JPH0585614B2 - - Google Patents

Info

Publication number
JPH0585614B2
JPH0585614B2 JP59213322A JP21332284A JPH0585614B2 JP H0585614 B2 JPH0585614 B2 JP H0585614B2 JP 59213322 A JP59213322 A JP 59213322A JP 21332284 A JP21332284 A JP 21332284A JP H0585614 B2 JPH0585614 B2 JP H0585614B2
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
cooling
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59213322A
Other languages
Japanese (ja)
Other versions
JPS6191326A (en
Inventor
Satoshi Araki
Tsunetoshi Takahashi
Yukio Onoyama
Yasuo Otoguro
Keiichi Oomura
Mikio Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21332284A priority Critical patent/JPS6191326A/en
Publication of JPS6191326A publication Critical patent/JPS6191326A/en
Publication of JPH0585614B2 publication Critical patent/JPH0585614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、微細結晶組織を有して高温における
耐食性に優れかつ高温クリープ強度の高いオース
テナイト系ステンレス鋼管の製造方法に関するも
のである。 〔従来の技術〕 SUS321H及びSUS347H等のいわゆる安定化型
オーステナイトステンレス鋼は、一般に優れた高
温特性を有するため、火力発電用ボイラチユーブ
等の腐食環境で長時間使用する高温強度部材とし
て多用されている。これらの鋼の必要性能は、加
工性、溶接性等もさることながら、特に高温クリ
ープ強さ及び高温での耐食性の2点に集約され
る。ところが、一般に、この両特性を向上させる
手段は相反する場合が多い。 例えば、耐水蒸気酸化性は結晶粒径が小さいほ
ど向上するが、結晶粒径を小さくするとクリープ
強度は低下する。ボイラチユーブでは内面の耐水
蒸気酸化性が不充分で内面スケールが剥離しやす
いと、管が閉塞されその部分が高温となるため、
実質的な強度低下が生ずるのに加え、外面の高温
腐食による肉減りも助長されて、管の噴破等のト
ラブルが発生しやすくなる。耐水蒸気酸化性は、
ASTM結晶粒度番号7以上の細粒であれば問題
ないが、この程度の結晶粒径のものは高温強度が
設計基準に達しないことがある。 またCrの添加は高温での耐食性向上に有効で
はあるが、組織安定性を劣化させσ相などのクリ
ープ強度に対して有害な相形成を助長する。 さらに、こうした合金元素の調整あるいは特殊
成分の添加は、コストアツプに加え、加工性、溶
接性等他の性質に及ぼす影響を検討する必要があ
り、使用実績が重視されるボイラチユーブ材にと
つては有利な解決法とは言い難い。 そこで従来の成分範囲でこの問題の解決を計る
必要があり、その1つの手法としてボイラチユー
ブでは内表面にシヨツトピーニングなどによつて
冷間加工を加え表層部のみを細粒にする手法が例
えば特開昭58−39733号公報により提案されてい
る。しかし、この手法も、ボイラ組立時の溶接施
工後に行う焼鈍によつて成長を引き起し効果を消
失する可能性がある。 このように、高温強度と高温での耐食性を同時
に満足するオーステナイト系ステンレス鋼を得る
ことは技術的にかなり困難な要求である。しか
し、今後ボイラ等の熱機関の稼動条件は、高効率
化を目指して、高温高圧化する傾向にあり、材料
