JPH0585618B2 - - Google Patents

Info

Publication number
JPH0585618B2
JPH0585618B2 JP9736585A JP9736585A JPH0585618B2 JP H0585618 B2 JPH0585618 B2 JP H0585618B2 JP 9736585 A JP9736585 A JP 9736585A JP 9736585 A JP9736585 A JP 9736585A JP H0585618 B2 JPH0585618 B2 JP H0585618B2
Authority
JP
Japan
Prior art keywords
steel foil
annealing
treatment
honing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9736585A
Other languages
Japanese (ja)
Other versions
JPS61257420A (en
Inventor
Kazukyo Terayama
Yashichi Ooyagi
Yukio Tsukamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9736585A priority Critical patent/JPS61257420A/en
Publication of JPS61257420A publication Critical patent/JPS61257420A/en
Publication of JPH0585618B2 publication Critical patent/JPH0585618B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は加工性,耐蝕性及び塗料,接着剤等と
の接着性に優れた鋼箔の製造法に係わる。 (従来の技術) 近年各種の包装材料として、特に溶液,ガス等
に対して不透性である事を要する食品等の容器用
材料として、鋼箔が注目されている。現在、鋼箔
は(a)冷間圧延法、(b)電気鉄メツキ法、(c)熔融金属
急冷法の3種の方法で製造されている。 (a) の冷間圧延法は現在大量に生産されている
冷延薄鋼板を焼鈍後、更に箔に迄冷間圧延する方
法で、鉄鋼製造法(第3分冊)(加工),S47.9.30
丸善発行,693頁に記載されている。この方法は
現用の各種冷間圧延機が使用されて、広巾で表面
状態及び形状の良い鋼箔を製造出来、生産性も比
較的優れている。 (b) の電気鉄メツキ法は2価のイオンを含む酸
性メツキ浴中で、ロール表面へ鉄を電析せしめな
がら、それを連続的に剥ぎ取つて箔とする方法で
ある。この方法は、箔の形成速度が電解電気量に
よつて決まるため甚だ生産性が悪い。又、メツキ
浴中の2価の鉄イオンは3価の鉄イオンに酸化さ
れ易く、3価の鉄イオンは電着に様々な悪影響を
及ぼすため浴組成の綿密な管理が必要であり、こ
の管理に多大の費用がかかる。 (c) の熔融金属急冷法は、冷却したロール表面
へ熔融した金属をスリツトノズルから流下して箔
を形成せしめ連続的に巻き取る方法である。この
方法は、電磁鋼等の非晶質の箔の製造に実用化さ
れている。特に、非晶質の珪素鋼箔は優れた電磁
特性の故に電機機器等に用いられている。しか
し、未だ製造可能な成品寸法に限界があり、大量
生産の域にも達していない所から容器用鋼箔の製
造には適していない。 (発明が解決しようとする問題点) 以上の如く生産性,製造コスト等の面から見て
鋼箔の製造法としては冷間圧延法が最も有利であ
るが、容器用として見た場合、性能的に改善を要
する。 容器用としての鋼箔は各種プラスチツクフイル
ム,紙等と貼り合せられ、あるいは塗装された
後、容器に加工される。加工は曲げ加工の如き軽
度のものもあるが、多くは絞り加工によるカツプ
成形が行なわれる。又、詰められる内容物も多様
であり腐蝕性の強い酸性食品等にも使われる。ま
た鋼箔表面に接着されたフイルム,塗膜等は極く
僅かではあるが水分を透過するために各種の水溶
液、あるいは高湿度の雰囲気に長期間曝されると
鋼箔と各種フイルム、あるいは塗膜との界面に到
達した水分によつて、Under Film Rustといわ
れている所の腐蝕によりフイルムあるいは塗膜の
接着力が劣化し剥離し易くなるとか、激しい場合
は腐蝕生成物によつて剥離、更には穿孔するに到
るという現象がある。これを防ぐには、鋼箔表面
に耐蝕性の良い表面処理被膜を付与する必要があ
る。以上のように鋼箔には加工性,各種フイルム
との接着剤を介しての加工に耐える接着性,塗装
性,塗料密着性,耐蝕性,などが要求されてい
る。 上述の如き鋼箔に必要な諸性能に対し、現在製
造さている鋼箔は満足される性能を備えていな
い。即ち、 (イ) 冷間圧延法によつて製造された鋼箔は、高い
冷延圧下率で圧延され加工硬化が大きいため極
めて加工性が悪い。この加工性を改善するには
焼鈍が必要であるが、厚さ100μm以下の鋼箔の
場合、現在薄鋼板の焼鈍に用いられている方法
では、焼鈍を行う事が甚だ困難である。即ち、
コイル状のまま焼鈍する箱焼鈍では焼鈍中に鋼
箔表面同志が、コイルに巻いた際の張力によつ
て生じている圧力によつて加熱圧着される所謂
焼付を生じ、次工程での巻き戻しが出来なくな
る。コイル状の鋼箔を巻き戻しながら焼鈍する
連続焼鈍では、焼鈍炉中に設置されている多数
のロールを通過する間に絞りを発生し、しばし
ば破断を生じる。従つて、これ等の焼鈍法に代
る新しい焼鈍法の開発が必要である。 (ロ) 一方、焼鈍によつて、加工性が著るしく向上
する反面、引張り試験で一般に知られている所
の降伏点伸びの再現があり、僅かの加工でリユ
ダースラインとして知られている凹凸のある模
様が出たり、曲げ加工で鋭い折れ線、所謂腰折
れが生じたりする様になる。この様な現象を改
善するために、薄鋼板では調質圧延と称してい
る軽圧下率の圧延を行なつている。しかし、厚
さ100μm以下の鋼箔の場合、降伏現象を解消す
るに必要な0.5%以上の圧下率をかける事が甚
だ困難である上に、連続圧延ではロール入側、
ロール間及びロール出側で被圧延材に適度の張
力をかける必要があるため、絞り、あるいは破
断をしばしば生じ、実際上圧延が不可能であ
る。尚、圧延時に必要な張力は、薄くなる程単
位断面積当りにすると大きくなるため、薄くな
る程急激に圧延が困難となる。従つて、現在の
ロール圧延に代る調質方法が必要である。 以上の焼鈍及び調質の問題に加え、 (ハ) 接着性及び耐蝕性を付与する表面処理につい
ても解決すべき問題がある。現在、容器用の表
面処理鋼板としては、ブリキ及び極薄クロムメ
ツキと水和酸化クロムの2層被膜を持つTin
Free Steel(T.F.S.)が最も広く大量に用いら
れている。これ等はそれぞれ専用の連続電気メ
ツキ装置を用いて大量に生産されているが、そ
の成品板厚は150μm以上である。これは、従
来、板厚150μm以下の成品の需要が殆んどなか
つた事及び150μm以下の板厚の場合、連続処理
が極めて困難である事によつている。現有のブ
リキ又はT.F.S.製造設備で、焼鈍を施した厚さ
100μm以下の鋼箔を処理しようとすれば、絞
り、破断が頻発する。現有設備によつても、冷
延のままで厚さが100μm程度であれば処理する
事が可能であるが、厚さが薄くなる程処理が困
難になり、50μmともなれば、処理不能となる。
かかる状況から、現在性能の良い表面処理被膜
を持つ鋼箔は、厚さ100μmの焼鈍されていない
ものがあるに過ぎない。しかしこの鋼箔は既に
述べた様に、硬質で加工性が悪く容器用として
は不十分である。尚、表面処理被膜を持つ鋼箔
として厚さ150μm以上のブリキを箔の厚さに迄
冷間圧延した、謂所Tin First法とよばれてい
る方法があるが、これは、上述の鋼箔と同様冷
間圧延のままであり加工性が悪い上、メツキ層
も高圧下の加工を受けているため性能の劣化が
大きい。更に、錫メツキであるため価格も高
い。 従つて、加工性,接着性,及び耐蝕性がともに
