal body

Country Status (1)

Country Link
JP (1) JPS62151732A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121525B2 (en) * 1990-03-12 1995-12-25 富士通株式会社 Green sheet molding method
WO2010150302A1 (en) * 2009-06-22 2010-12-29 トヨタ自動車株式会社 Pressure sensor and method for manufacturing the same

Also Published As

Publication number Publication date
JPS62151732A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
US7642115B2 (en) Method for making a transducer
US3800264A (en) High temperature transducers and housing including fabrication methods
US5867886A (en) Method of making a thick film pressure sensor
JP5570811B2 (en) Heat-resistant solid state pressure sensor
US5659127A (en) Substrate structure of monolithic gas sensor
US4276533A (en) Pressure sensor
US5323656A (en) Overpressure-protected, polysilicon, capacitive differential pressure sensor and method of making the same
EP0336437A2 (en) Pressure sensing transducer employing piezoresistive elements on sapphire
US5174926A (en) Compositions for piezoresistive and superconductive application
JPS6122874B2 (en)
US3930823A (en) High temperature transducers and housing including fabrication methods
US4768011A (en) Joint structure for diamond body and metallic body
US6022756A (en) Metal diaphragm sensor with polysilicon sensing elements and methods therefor
JPS58731A (en) Electrostatic capacity type pressure sensor
US4459855A (en) Semiconductor pressure sensor
JPH05299705A (en) Diamond thin film electronic device and manufacture thereof
JPH0585856B2 (en)
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
CN113433191B (en) Annular heating type gas sensor and preparation method thereof
JPS594868B2 (en) semiconductor equipment
JPH0513451B2 (en)
JPS62148830A (en) Pressure detector
JPS5936835B2 (en) Semiconductor pressure/differential pressure transmitter
JPH0368829A (en) Pressure detector and manufacture thereof
JPS62291534A (en) Pressure detector