の使用環境はさらに厳しくなると考えられる。 また微細結晶粒組織でなおかつ高温強度の優れ
たステンレス鋼ボイラ管の製造方法としては、た
とえば特開昭58−87224号公報記載の方法が提案
されている。この方法はC:0.06〜0.09%、Si:
0.30〜0.90%、Mn:0.5〜2.0%、Ni:9.00〜13.00
%、Cr:17.00〜20.00%、Nb:8×C%+0.03%
〜1.0%を含有し、必要に応じじてN:0.040〜
0.080%を含むオーステナイトステンレス鋼ビレ
ツトを1100〜1300℃で熱押後、10%以上の冷間加
工を行ない、しかるのちに1120〜1250℃で加熱−
急冷してボイラ管を製造するものである。 しかしこの方法は冷却速度が何ら規定されてい
ないため、場合によつては析出物が粗大化し、結
晶粒成長を抑制する効果が不十分な可能性もあ
る。さらに、最終溶体化温度が前工程の温度より
も高くなる場合には、析出物の再固溶が起り、結
晶粒は著しく成長しやすくなる。 さらに、特開昭58−167726号公報記載の方法も
提案されている。この方法は、Ti:0.15〜0.5wt
%、Nb:0.3〜1.5wt%の1種又は2種を含んだ
オーステナイト系ステンレス鋼の冷間加工工程に
おいて、最終軟化温度を1100〜1350℃に設定して
加熱し冷却した後、20%以上の冷間加工を加え、
さらにこれについて1070〜1300℃でかつ最終軟化
温度より30℃以上低い温度に加熱し、空冷以上の
冷却速度で冷却する最終熱処理を施すことにより
ボイラー管を製造するものである。この方法で
は、最低3回の冷間加工が必要であるため、工程
は複雑となり非常にコストの高い製造方法とな
る。 〔発明が解決しようとする問題点〕 耐水蒸気酸化性は、結晶粒径が小さい程向上す
るため、細粒鋼を得るためには、最終溶体化温度
が再結晶温度以上で低い程良い。一方、高温クリ
ープ強度を向上するためには、Nb,Ti等MC型
炭化物形成元素を出来るだけ多く素地に固溶した
方が良いため、最終溶体化温度は高い程良い。こ
のように、耐水蒸気酸化性を満足させるための手
段と高温クリープ強度を満足させるための手段と
は相反する。 本発明は、高温溶体化処理により高温クリープ
強度を十分確保し、尚且つ細粒鋼で耐水蒸気酸化
性をも具備した高温用オーステナイト系ステンレ
ス鋼管の製造方法を提供しようとするものであ
る。 〔問題点を解決するための手段〕 本発明は、重量%にてCを0.04〜0.10%含有
し、NbとTiの1種または2種を(Nb+Ti)で
C含有量の2倍以上1.0%以下含むオーステナイ
ト系ステンレス鋼の鋳片を、加熱して巨大炭化物
を固溶させたのち分塊圧延し、任意の冷却速度で
冷却し、1230℃以上で熱間押出加工し、熱間押出
加工後の冷却を、500℃までの平均冷却速度を0.2
℃/sec以上として行い、冷間加工し、1200℃以
上で固溶化熱処理することを特徴とする高温用オ
ーステナイト系ステンレス鋼管の製造方法。 本発明にいうオーステナイト系ステンレス鋼と
は、前述のごとくいわゆる安定化型のオーステナ
イトステンレス鋼を指し、SUS321H,SUS347H
等のJISに規定された成分範囲に準じたものであ
ればいずれも本発明の対象となりうる。 対象とするオーステナイト系ステンレス鋼の鋳
片は、巨大炭化物を固溶させる熱処理を行つたの
ち分塊圧延し、丸鋼にしたのち加熱して熱間押出
加工を行うので、造塊などにより製造した比較的
大断面の鋳片である。分塊圧延後の冷却は、大気
中での放冷すなわち空冷、ブロワーなどで風を吹
きつける強制空冷など、いかなる手段をいてもよ
い。 熱間押出加工後の冷却は、500℃までの平均冷
却速度を0.2℃/sec.以上で行う。 熱間押出加工され冷却された材料は、公知の手
段により脱スケール処理を行い、冷間加工を行
い、1200℃以上で固溶化熱処理を行つて製品とす
る。冷間加工は、最終製品サイズまで中間熱処理
なしに行うこともでき、また中間熱処理を行うこ
ともできる。冷間加工後の最終の固溶化熱処理は
1200℃以上で行い、炭化物が析出しない急速冷却
を行うのが望ましい。 〔作用〕 まず本発明においてCならびにNb及びTiにつ
いて成分範囲を限定したのは製造工程中ならびに
最終成品でNbC及びTiCの少くとも1種を析出し