優れた鋼箔を得るには、焼鈍鋼箔に施行可能な新
しい表面処理法の開発が必要である。尚、鋼箔に
限らず、容器用材料としては安価である事が要求
され、そのため、表面処理法としては高価な錫メ
ツキは好ましくなく、T.F.S.の如き安価で高性能
の処理が望ましい。 本発明の目的はこのような従来の鋼箔の製造法
における問題点を解決するために、鋼箔に最適の
焼鈍方法,調質法,表面処理法を組合せた鋼箔の
製造方法を提供することにある。 (問題点を解決するための手段、及び作用) 前述した従来の鋼箔製造法における問題点を解
決する手段として、本発明では表面状態及び形状
が良く、生産性の良い冷間圧延法によつて製造さ
れた鋼箔を用いて、直接通電加熱、若しくは電気
誘導加熱、あるいはこれらの組合せで、急速加熱
して連続的に焼鈍を行い、次いで液体ホーニン
グ、またはドライシヨツトピーニングを施して調
質処理して焼鈍後の鋼箔の材質を改善すること、
さらに望ましくは調質処理と同時に、あるいは調
質処理に引続き鋼箔に各種の表面処理を形成して
耐蝕性,塗料あるいは接着剤などとの接着性にす
ぐれた表面を得ることに特徴がある。 以下本発明についてさらに詳細に説明する。 先づ冷間圧延で製造された鋼箔の焼鈍法につい
て検討した結果、現在ブリキあるいはT.F.S.用原
板の焼鈍に用いられている連続焼鈍の加熱時間に
比して、鋼箔でははるかに短時間の加熱で、本発
明の目的とする加工性が得られる事が判つた。現
在の連続焼鈍炉の焼鈍工程は、一般に加熱帯,均
熱帯,除冷帯,急冷帯より成り、4分前後で焼鈍
が完了する様になつている。均熱帯を通過するに
要する時間は60秒前後であり、この間鋼板は700
℃前後の温度に加熱され、冷延組織の再結晶が完
了し軟化する。鋼板の通過速度は500m/min前
後であり、出来得るかぎり小さな炉体で必要な焼
鈍時間を確保するため、炉内の上下に多数のロー
ルを設置し、ロールを介して鋼板を繰り返し蛇行
せしめる様にしている。この様に多数のロール間
を、しかも700℃前後の高温に加熱した状態で高
速通板するので、鋼箔の様に薄いものは通板不可
能である。従つて、鋼箔を連続焼鈍するには、焼
鈍設備のロール数を極力少なく、焼鈍時間を短か
くする事が必要である。かかる見地から、鋼箔の
焼鈍条件と加工性との関係について詳細に検討し
た結果、1秒程度の短時間だけ鋼箔の再結晶温度
以上、望ましくは650℃以上の温度に加熱し、以
後空冷する事によつて、加工性が著るしく改善さ
れる事を見出した。鋼箔の様な低炭素鋼の再結晶
温度は、受けている冷間加工率によつて大きく変
り、加工率が高い程低くなり、又、再結晶の進行
速度は温度が高い程速くなる。従つて短時間焼鈍
の場合、必要な加熱温度は冷間圧下率によつてか
なり異なつて来る。しかし、鋼箔の冷間加工率
は、概ね50%以上であり、この場合650℃でほぼ
再結晶が完了する。650℃以下では再結晶粒の生
成が認められる程度の段階に止まる。 この様な急速焼鈍の加熱方法としては、直接通
電加熱、又は電気誘導加熱あるいはそれ等の組合
せによる直接加熱が適している。鋼箔の焼鈍の場
合、従来の連続焼鈍の様に焼鈍炉内を高温に維持
し、その中に鋼板を導き、間接的に加熱する方法
は好ましくない。即ち鋼箔の場合、炉内での破断
が生じ易く、この場合、加熱炉方式では再通板の
ための作業が甚だ困難である。直接加熱では、加
熱時の雰囲気を高温に保つ必要がなく、破断した
場合の再通板作業を極めて容易かつ短時間で行な
える。しかし、直接加熱の場合でも安定した加熱
を行うためには、加熱される部分の鋼箔を断熱材
で囲う事が望ましく、更には、この部分に鋼箔が
長期間停止しても破断しない様な温度、いいかえ
れば再通板作業中に破断を生じない様な温度であ
る300〜500℃程度に保温する事が望ましい。この
雰囲気の加熱によつて、焼鈍に必要な鋼箔に流す
電流あるいは誘導加熱に必要な電力を大巾に低減
出来るとともに、鋼箔全体にわたつて均質な焼鈍
を行う事が出来る。 上述の急速焼鈍は、従来の連続焼鈍に比して極
端に焼鈍工程が短いという事の他に、大気中で焼
鈍出来るという大きな利点がある。急速焼鈍では
加熱時間か1秒程度と短いため、大気中であつて
も鋼箔表面の酸化は僅かであり、次の表面処理工
程で容易に除去出来、成品の品質に殆んど悪影響
を及ぼさない。特に以下に述べる本発明の調質と
表面処理を兼ねた液体ホーニングを行なう場合に
は何等の悪影響も及ぼさない。更に、液体ホーニ
ングの表面清浄能力が甚だ大であるため、焼鈍前
の脱脂処理を施さずに焼鈍しても表面処理での悪
影響が極めて小さいという利点がある。 急速焼鈍における直接通電加熱の方法として
は、現在ブリキの製造において、メツキ後の錫を
加熱熔融する場合と同様な加熱法を取る事が出来
る。即ち1対の導電ロール(コンダクターロー
ル)を介して、コンダクターロール間の鋼箔に電
流に流す事によつて加熱する。コンダクターロー
ル間を通過するに要する時間即ち加熱時間は一般
的には1秒で充分であるが、より長い加熱時間の
確保を可能とするために、コンダクターロール間
隔を任意に変更出来る様にしておく事が望まし
い。しかし、5秒以上を要する間隔は本発明の目
的からして不必要である。而して、出側コンダク
ターロール部において必要な最高温度に達する様
電気を流し、以後そのまま空冷する。この様な加
熱に誘導加熱を用いる事も出来るが、直接通電に
比し、効率が悪く又設備費も高価であるため、単
独の使用は好ましくない。しかし、直接通電と併
用すれば多様な加熱パターンを取る事が出来る様
になる。例えば、直接通電と併用し、誘導加熱装
置を入口コンダクターロールの真近に置けば、最
高加熱温度での加熱時間を最大に取る事が出来る
等、コンダクターロール間の任意の位置で最高温
度に加熱出来る様になる。 この様な急速焼鈍を施した鋼箔は再結晶によつ
て、絞り加工性が著るしく向上するが、降伏点が
再現しているため、僅かの加工で既に述べた如
く、リユーダスラインの発生とか腰折れの発生等
の別の意味での加工性の劣化がある。これを改善
するために、既に述べた如く、従来調質圧延が行
なわれているが、鋼箔の場合調質圧延は甚だ困難
であり、50μm以下では全く不可能であると云え
る。本発明者等は、調質圧延に代る調質方法につ
いて検討し、硬質の粒子を鋼箔表面へ高速で衝突
せしめる所謂ドライシヨツトピーニング法で目的
を達成出来る事を見出した。更に、シヨツトピー
ニング法と同様な効果を持ち、表面処理も同時に
行なえる液体ホーニング法が最も優れた方法であ
る事を見出した。前述の焼鈍後、ホーニング液に
化成処理浴を用いて液体ホーニングを施す事によ
り、鋼箔表面の酸化膜が完全に除去され、かつ厚
さ方向の加工を受け調質圧延を受けたと同様の効
果を生じ、同時に接着性と耐蝕性を持つ表面処理
被膜の付与が行なえる。更に、ホーニング後に電
解処理工程を設けホーニング液中で電解処理を施
せばより優れた性能の表面処理被膜を形成せしめ
る事が出来る。この液体ホーニング設備は、従来
のブリキT.F.S.等の表面処理設備に比較すると、
脱脂,酸洗等の前処理設備が不要であり、はるか
に単純である。又、設備を横型にしても極く短い
設備ですみ、設備内を通る鋼箔の方向転換が殆ん
ど必要でなく、ロール数も僅かですむため、極め
て効率の良い処理が可能である。 ホーニングの研磨剤としては、炭化珪素,シリ
カ,アルミナ,ガラス,硬質プラスチツク等のほ
ぼ球状の粒子で、ホーニング液に侵されないもの
を用いる。粒子の大きさは希望する成品の表面状
態(外観,粗さ等),ホーニング条件(噴射圧力,
噴射距離,噴射角度,処理速度等)によつて適宜
撰択する。 ホーニング液としては、各種の燐酸塩系の化成
処理浴,クロム酸,各種のクロム酸塩等の1種又
はそれ等の混合処理浴,アルミン酸塩浴,錫酸
塩,チタン酸塩浴,ニオブ酸塩浴,タングステン
酸塩等を主成分とする処理浴等を用いる事が出来
る。燐酸塩系及びクロム酸あるいはクロム酸塩系
の処理浴では浸漬処理のみでもかなりの性能の処
理被膜を付与出来るが、その他の処理浴では鋼箔
を陽極とした電解処理が必要である。これ等各種
の処理浴の中で、クロム酸に微量のSO4 2-,F-