うるものとするためであり、Nb,Tiの複合添加
の場合は原子比でNb/Ti=1が望ましい。 この場合Cは高温強度を確保するためになくて
はならない元素であり少くとも0.04%以上必要で
あるが、一方添加量が多いとCr炭化物を形成す
ることによりCrを消費して耐食性を低下させる
ので上限を0.10%とした。 Nb及びTiは高温強化元素であり、高温強度確
保のためには少くとも2×C%以上添加する必要
があるが多量の添加は溶接性、加工性を劣化させ
るおそれがある上コストをも上昇させるため上限
1.0%とした。 鋳片の加熱は、鋳造時に生成した網目状の巨大
炭窒化物を素地に固溶させるものであり、この処
理により高温強度に関与するNb,Ti,C量を増
加させ製品のクリープ強度を向上させる。しか
し、引き続いて行う分塊圧延が910〜1000℃で終
了するので、この間に比較的大きい炭化物が析出
するため、冷却後1230℃以上で熱間押出加工を行
うことによつて炭化物を再固溶させる。分塊圧延
終了時には、MC型炭化物の多くが析出している
ので、該圧延後の冷却条件は製品の材質にあまり
影響しない。 熱間押出加工後の冷却は、炭化物が析出しない
かまたは析出しても微細な炭化物となる条件で行
うが、このときの条件は500℃までの平均冷却速
度が0.2℃/sec.以上とする。冷却速度を規定した
温度範囲の下限値を500℃とするのは、製造工程
においては、これ未満の温度では事実上炭化物の
析出は起こらないと考えられるためである。 このようにして得られた熱間押出加工後の材料
を冷間加工し、しかるのち固溶化熱処理を施す
と、熱間押出加工後の冷却時にNb,Tiの炭化物
が殆んど析出しなかつた場合は、冷間加工後の固
溶化熱処理の昇温時にNb,Tiの微細な炭化物が
均一に析出するので再結晶が遅延し、1200℃以上
の高温の固溶化熱処理を行つても微細な再結晶粒
が得られる。また、熱間押出加工後の冷却時に
Nb,Tiの微細な炭化物が析出した場合は、冷間
加工後の固溶化熱処理の際この微細な炭化物の作
用によつて同様に微細な再結晶粒が得られる。 冷間加工後の固溶化熱処理において、冷間加工
を中間熱処理なしに1回の工程で行う場合、ある
いは中間熱処理をはさんで複数回の工程で行う場
合のいずれについても、最終の固溶化熱処理の温
度が高い程Nb,Ti,Cの固溶量が増加し、その
後炭化物が析出しない急速冷却を行うことによつ
て高温クリープ強度の高い製品が得られる。ここ
で、固溶化熱処理後の冷却速度が炭化物が析出す
る程度に遅い場合には、製品内のNb,Ti,Cの
固溶量が減少するのでクリープ強度が低下する。
なお、製品の結晶粒度は主に固溶化熱処理温度で
決まり、固溶化熱処理後の冷却速度には依存しな
いものの、上記Nb,Ti,Cの固溶量を確保し、
高クリープ強度化をはかるために急速冷却を行う
のである。 本発明法によると、前述のように冷間加工後の
固溶化熱処理の昇温の際に析出するか、あるいは
該熱処理前に存在する均一に分散した微細な炭化
物の作用によつて、再結晶が遅延するため、Nb,
Ti,Cの固溶量を増加させるような高温で最終
の固溶化熱処理を行つても、従来法のような結晶
粒の粗大化が起らず、微細な再結晶粒が得られ
る。したがつて、本発明法によれば高温クリープ
強度が高く、かつ結晶粒が微細で耐水蒸気酸化性
もすぐれたオーステナイト系ステンレス鋼管が得
られる。 〔実施例〕 供試材は第1表に示す化学成分のS,T,Uの
3鋼種でいずれも本発明の対象鋼である。S,T
はそれぞれJIS規格内の成分を有するSUS347H,
SUS321H、UはNbとTi複合添加鋼である。こ
れらの3鋼種について、第1図に示す製造工程に
より、外径50mmφ、肉厚8mmの鋼管を製造した。 第1図のaは従来例、b,cが本発明例であ
る。造塊後の鋳片を1300℃に加熱し、網目状の巨
大炭窒化物を固溶させたのち、1200℃に加熱し、
分塊圧延し、空冷した。ついでビレツト加工し、
加熱し、図示各温度で熱間押出加工し、空冷
(500℃までの平均冷却速度2℃/sec.)し、脱ス
ケールし、30%冷間引抜を行い、1200℃で固溶化
熱処理し水冷(500℃までの平均冷却速度100℃/
sec.)した。cは、冷間引抜工程を中間熱処理を
入れて2回行つた。 最終固溶化熱処理後の各供試材S1〜S5,T1〜
T3,U2〜U3から切出し、製作した試験片を用
い、650℃および750℃にてクリープ破断試験を行
い、その結果の平均値より外挿して求めた105hr
クリープ破断強度を、結晶粒度とともに第2表に
示す。第2表中S0およびT0は、ASMEの許容応
力値から換算したTp347HおよびTp321H鋼にお
ける基準値である。 本発明法により製造した鋼管は、いずれも結晶
粒度No.が7以上の微細粒組織を有し、耐水蒸気酸
化性が良好である。従来法により製造したたS1
およびT1は、クリープ強度はASMEの基準値を
満足するが、冷間引抜後の固溶化熱処理時に結晶
粒が粗大化し、耐水蒸気酸化性が不良である。本
発明法によつて製造した鋼管は、いずれも結晶粒
度No.7以上の細粒にもかかわらず、S鋼
(SUS347H)では、従来法による結晶粒度No.4.8
と同等またはそれ以上、T鋼(SUS321H)は従
来法による結晶粒度No.3.9と同等またはそれ以上
のクリープ破断強度を示し、ASMEの許容引張
応力値から換算した105hr破断強さをもはるかに
凌いでいる。更に本発明法を適用したU鋼も結晶
粒度No.7.1〜7.5の微細結晶粒組織であるにもかか
わらず、従来法による結晶粒度No.4.8のSUS347H
と同等以上のクリープ破断強度を有し、ASME
の許容引張応力の換算値を上回つている。 なお、本発明法の第1図b,cについて、熱間
押出後水冷した場合も、前記空冷の場合とほぼ同
様の結果が得られた。
[Industrial Application Field] The present invention relates to a method for manufacturing an austenitic stainless steel pipe having a fine crystal structure, excellent corrosion resistance at high temperatures, and high high temperature creep strength. [Prior art] So-called stabilized austenitic stainless steels such as SUS321H and SUS347H generally have excellent high-temperature properties and are therefore often used as high-temperature strength members used for long periods in corrosive environments such as boiler tubes for thermal power generation. . The required performances of these steels include not only workability and weldability, but also high-temperature creep strength and high-temperature corrosion resistance. However, in general, means for improving both of these characteristics are often contradictory. For example, steam oxidation resistance improves as the crystal grain size decreases, but creep strength decreases as the crystal grain size decreases. In a boiler tube, if the internal surface has insufficient steam oxidation resistance and the internal scale easily peels off, the tube will become blocked and the area will become high temperature.