の陰イオンを添加した処理浴中で陰極電解して得
られる被膜はT.F.S.として広く知られている様に
極めて優れた性能を持ち、価格も安い。燐酸系の
処理浴は“間宮富士雄著”金属の化成処理
(1973.9.理工出版社)に記載されている各種の鉄
鋼の化成処理浴を用いる事が出来、安価で容易に
性能の良い被膜を得る事が出来るが、容器用とい
う見地からすれば、クロム酸電解処理に比して性
能が劣る。アルミン酸塩に少量の有機酸あるいは
無機酸を添加した処理浴中で陽極処理した被膜は
性能的にはクロム酸処理被膜に劣るが、廃水処理
等の面ではクロム酸処理よりはるかに有利であ
る。その他の処理浴によつても、アルミン酸塩処
理とほぼ同等の性能の被膜が得られるが、価格的
にみて燐酸塩,クロム酸,クロム酸塩,アルミ酸
塩等の処理による方が有利である。 液体ホーニングに用いるホーニングガンは、研
磨剤とホーニング液をポンプでガンに送りこれを
高圧空気で噴出せしめる方法でも、高圧空気の代
りに、高圧ホーニング液を用いる方法又は翼車に
により研磨剤とホーニング液を加速する方法のい
づれでも良い。ガン式連続処理の場合、ホーニン
グガンの配置は処理速度によつてその数が異なる
が、円形ノズルを用い、200m/min速度で表裏
を同時に処理するとすれば、片面当り巾方向に10
〜20コ,長手方向へ2〜3段を表裏対向して配置
するのが望ましい。この様にして鋼箔に適度の張
力を付加し、表裏の噴射圧力のバランスを取つて
ホーニングすれば、鋼箔の圧延及び焼鈍によつて
生じている形状不良をもかなり矯正出来る。鋼箔
表面はホーニングによつて新鮮かつ活性化される
と同時に処理浴に接触するため、極めて良質の化
成処理被膜が得られる。ホーニングガンの後に電
解処理を行えば、更に性能の良い被膜が得られ
る。この場合、ホーニングガンより噴射した研磨
剤を含むホーニング液をそのまま用いても良い
が、研磨剤による対極及び生成した被膜の損傷を
避けるため研磨剤を過して除いたものを用いる
事がより望ましい。 以上の如くにして液体ホーニング、更には電解
処理を施した鋼箔は、直ちに水洗,乾燥して巻き
取られ成品となるが、乾燥後テンシヨンレベラー
を通す事によつて、より優れた形状の成品とする
事が出来る。 また焼鈍後に液体ホーニングの代りにドライシ
ヨツトピーニングを行つても調質圧延と同様に調
質できることを前述したが、この場合にもシヨツ
トピーニング後に表面処理を施すことが好まし
く、液体ホーニング処理を行う場合と同様な方法
でシヨツトピーニング後に化成処理被膜を形成す
るのが望ましい。 以上の本発明の鋼箔の原板には、現在ブリキあ
るいはT.F.S.の製造に一般に用いられている鋼の
何れをも用いる事が出来、箔に圧延する工程以降
を除き、ブリキ原板あるいはT.F.S.原板の製造工
程と全く同様である。即ち、次の如き工程を経て
製造される。 熱延板→酸洗→冷間圧延→電解洗浄→
焼鈍→冷間圧延→本発明の鋼箔処理法。即
ち、〜の工程はブリキあるいはT.F.S.原板の
製造工程と全く同様である。 以下に本発明の実施例について述べる。 (実施例) 実施例 1 現在、鉄鋼業でブリキあるいはT.F.S.の製造に
一般的に用いられている方法により板厚0.5mmの
冷延焼鈍鋼板を作つた。即ち、低炭素鋼のスラブ
より、熱間圧延→酸洗→冷間圧延→連続焼鈍の工
程を経て板厚0.5mmの焼鈍コイルを作つた。この
焼鈍板を鉄鋼業で一般に用いられている調質圧延
機により厚さ100μmに圧延、次いで電解洗浄を行
つて圧延油を除去した後、本発明の処理即ち急速
焼鈍及び液体ホーニングを施した。 焼鈍条件は次の如くである。 加熱方法……直接通電 コンダクターロール間の通過時間(加熱時間) ……1sec 最高到達温度……700℃ 雰囲気……大気,室温 液体ホーニング条件は次の如くである。 ホーニング液 CrO3:80g/ H2SO4:1g/ 温度:50℃ 研磨剤 ガラスで作つた径37〜44μのほぼ球状の粒子 研磨剤濃度……ホーニング液の20%(容量) 噴射方法……高圧空気,噴射圧力6Kg/cm2 ホーニング後の電解処理……陰極処理、電流密度 60A/dm2、処理時間 0.8sec 以上の方法で、加工性,接着性,耐蝕に優れた
鋼箔を得た。その各種性能試験の結果を表1に示
す。 実施例 2 実施例1と同様にして、板厚0.3mmの焼鈍鋼板
を厚さ50μmに圧延し、本発明の処理を施した。 急速焼鈍の条件は次の通りである。 加熱方法……直接通電 コンダクターロール間の通過時間(加熱時間) ……1.5sec 最高到達温度……650℃ 雰囲気……大気,室温 液体ホーニング条件は次の如くである。 ホーニング液 市販鉄鋼用燐酸塩系化成処理浴 噴射圧力……4.5Kg/cm2 電解処理なし その他の条件は全て実施例1に同じ。 液体ホーニング後水洗,乾燥し、次いでテンシ
ヨンレベラーを通し、形状矯正を行なつた。 得られた鋼箔の諸性能を表1に示す。 実施例 3 実施例1と同様にして0.2mmの焼鈍板を、ゼン
ジマーミルを用いて厚さ30μmの箔に圧延した。
この箔を電解洗浄後、本発明の処理を施した。 急速焼鈍の条件は次の如くである。 加熱方法……直接通電 コンダクター間の通過速度(加熱時間) ……2sec 最高到達温度……600℃ 雰囲気……大気中,室温 焼鈍後のホーニング条件は次の通りである。 ホーニング液 アルミン酸ソーダ:25g/ 酒石酸:2.5g/ PH:12.1 温度:室温 噴射圧力:4Kg/cm2 ホーニング後の電解処理……陽極処理、電流密度 10A/dm2、処理時間 0.5sec その他の条件は、実施例1と同様である。又、
ホーニング後、テンシヨンレベラーにより形状矯
正を行なつた。 得られた成品の諸性能を表1に示す。 実施例 4 実施例1と同様にして圧延した100μmの鋼箔に
ついて、本発明の処理を施した。 急速焼鈍条件は次の如くである。 加熱方法……直接通電と誘導加熱の組合せ 誘導加熱は、入側コンダクターロールの直ぐ後
に設置、それぞれほぼ半々の加熱能力とした。 加熱時間……1sec 最高到達温度……700℃ 雰囲気……大気,室温 以後の工程は実施例1と全く同様である。 焼鈍時、コンダクターロールでのアーク発生も
なく、良好な成品が得られた。成品の諸性能を表
1に示す。 実施例 5 実施例1と同様にして圧延した100μmの鋼箔に
ついて、本発明の処理を施した。 急速焼鈍条件は次の如くである。 加熱方式……直接通電及び加熱雰囲気による補助
加熱 加熱時間……1sec 最高到達温度……700℃ 雰囲気……大気,450℃ 次の液体ホーニングは、実施例1と全く同様に
行なつた。 コンダクターロールでのアーク発生もなく、良
好な成品が得られた。成品の諸性能を表1に示
す。 実施例 6 実施例3と同様にして、厚さ0.2mmの焼鈍した
冷延鋼板を、ゼンジマーミルで20μmの箔に圧延
し、本発明の処理を施した。 急速焼鈍条件は次の如くである。 加熱方式……直接通電及び加熱雰囲気による補助
加熱 加熱時間……1sec 最高到達温度……650℃ 雰囲気……大気,350℃ 次の液体ホーニングは実施例1と全く同様に行
なつた。 焼鈍におけるコンダクターロールでのアーク発
生もなく、良好な成品が得られた。諸性能を表1
に示す。 比較例 1 現在の冷間圧延による鋼箔の製造法に従つて厚
さ100μmのT.F.S.処理鋼箔を作つた。即ち、現在
鉄鋼業においてブリキあるいはT.F.S.原板の製造
に一般に用いられている方法により、板厚0.2mm
の焼鈍冷延鋼板を更に調質圧延機により厚さ
100μmに冷間圧延した。次いでT.F.S.の製造に一
般に用いられている連続T.F.S.製造設備により電
解クロム酸処理を施した。得られた成品の性能を
表1に示す。 比較例 2 現在鉄鋼業で一般に行なわれているブリキの製
造法に従つてメツキ量#25(錫メツキ量#25)板
厚0.15mmのブリキを行つた。このブリキを、調質
圧延機を用いて冷間圧延を施し、厚さ50μmの鋼
箔とした。得られた成品の性能を表1に示す。 比較例 3 厚さ0.15mmのブリキ原板を調質圧延機により冷
間圧延し、厚さ50μmの鋼箔とした。連続T.F.S.