In addition to a substantial decrease in strength, the thinning of the outer surface due to high-temperature corrosion is promoted, making it more likely that problems such as pipe blowouts will occur. Steam oxidation resistance is
Fine grains with ASTM grain size number 7 or higher pose no problem, but with grains of this size, the high temperature strength may not reach the design standard. Furthermore, although the addition of Cr is effective in improving corrosion resistance at high temperatures, it deteriorates the structural stability and promotes the formation of phases such as σ phase that are harmful to creep strength. Furthermore, adjusting alloying elements or adding special ingredients not only increases costs, but it is also necessary to consider the effects on other properties such as workability and weldability. This is hardly an advantageous solution. Therefore, it is necessary to try to solve this problem within the conventional range of ingredients, and one method is to cold-work the inner surface of the boiler tube by shot peening, etc., to make only the surface layer fine. This is proposed in Japanese Patent Application Laid-Open No. 58-39733. However, this method may also cause growth due to the annealing performed after welding during boiler assembly and may lose its effectiveness. As described above, it is technically quite difficult to obtain an austenitic stainless steel that simultaneously satisfies high-temperature strength and high-temperature corrosion resistance. However, in the future, the operating conditions for heat engines such as boilers will tend to be higher in temperature and pressure in order to achieve higher efficiency, and the environment in which materials are used is expected to become even more severe. Furthermore, as a method for manufacturing stainless steel boiler tubes having a fine grain structure and excellent high-temperature strength, a method described in, for example, Japanese Patent Laid-Open No. 87224/1984 has been proposed. This method uses C: 0.06-0.09%, Si:
0.30~0.90%, Mn: 0.5~2.0%, Ni: 9.00~13.00
%, Cr: 17.00-20.00%, Nb: 8 x C% + 0.03%
Contains ~1.0%, N: 0.040~ as necessary
After hot pressing an austenitic stainless steel billet containing 0.080% at 1100 to 1300℃, cold working to 10% or more, and then heating at 1120 to 1250℃.
Boiler tubes are manufactured by rapid cooling. However, since the cooling rate is not specified in this method, the precipitates may become coarse in some cases, and the effect of suppressing crystal grain growth may be insufficient. Furthermore, if the final solution temperature becomes higher than the temperature in the previous step, solid solution of the precipitate occurs again, and crystal grains become significantly more likely to grow. Furthermore, a method described in Japanese Patent Application Laid-open No. 167726/1983 has also been proposed. This method uses Ti: 0.15~0.5wt
%, Nb: In the cold working process of austenitic stainless steel containing one or two types of 0.3 to 1.5 wt%, after heating and cooling with the final softening temperature set at 1100 to 1350 °C, 20% or more Adding cold processing of
Furthermore, boiler tubes are manufactured by subjecting this to a final heat treatment of heating to 1070 to 1300°C and at least 30°C lower than the final softening temperature, and cooling at a cooling rate higher than that of air cooling. Since this method requires cold working at least three times, the process becomes complicated and the manufacturing cost becomes very high. [Problems to be Solved by the Invention] Steam oxidation resistance improves as the grain size decreases, so in order to obtain fine grain steel, the lower the final solution temperature is at or above the recrystallization temperature, the better. On the other hand, in order to improve the high-temperature creep strength, it is better to incorporate as many MC-type carbide-forming elements as possible, such as Nb and Ti, into the base material, so the higher the final solution temperature, the better. In this way, the means for satisfying steam oxidation resistance and the means for satisfying high temperature creep strength are contradictory. The present invention aims to provide a method for producing a high-temperature austenitic stainless steel pipe that has sufficient high-temperature creep strength through high-temperature solution treatment and also has steam oxidation resistance due to fine-grained steel. [Means for solving the problem] The present invention contains 0.04 to 0.10% C by weight, and one or both of Nb and Ti (Nb+Ti) is 1.0% or more twice the C content. A slab of austenitic stainless steel containing the following is heated to dissolve giant carbides, then bloomed, cooled at an arbitrary cooling rate, hot extruded at 1230℃ or higher, and after hot extrusion cooling, average cooling rate up to 500℃ 0.2
1. A method for producing a high-temperature austenitic stainless steel pipe, which comprises performing cold working at a temperature of 1200°C or higher, followed by solution heat treatment at 1200°C or higher. As mentioned above, the austenitic stainless steel referred to in the present invention refers to the so-called stabilized austenitic stainless steel, including SUS321H and SUS347H.