製造設備で電解クロム酸処理を施そうとしたが、
絞り,破断が多発し、処理不能であつたので、冷
間圧延して無処理のまま成品としたその性能を表
1に示す。 以上の実施例1〜6及び比較例1〜3の鋼箔に
ついて、以下に述べる容器用鋼箔としての性能評
価試験を行なつた。結果をまとめて表1に示す。 比較例 4 比較例1と同様に冷間圧延した鋼箔を連続電解
清浄装置を用いて脱脂し、現在薄鋼板の箱焼鈍に
用いられている方法で焼鈍した。焼鈍後、液体ホ
ーニングを施そうとしたが、焼付のため巻き戻し
が出来ず、成品が得られなかつた。 比較例 5 比較例4における箱焼鈍に代り、現在薄鋼板の
連続焼鈍に用いられている装置で焼鈍しようとし
たが、焼鈍炉内で絞り、破断が多発し、焼鈍不能
であつた。
(Field of Industrial Application) The present invention relates to a method for manufacturing steel foil that has excellent workability, corrosion resistance, and adhesion to paints, adhesives, and the like. (Prior Art) In recent years, steel foil has been attracting attention as a variety of packaging materials, particularly as a material for containers for foods and the like that must be impermeable to solutions, gases, and the like. Currently, steel foil is manufactured by three methods: (a) cold rolling method, (b) electric iron plating method, and (c) molten metal quenching method. The cold rolling method in (a) is a method in which cold-rolled thin steel sheets, which are currently produced in large quantities, are annealed and then further cold-rolled into foil.
Published by Maruzen, listed on page 693. In this method, various types of cold rolling mills currently in use are used, and steel foil with a wide width and good surface condition and shape can be produced, and the productivity is also relatively high. The electric iron plating method (b) is a method in which iron is electrodeposited onto the surface of a roll in an acidic plating bath containing divalent ions, and then continuously peeled off to form foil. This method has extremely low productivity because the rate of forming the foil is determined by the amount of electricity electrolyzed. In addition, divalent iron ions in the plating bath are easily oxidized to trivalent iron ions, and trivalent iron ions have various negative effects on electrodeposition, so the bath composition must be carefully controlled. costs a lot of money. The molten metal quenching method (c) is a method in which molten metal flows down from a slit nozzle onto the cooled roll surface to form a foil and is continuously wound up. This method has been put to practical use in the production of amorphous foils such as electromagnetic steel. In particular, amorphous silicon steel foil is used in electrical equipment and the like because of its excellent electromagnetic properties. However, there are still limits to the dimensions of products that can be manufactured, and it is not suitable for manufacturing steel foil for containers since it has not reached the level of mass production. (Problems to be Solved by the Invention) As described above, the cold rolling method is the most advantageous method for manufacturing steel foil from the viewpoint of productivity, manufacturing cost, etc., but when viewed from the viewpoint of containers, the performance Improvement is required. Steel foil for containers is laminated with various types of plastic film, paper, etc., or painted, and then processed into containers. Some of the processing is light, such as bending, but most of the processing is done by drawing to form a cup. In addition, the contents that can be packed are diverse, and they are also used for highly corrosive acidic foods. In addition, films and coatings adhered to the surface of steel foil are permeable to moisture, although only in a very small amount, so if they are exposed to various aqueous solutions or a high-humidity atmosphere for a long period of time, the steel foil and various films or coatings may be damaged. Moisture that reaches the interface with the film causes corrosion called Under Film Rust, which deteriorates the adhesion of the film or paint film and makes it easier to peel off. In severe cases, corrosion products cause the film to peel off. Furthermore, there is a phenomenon that this leads to perforation. To prevent this, it is necessary to apply a surface treatment film with good corrosion resistance to the surface of the steel foil. As mentioned above, steel foil is required to have workability, adhesion with various films that can withstand processing through adhesives, paintability, paint adhesion, corrosion resistance, etc. Currently manufactured steel foils do not have the performance that is required for steel foils as described above. That is, (a) steel foil manufactured by the cold rolling method is extremely poor in workability because it is rolled at a high cold rolling reduction and is highly work hardened. Annealing is necessary to improve this workability, but in the case of steel foils with a thickness of 100 μm or less, it is extremely difficult to perform annealing using the methods currently used for annealing thin steel sheets. That is,
In box annealing, where the coil is annealed, the surfaces of the steel foil are heated and pressed together during annealing by the pressure generated by the tension when the coil is wound. becomes impossible. In continuous annealing, in which a coiled steel foil is annealed while being unwound, a reduction occurs during passing through a large number of rolls installed in an annealing furnace, often resulting in breakage. Therefore, it is necessary to develop a new annealing method to replace these annealing methods. (b) On the other hand, although annealing significantly improves workability, it also reproduces the elongation at the yield point, which is generally known in tensile tests, and with a small amount of processing, it is known as the Lyudas line. An uneven pattern may appear, and sharp lines, or so-called waist folds, may appear during the bending process. In order to improve this phenomenon, thin steel sheets are rolled at a light reduction rate, which is called temper rolling. However, in the case of steel foils with a thickness of 100 μm or less, it is extremely difficult to apply a reduction rate of 0.5% or more necessary to eliminate the yielding phenomenon, and in continuous rolling, the roll entry side
Since it is necessary to apply an appropriate tension to the material to be rolled between the rolls and on the exit side of the rolls, reduction or breakage often occurs, making rolling practically impossible. Note that the tension required during rolling increases per unit cross-sectional area as the thickness becomes thinner, so rolling becomes more difficult as the thickness decreases. Therefore, there is a need for an alternative heat refining method to the current roll rolling. In addition to the above-mentioned annealing and thermal refining problems, there are also problems to be solved regarding (c) surface treatment that imparts adhesion and corrosion resistance. Currently, surface-treated steel sheets for containers include tinplate and tin, which has a two-layer coating of ultra-thin chrome plating and hydrated chromium oxide.
Free Steel (TFS) is the most widely used in large quantities. These are produced in large quantities using dedicated continuous electroplating equipment, and the thickness of the finished product is 150 μm or more. This is due to the fact that conventionally there has been almost no demand for products with a thickness of 150 μm or less, and that continuous processing is extremely difficult for sheets with a thickness of 150 μm or less. Thickness annealed using existing tinplate or TFS manufacturing equipment
If you try to process steel foil with a diameter of 100 μm or less, it will often get squeezed and break. Even with existing equipment, it is possible to process cold-rolled steel with a thickness of about 100 μm, but the thinner the thickness, the more difficult it becomes to process, and if it becomes 50 μm, it becomes impossible to process. .
Under these circumstances, the only steel foil with a surface treatment film with good performance at present is one that is not annealed and has a thickness of 100 μm. However, as mentioned above, this steel foil is hard and has poor workability, making it unsatisfactory for use in containers. In addition, there is a method called the Tin First method in which tinplate with a thickness of 150 μm or more is cold-rolled to the thickness of the foil as a steel foil with a surface treatment coating. Similar to the above, it is still cold-rolled and has poor workability, and the plating layer is also processed under high pressure, resulting in a significant deterioration in performance. Furthermore, since it is tin-plated, it is also expensive. Therefore, in order to obtain a steel foil with excellent workability, adhesion, and corrosion resistance, it is necessary to develop a new surface treatment method that can be applied to annealed steel foil. It should be noted that not only steel foil but also container materials are required to be inexpensive, and therefore, as a surface treatment method, expensive tin plating is not preferable, and an inexpensive and high-performance treatment such as TFS is preferable. The purpose of the present invention is to provide a method for manufacturing steel foil that combines the optimal annealing method, thermal refining method, and surface treatment method for steel foil, in order to solve the problems in the conventional method for manufacturing steel foil. There is a particular thing. (Means for Solving the Problems and Effects) As a means to solve the problems in the conventional steel foil manufacturing method described above, the present invention uses a cold rolling method that provides a good surface condition and shape and has high productivity. Using a steel foil produced by the same method, it is rapidly heated and continuously annealed by direct current heating, electric induction heating, or a combination of these, and then subjected to liquid honing or dry shot peening to temper it. improving the material quality of steel foil after processing and annealing;
Furthermore, it is preferable that various surface treatments are applied to the steel foil at the same time as the tempering treatment or following the tempering treatment to obtain a surface with excellent corrosion resistance and adhesion to paints or adhesives. The present invention will be explained in more detail below. First, we investigated the annealing method for steel foil produced by cold rolling, and found that the heating time for steel foil is much shorter than the continuous annealing currently used for annealing tinplate or TFS blanks. It was found that the processability targeted by the present invention could be obtained by heating. The annealing process of current continuous annealing furnaces generally consists of a heating zone, a soaking zone, a cooling zone, and a rapid cooling zone, and the annealing is completed in about 4 minutes. The time required to pass through the soaking zone is around 60 seconds, and during this time the steel plate has a temperature of 700
It is heated to a temperature of around °C, and the recrystallization of the cold-rolled structure is completed and softened. The passing speed of the steel plate is around 500 m/min, and in order to secure the necessary annealing time with the smallest possible furnace body, a large number of rolls are installed above and below the furnace, and the steel plate is repeatedly meandered through the rolls. I have to. Because the sheet is threaded between such a large number of rolls at high speed while being heated to a high temperature of around 700°C, it is impossible to thread thin materials such as steel foil. Therefore, in order to continuously anneal steel foil, it is necessary to minimize the number of rolls in the annealing equipment and shorten the annealing time. From this point of view, as a result of a detailed study on the relationship between the annealing conditions of steel foil and workability, we found that the steel foil is heated to a temperature above the recrystallization temperature of the steel foil for a short period of about 1 second, preferably above 650°C, and then air cooled. It has been found that processability is significantly improved by doing this. The recrystallization temperature of a low carbon steel such as steel foil varies greatly depending on the rate of cold working to which it is subjected; the higher the rate of working, the lower the recrystallization temperature, and the higher the temperature, the faster the rate of recrystallization. Therefore, in the case of short-time annealing, the required heating temperature varies considerably depending on the cold reduction rate. However, the cold working rate of steel foil is generally 50% or more, and in this case, recrystallization is almost completed at 650°C. At temperatures below 650°C, the formation of recrystallized grains remains at a level where it can be observed. As a heating method for such rapid annealing, direct heating by current heating, electric induction heating, or a combination thereof is suitable. In the case of annealing steel foil, it is not preferable to maintain the interior of the annealing furnace at a high temperature, guide the steel plate into the annealing furnace, and heat the furnace indirectly, as in conventional continuous annealing. That is, in the case of steel foil, it is easy to break in the furnace, and in this case, it is extremely difficult to rethread the sheet in the heating furnace method. With direct heating, there is no need to maintain the atmosphere during heating at a high temperature, and in the event of a breakage, rethreading can be carried out extremely easily and in a short time. However, in order to achieve stable heating even in the case of direct heating, it is desirable to surround the heated part of the steel foil with a heat insulating material.Furthermore, it is necessary to protect the steel foil from breaking even if it is stopped for a long period of time. In other words, it is desirable to keep the plate at a temperature of 300 to 500℃, which is a temperature that will not cause breakage during rethreading. By heating in this atmosphere, it is possible to significantly reduce the current flowing through the steel foil necessary for annealing or the electric power necessary for induction heating, and it is also possible to perform homogeneous annealing over the entire steel foil. The above-mentioned rapid annealing has the great advantage that the annealing process is extremely short compared to conventional continuous annealing, and that it can be annealed in the atmosphere. In rapid annealing, the heating time is short, about 1 second, so even in the atmosphere there is only slight oxidation on the surface of the steel foil, which can be easily removed in the next surface treatment process and has almost no negative effect on the quality of the product. do not have. Particularly, when performing liquid honing, which serves as thermal refining and surface treatment according to the present invention as described below, there is no adverse effect. Furthermore, since the surface cleaning ability of liquid honing is extremely large, there is an advantage that even if annealing is performed without performing degreasing treatment before annealing, the adverse effects of surface treatment are extremely small. As a method of direct current heating in rapid annealing, a heating method similar to that used in the current manufacturing of tinplate to heat and melt tin after plating can be used. That is, the steel foil is heated by passing an electric current through a pair of conductor rolls to the steel foil between the conductor rolls. The time required to pass between the conductor rolls, that is, the heating time, is generally 1 second, but in order to ensure a longer heating time, the interval between the conductor rolls can be changed arbitrarily. things are desirable. However, intervals requiring more than 5 seconds are unnecessary for purposes of the present invention. Then, electricity is applied to the exit conductor roll portion to reach the required maximum temperature, and thereafter the roll is air-cooled. Although induction heating can be used for such heating, it is not preferable to use it alone because it is less efficient and more expensive than direct energization. However, if used in conjunction with direct energization, a variety of heating patterns can be achieved. For example, if you use it in conjunction with direct energization and place the induction heating device right near the inlet conductor roll, you can maximize the heating time at the maximum heating temperature, heating to the maximum temperature at any position between the conductor rolls. I will be able to do it. Steel foil subjected to such rapid annealing significantly improves drawability due to recrystallization, but since the yield point is reproduced, as mentioned above, with a small amount of processing, the drawability of the Lyudus line There is deterioration in workability in other ways, such as occurrence of cracking or buckling. In order to improve this, as already mentioned, temper rolling has been conventionally performed, but temper rolling is extremely difficult in the case of steel foil, and it can be said that it is completely impossible for steel foils of 50 μm or less. The inventors of the present invention have investigated a heat refining method in place of skin pass rolling, and have found that the objective can be achieved by a so-called dry shot peening method in which hard particles are caused to collide with the surface of a steel foil at high speed. Furthermore, it has been found that the liquid honing method is the most excellent method as it has the same effect as the shot peening method and can also perform surface treatment at the same time. After the above-mentioned annealing, by performing liquid honing using a chemical conversion treatment bath as the honing fluid, the oxide film on the surface of the steel foil is completely removed, and an effect similar to that obtained by processing in the thickness direction and temper rolling is achieved. At the same time, a surface treatment film with adhesion and corrosion resistance can be applied. Furthermore, if an electrolytic treatment step is provided after honing and the electrolytic treatment is performed in a honing solution, a surface treatment film with even better performance can be formed. Compared to conventional surface treatment equipment such as tin plate TFS, this liquid honing equipment has
Pretreatment equipment such as degreasing and pickling is not required and it is much simpler. Furthermore, even if the equipment is horizontal, it requires only a very short length of time, there is almost no need to change the direction of the steel foil passing through the equipment, and only a small number of rolls are required, so extremely efficient processing is possible. As the abrasive for honing, use is made of approximately spherical particles of silicon carbide, silica, alumina, glass, hard plastic, etc. that are not corroded by the honing liquid. The particle size depends on the desired product surface condition (appearance, roughness, etc.) and honing conditions (injection pressure,
(injection distance, injection angle, processing speed, etc.). Examples of the honing solution include various phosphate-based chemical conversion treatment baths, chromic acid, various chromate salts, etc. or a mixture thereof, aluminate baths, stannate, titanate baths, and niobium salt baths. An acid salt bath, a treatment bath containing tungstate as a main component, etc. can be used. In phosphate-based and chromic acid or chromate-based treatment baths, a treatment film of considerable performance can be provided by dipping treatment alone, but in other treatment baths, electrolytic treatment using steel foil as an anode is required. Among these various treatment baths, the film obtained by cathodic electrolysis in a treatment bath containing chromic acid with trace amounts of anions such as SO 4 2- and F - is widely known as TFS. It has extremely excellent performance and is inexpensive. As for the phosphoric acid treatment bath, various types of chemical conversion treatment baths for steel described in "Metal Chemical Conversion Treatment" by Fujio Mamiya (September 1973, Riko Publishing) can be used, and a coating with good performance can be easily obtained at low cost. However, from the viewpoint of containers, its performance is inferior to that of chromic acid electrolytic treatment. A film anodized in a treatment bath containing a small amount of organic or inorganic acid added to aluminate is inferior to a chromic acid-treated film in terms of performance, but it is far more advantageous than a chromic acid-treated film in terms of wastewater treatment, etc. . Films with almost the same performance as aluminate treatment can be obtained using other treatment baths, but treatment with phosphate, chromic acid, chromate, aluminate, etc. is more advantageous from a cost perspective. be. Honing guns used for liquid honing can either use a pump to send the abrasive and honing fluid to the gun and blow it out with high-pressure air, or use high-pressure honing fluid instead of high-pressure air, or use a blade wheel to perform the abrasive and honing process. Any method of accelerating the liquid may be used. In the case of gun-type continuous processing, the number of honing guns placed varies depending on the processing speed, but if a circular nozzle is used and the front and back sides are processed at the same time at a speed of 200 m/min, 10 honing guns are placed in the width direction per side.
It is preferable to arrange ~20 sheets, 2 to 3 rows in the longitudinal direction, with the front and back facing each other. By applying an appropriate tension to the steel foil in this way and honing it while balancing the injection pressure on the front and back sides, it is possible to considerably correct the shape defects caused by rolling and annealing the steel foil. Since the surface of the steel foil is freshly and activated by honing and is brought into contact with the treatment bath at the same time, an extremely high quality chemical conversion coating can be obtained. If electrolytic treatment is performed after the honing gun, a coating with even better performance can be obtained. In this case, the honing solution containing the abrasive sprayed from the honing gun may be used as is, but it is more preferable to use a solution with the abrasive removed in order to avoid damage to the counter electrode and the formed film caused by the abrasive. . The steel foil that has been subjected to liquid honing and further electrolytic treatment as described above is immediately washed with water, dried, and rolled up into a finished product. It can be made into a finished product. In addition, as mentioned above, even if dry shot peening is performed instead of liquid honing after annealing, tempering can be achieved in the same manner as skin pass rolling, but in this case as well, it is preferable to perform surface treatment after shot peening, and liquid honing is also preferred. It is desirable to form a chemical conversion coating after shot peening in the same manner as in the case of shot peening. Any of the steels currently commonly used in the production of tinplate or TFS can be used as the base plate of the steel foil of the present invention, and the manufacturing process of the base plate of tinplate or TFS, except for the process after rolling into foil, can be used. The process is exactly the same. That is, it is manufactured through the following steps. Hot rolled sheet → pickling → cold rolling → electrolytic cleaning →
Annealing→cold rolling→steel foil treatment method of the present invention. That is, the steps of ~ are exactly the same as the manufacturing process of tin plate or TFS original plate. Examples of the present invention will be described below. (Examples) Example 1 A cold-rolled annealed steel plate with a thickness of 0.5 mm was produced by a method that is currently commonly used in the steel industry to produce tinplate or TFS. That is, an annealed coil with a plate thickness of 0.5 mm was made from a slab of low carbon steel through the steps of hot rolling, pickling, cold rolling, and continuous annealing. This annealed plate was rolled to a thickness of 100 μm using a temper rolling mill commonly used in the steel industry, then subjected to electrolytic cleaning to remove rolling oil, and then subjected to the treatment of the present invention, that is, rapid annealing and liquid honing. The annealing conditions are as follows. Heating method: Passage time between directly energized conductor rolls (heating time): 1 sec Maximum temperature: 700°C Atmosphere: air, room temperature The liquid honing conditions are as follows. Honing liquid CrO 3 : 80g / H 2 SO 4 : 1g / Temperature: 50℃ Abrasive agent Almost spherical particles made of glass with a diameter of 37 to 44μ Abrasive agent concentration...20% (volume) of honing liquid Injection method... High-pressure air, injection pressure 6Kg/cm 2 After honing, electrolytic treatment...Cathode treatment, current density 60A/dm 2 , treatment time 0.8 seconds or more was used to obtain steel foil with excellent workability, adhesion, and corrosion resistance. . Table 1 shows the results of various performance tests. Example 2 In the same manner as in Example 1, an annealed steel plate with a thickness of 0.3 mm was rolled to a thickness of 50 μm and subjected to the treatment of the present invention. The conditions for rapid annealing are as follows. Heating method: Passage time between directly energized conductor rolls (heating time): 1.5 seconds Maximum temperature: 650°C Atmosphere: air, room temperature The liquid honing conditions are as follows. Honing liquid Commercially available phosphate-based chemical conversion treatment bath for steel Injection pressure: 4.5 Kg/cm 2 No electrolytic treatment All other conditions were the same as in Example 1. After liquid honing, it was washed with water, dried, and then passed through a tension leveler to correct its shape. Table 1 shows the various performances of the obtained steel foil. Example 3 In the same manner as in Example 1, a 0.2 mm annealed plate was rolled into a 30 μm thick foil using a Sendzimer mill.
After electrolytic cleaning, this foil was subjected to the treatment of the present invention. The conditions for rapid annealing are as follows. Heating method: Speed of passage between directly energized conductors (heating time): 2 seconds Maximum temperature: 600°C Atmosphere: air, room temperature The honing conditions after annealing are as follows. Honing liquid Sodium aluminate: 25g/Tartaric acid: 2.5g/PH: 12.1 Temperature: Room temperature Injection pressure: 4Kg/cm 2 Electrolytic treatment after honing...Anodic treatment, current density 10A/dm 2 , treatment time 0.5sec Other conditions is the same as in Example 1. or,
After honing, the shape was corrected using a tension leveler. Table 1 shows the various performances of the obtained product. Example 4 A 100 μm steel foil rolled in the same manner as in Example 1 was subjected to the treatment of the present invention. The rapid annealing conditions are as follows. Heating method: Combination of direct energization and induction heating Induction heating was installed immediately after the inlet conductor roll, and the heating capacity of each was approximately 50/50. Heating time: 1 sec Maximum temperature: 700°C Atmosphere: air, room temperature The subsequent steps are exactly the same as in Example 1. During annealing, there was no arcing at the conductor roll, and a good product was obtained. Table 1 shows the various performances of the product. Example 5 A 100 μm steel foil rolled in the same manner as in Example 1 was subjected to the treatment of the present invention. The rapid annealing conditions are as follows. Heating method: direct energization and auxiliary heating by heating atmosphere Heating time: 1 sec Maximum temperature reached: 700°C Atmosphere: air, 450°C The next liquid honing was carried out in exactly the same manner as in Example 1. A good product was obtained without arcing on the conductor roll. Table 1 shows the various performances of the product. Example 6 In the same manner as in Example 3, an annealed cold-rolled steel sheet with a thickness of 0.2 mm was rolled into a 20 μm foil in a Sendzimer mill and subjected to the treatment of the present invention. The rapid annealing conditions are as follows. Heating method: direct energization and auxiliary heating by heating atmosphere Heating time: 1 sec Maximum temperature reached: 650°C Atmosphere: air, 350°C The following liquid honing was carried out in exactly the same manner as in Example 1. A good product was obtained without arcing on the conductor roll during annealing. Table 1 shows various performances.
Shown below. Comparative Example 1 A TFS-treated steel foil with a thickness of 100 μm was produced according to the current manufacturing method of steel foil by cold rolling. In other words, the thickness of the plate is 0.2mm by the method currently used in the steel industry to manufacture tinplate or TFS blanks.
The annealed cold-rolled steel sheet is further processed by a temper rolling machine to reduce its thickness.
Cold rolled to 100μm. Next, electrolytic chromic acid treatment was performed using continuous TFS production equipment commonly used for TFS production. Table 1 shows the performance of the obtained product. Comparative Example 2 A tinplate with a plate thickness of #25 (tin plated with #25) and a thickness of 0.15 mm was produced in accordance with the tinplate production method currently in use in the steel industry. This tinplate was cold-rolled using a temper rolling mill to form a steel foil with a thickness of 50 μm. Table 1 shows the performance of the obtained product. Comparative Example 3 An original tin plate with a thickness of 0.15 mm was cold rolled using a temper rolling mill to form a steel foil with a thickness of 50 μm. Continuous TFS
I tried to apply electrolytic chromic acid treatment at the manufacturing facility, but
Since the product was unable to be processed due to frequent drawing and breakage, it was cold-rolled and made into a finished product without any processing, and its performance is shown in Table 1. The steel foils of Examples 1 to 6 and Comparative Examples 1 to 3 described above were subjected to performance evaluation tests as steel foils for containers described below. The results are summarized in Table 1. Comparative Example 4 A cold rolled steel foil was degreased using a continuous electrolytic cleaning device in the same manner as in Comparative Example 1, and annealed by the method currently used for box annealing of thin steel sheets. After annealing, an attempt was made to perform liquid honing, but due to baking, unwinding was not possible and a finished product could not be obtained. Comparative Example 5 Instead of box annealing in Comparative Example 4, an attempt was made to anneal using a device currently used for continuous annealing of thin steel sheets, but the annealing was impossible due to frequent contraction and breakage in the annealing furnace.

【表】【table】

【表】 以上の実施例結果から本発明で製造した鋼箔
は、従来法の鋼箔と同一厚みで比較した場合、加
工性において格段に優れ、かつ本発明の方法では
厚み50μm以下のものでも接着性,耐蝕性に優れ
た表面処理を容易に施す事が出来るのに対し、従
来法では100μm以下では表面処理が甚だ困難で生
産性が悪く、50μm以下では殆んど不可能であつ
た。 性能試験項目及び試験方法は次の如くである。 A 加工性 (a) 腰折れ 鋭い角を持つ当金に鋼箔を当て、折り曲げた
ときの腰折れ発生の有無を調べた。 (b) 絞り加工性 直径60mmの円筒絞りを行なつた時、破断を生
じる事なく絞れる最大深さ、及び側壁部のしわ
の発生程度で評価した。 しわの程度は次の如く評点を付けた。 〇:殆んどしわの発生なし △:上端部にややしわ発生、実用上殆んど問題
なし ×:大きなしわ発生、実用不可 B 耐蝕性 (a) 無塗装での耐蝕性 (イ) 湿気槽試験 100×100mm2に剪断した試料を40℃,相対湿度
95%の湿気槽中に10日間吊した時の発錆率を
調べた。 (ロ) 積み重ね発錆試験 100×100mm2に剪断した鋼箔を積み重ね、厚
さ20mm,120×120mm2のベークライトの板の間
にはさみ、固くしばつて40℃,相対湿度85%
の湿気槽中に保管し表面の発錆迄の日数を調
べた。 (b) 塗装後の耐蝕性 (イ) 塗膜下腐蝕試験……湿気槽試験 現在食品缶詰の缶用塗料として一般に用い
らているエポキシ系の塗料を、塗膜量45mg/
dm2になる様塗装したものについて試験し
た。塗装後100×100mm2に切出し、下地に達す
る×印の疵を鋭利なナイフで対角線全体にわ
たつて入れ、40℃相対湿度85%の湿気槽中に
4日間吊し、塗膜下の発錆状況を調べた。 〇:疵部からの糸状錆殆んどなし △: 〃 〃 〃5mm以下 ×: 〃 〃 〃6mm以上、10mm以下 ××: 〃 〃 〃10mm以上 (ロ) 塗膜下腐蝕試験……食塩−クエン酸液浸漬
試験 前項(イ)と同様に塗装した鋼箔より50×50mm2
の試片を切り出し、対角線全体にわたり鋭利
なナイフで×印の下地に達する疵を入れ、食
塩及びクエン酸をそれぞれ1.5%含む55℃の
水溶液に96時間浸漬した後の腐蝕状況及び塗
膜の接着状況をテーピングにより調べた。 〇:疵部の腐蝕広がり及び塗膜剥離なし △: 〃 〃 0.5mm以下、塗膜剥離
小 ×: 〃 〃 0.5mm以上1mm以下、
塗膜剥離中 ××: 〃 〃 1mm以上、 大〃
C 塗膜の密着性 前項B−(b)−(イ)と同様にして塗装した鋼箔
を、100℃に加熱した純水中に1時間浸漬後、
直ちに鋭利なナイフで1mm間隔の下地に達する
ゴバン目を入れ、テーピングテストを行い、塗
膜の剥離状況を調べた。評価は、塗膜が剥離し
た面積率(%)で行なつた。 D プラスチツクフイルムの接着性 (a) ポリエチレンテレフタレートフイルムの接着
性 熱可塑性、ポリエステル系の接着剤を用い、
厚さ30μのポリエチレンテレフタレートを加熱
ロールを用いて圧着する事により、鋼箔と貼り
合せた時の接着性を次の方法で評価した。 (イ) ポリエチレンテレフタレート側が内面にな
る様にして、径60mmの円筒絞りを行い、フイ
ルムの剥離の有無を調べた。 (ロ) 100℃の純水に1時間浸漬し、直ちに鋭利
なナイフで2mm間隔の下地に達するゴバン目
を入れ、テーピングしたときの、ポリエチレ
ンテレフタレートの剥離面積率を調べた。 (b) ポリプロピレンフイルムの接着性 前項(a)と同様にしてポリプロピレンを貼り合
せた時の接着性を評価した。 (発明の効果) 本発明によつて冷間圧延された鋼箔の加工性が
向上し、あるいは加工性と同時に耐蝕性及び有機
樹脂との密着性が向上し、また一方では冷間圧延
法による高生産性に基づく低コスト化と相俟つて
鋼箔の用途を拡大することができる。
[Table] From the results of the above examples, the steel foil manufactured by the present invention has significantly superior workability when compared with the steel foil produced by the conventional method at the same thickness, and the method of the present invention can be used even when the thickness is 50 μm or less. While it is possible to easily perform surface treatment with excellent adhesion and corrosion resistance, with conventional methods, surface treatment is extremely difficult and poor in productivity when the diameter is less than 100 μm, and it is almost impossible to treat the surface when the diameter is less than 50 μm. The performance test items and test methods are as follows. A. Workability (a) Waist bending A steel foil was applied to a metal with sharp edges, and the presence or absence of buckling when bent was examined. (b) Drawing workability When drawing a cylinder with a diameter of 60 mm, evaluation was made based on the maximum depth that could be drawn without breaking and the degree of wrinkles on the side wall. The degree of wrinkles was rated as follows. 〇: Almost no wrinkles △: Slight wrinkles on the top edge, almost no problem in practical use ×: Large wrinkles, impractical B Corrosion resistance (a) Corrosion resistance without painting (a) Humidity tank Test Samples sheared into 100 x 100 mm2 were heated at 40℃ and relative humidity.
The rate of rust formation was investigated when suspended in a 95% humidity chamber for 10 days. (b) Stacked rust test 100 x 100 mm 2 sheared steel foils were stacked, sandwiched between 20 mm thick and 120 x 120 mm 2 Bakelite plates, tightly tied together at 40°C and relative humidity 85%.
The samples were stored in a humidity chamber and the number of days until surface rust appeared was determined. (b) Corrosion resistance after painting (a) Corrosion test under the paint film...humidity tank test An epoxy paint, which is currently used as a paint for canned food, was applied in a coating amount of 45mg/
Tests were conducted on those coated to give a dm2 . After painting, cut it into a 100 x 100 mm 2 piece , use a sharp knife to cut out the scratches marked with an x that reach the base material across the entire diagonal line, and hang it in a humidity chamber at 40°C and relative humidity of 85% for 4 days to check for rust under the paint film. I investigated the situation. 〃: Almost no filiform rust from scratches △: 〃 〃 〃5mm or less Acid solution immersion test 50 x 50 mm 2 from steel foil coated in the same manner as in the previous section (a)
Cut out a specimen, make a scratch along the entire diagonal line with a sharp knife that reaches the base of the x mark, and immerse it in an aqueous solution containing 1.5% each of common salt and citric acid at 55°C for 96 hours. Corrosion status and adhesion of the paint film. The situation was investigated by taping. 〃: No spread of corrosion in the flaw and no peeling of the paint film △: 〃 〃 0.5 mm or less, slight peeling of the paint film ×: 〃 〃 0.5 mm or more and 1 mm or less,
Paint film peeling XX: 〃 〃 1mm or more, large
C Paint film adhesion After immersing the steel foil coated in the same manner as in the previous section B-(b)-(a) in pure water heated to 100℃ for 1 hour,
Immediately, holes were made with a sharp knife reaching the base at 1 mm intervals, a taping test was performed, and the peeling status of the paint film was examined. The evaluation was based on the area ratio (%) where the coating film was peeled off. D Adhesion of plastic film (a) Adhesion of polyethylene terephthalate film Using thermoplastic, polyester adhesive,
Polyethylene terephthalate with a thickness of 30 μm was bonded using a heated roll, and the adhesion when bonded to steel foil was evaluated using the following method. (a) A cylinder with a diameter of 60 mm was drawn with the polyethylene terephthalate side facing the inner surface, and the presence or absence of peeling of the film was examined. (b) The peeling area ratio of the polyethylene terephthalate was investigated when it was immersed in pure water at 100°C for 1 hour, and then immediately cut with a sharp knife to reach the base at 2 mm intervals and taped. (b) Adhesiveness of polypropylene film Adhesion when polypropylene was bonded was evaluated in the same manner as in the previous section (a). (Effects of the invention) According to the present invention, the workability of cold-rolled steel foil is improved, or at the same time the workability and corrosion resistance and adhesion with organic resin are improved, and on the other hand, the cold-rolling method Coupled with cost reduction based on high productivity, the applications of steel foil can be expanded.

Claims (1)

【特許請求の範囲】 1 冷間圧延によつて圧延さた板厚10〜100μmの
鋼箔をそのまま、または脱脂後に直接通電加熱、
若しくは電気誘導加熱、あるいはこれらの組合せ
で再結晶温度以上に連続的に加熱焼鈍し、次いで
液体ホーニング、またはドライシヨツトピーニン
グを施して調質処理することを特徴とする加工性
と接着性に優れた鋼箔の製造法。 2 液体ホーニングを施すに際して化成処理剤と
研磨剤を含む液を用いてホーニング中に化成処理
被膜を形成せしめる特許請求の範囲第1項記載の
加工性と接着性に優れた鋼箔の製造方法。 3 液体ホーニングを施した後、引続きホーニン
グ液中で電解処理を行い化成処理被膜を形成せし
める特許請求の範囲第1項記載の加工性と接着性
に優れた鋼箔の製造方法。 4 ドライシヨツトピーニング後に化成処理を施
す特許請求の範囲第1項記載の加工性と接着性に
優れた鋼箔の製造方法。
[Scope of Claims] 1 Steel foil with a thickness of 10 to 100 μm that has been cold rolled is heated as it is or after degreasing,
Or, it has excellent workability and adhesion, characterized by continuous heating annealing above the recrystallization temperature using electric induction heating, or a combination of these, followed by liquid honing or dry shot peening for tempering treatment. manufacturing method of steel foil. 2. A method for producing a steel foil with excellent workability and adhesion according to claim 1, wherein a liquid honing process is performed using a liquid containing a chemical conversion treatment agent and an abrasive to form a chemical conversion treatment film during the honing process. 3. A method for producing a steel foil with excellent workability and adhesive properties as claimed in claim 1, wherein after liquid honing, electrolytic treatment is performed in a honing solution to form a chemical conversion film. 4. A method for producing a steel foil with excellent workability and adhesive properties as set forth in claim 1, wherein a chemical conversion treatment is performed after dry shot peening.
JP9736585A 1985-05-08 1985-05-08 Production of steel foil having excellent workability and adhesiveness Granted JPS61257420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9736585A JPS61257420A (en) 1985-05-08 1985-05-08 Production of steel foil having excellent workability and adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9736585A JPS61257420A (en) 1985-05-08 1985-05-08 Production of steel foil having excellent workability and adhesiveness

Publications (2)

Publication Number Publication Date
JPS61257420A JPS61257420A (en) 1986-11-14
JPH0585618B2 true JPH0585618B2 (en) 1993-12-08

Family

ID=14190475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9736585A Granted JPS61257420A (en) 1985-05-08 1985-05-08 Production of steel foil having excellent workability and adhesiveness

Country Status (1)

Country Link
JP (1) JPS61257420A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790272B2 (en) * 1987-06-09 1995-10-04 日本酸素株式会社 Method for manufacturing U-shaped tube made of stainless steel
JPH02243713A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Fine wire for reinforcing rubber and elastomer and manufacture thereof
JP7107327B2 (en) * 2019-01-16 2022-07-27 Jfeスチール株式会社 Press-molded product manufacturing method and press-molded product

Also Published As

Publication number Publication date
JPS61257420A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
JP2922926B2 (en) Manufacturing method of alloyed galvanized steel strip
WO2012036202A1 (en) Steel plate for containers and manufacturing method for same
EP4353860A1 (en) Pre-coated steel plate for hot forming and preparation method therefor, and hot-formed steel member and application thereof
JPH0585618B2 (en)
JPS6141990B2 (en)
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
JPS61284530A (en) Manufacture of steel foil superior in workability, adhesiveness and corrosion resistance
JPH02258962A (en) Equipment for producing galvanizing steel sheet having excellent weldability
JPS60224791A (en) Installation for producing double-layered galvanized steel sheet
JPS61243120A (en) Production of steel foil having excellent workability and adhesiveness
EP4118257B1 (en) Method for passivating a tinplate strip and apparatus for producing said passivated tinplate strip
JP2947633B2 (en) Nickel / chromium-containing galvanized steel sheet / steel material for coating base and its manufacturing method
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JPH09263964A (en) Manufacture of hot-dip galvannealed steel sheet excellent in surface property
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JP2000080499A (en) Chemical treating method for nickel plated steel sheet
JPS62103397A (en) Production of steel sheet for can making having excellent adhesiveness of coated film
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPH04221053A (en) Production of galvanized stainless steel material
JPH02265740A (en) Manufacture of polyester resin film-laminated steel sheet
JPH10119182A (en) Thermoplastic polyester resin-coated surface-treated steel plate and its manufacture
JP3140305B2 (en) Manufacturing method of tin-coated steel sheet with excellent paint adhesion
CN115190922A (en) Method for producing laminated tin-plated steel, laminated tin-plated steel produced thereby and use thereof
CN108754382A (en) A kind of continuous producing method of steel band plating magnalium zinc chrome
JPS61288081A (en) Chromated highly corrosion resistant steel sheet having superior paintability and corrosion resistance