Any material that complies with the component range specified in JIS such as JIS can be covered by the present invention. The target austenitic stainless steel slabs are heat-treated to dissolve giant carbides, then bloomed and rolled into round steel, which is then heated and hot extruded, so it is manufactured by ingot making. It is a slab with a relatively large cross section. Cooling after blooming may be carried out by any means such as cooling in the atmosphere, that is, air cooling, or forced air cooling by blowing air with a blower or the like. Cooling after hot extrusion processing is performed at an average cooling rate of 0.2°C/sec or more up to 500°C. The hot extruded and cooled material is descaled by known means, cold worked, and solution heat treated at 1200°C or higher to produce a product. Cold working can be carried out to the final product size without intermediate heat treatment or with intermediate heat treatment. The final solution heat treatment after cold working is
It is desirable to conduct the process at 1200°C or higher and to perform rapid cooling to prevent carbide precipitation. [Operation] First, in the present invention, the range of components for C, Nb, and Ti is limited so that at least one of NbC and TiC can be precipitated during the manufacturing process and in the final product. In the case of composite addition, the atomic ratio of Nb/Ti is preferably 1. In this case, C is an indispensable element to ensure high-temperature strength and requires at least 0.04%, but on the other hand, if too much is added, Cr is consumed by forming Cr carbides, which reduces corrosion resistance. Therefore, the upper limit was set at 0.10%. Nb and Ti are high-temperature strengthening elements, and in order to ensure high-temperature strength, it is necessary to add at least 2×C% or more, but adding large amounts may deteriorate weldability and workability, and increase costs. upper limit to
It was set at 1.0%. Heating the slab is to dissolve the network-like giant carbonitrides generated during casting into the base material, and this treatment increases the amounts of Nb, Ti, and C that are involved in high-temperature strength, improving the product's creep strength. let However, since the subsequent blooming rolling ends at 910 to 1000℃, relatively large carbides precipitate during this time, so hot extrusion processing is performed at 1230℃ or higher after cooling to redissolve the carbides. let At the end of blooming rolling, most of the MC type carbides have precipitated, so the cooling conditions after rolling do not have much effect on the material quality of the product. Cooling after hot extrusion processing is carried out under conditions where carbide does not precipitate, or even if it precipitates, it becomes fine carbide, but the conditions at this time are such that the average cooling rate up to 500°C is 0.2°C/sec or more. . The lower limit of the temperature range that defines the cooling rate is set at 500°C because it is considered that carbide precipitation does not actually occur at temperatures lower than this in the manufacturing process. When the material thus obtained after hot extrusion was cold worked and then subjected to solution heat treatment, almost no carbides of Nb and Ti precipitated during cooling after hot extrusion. In this case, fine carbides of Nb and Ti precipitate uniformly when the temperature is raised during solution heat treatment after cold working, which delays recrystallization. Crystal grains are obtained. Also, during cooling after hot extrusion processing,
If fine carbides of Nb and Ti are precipitated, similarly fine recrystallized grains can be obtained by the action of these fine carbides during solution heat treatment after cold working. In solution heat treatment after cold working, whether cold working is performed in one step without intermediate heat treatment or in multiple steps with intermediate heat treatment in between, final solution heat treatment is required. The higher the temperature, the more the amount of solid solution of Nb, Ti, and C increases, and by subsequently performing rapid cooling to prevent carbide precipitation, a product with high high-temperature creep strength can be obtained. Here, if the cooling rate after the solution heat treatment is slow enough to cause carbide precipitation, the amount of solid solution of Nb, Ti, and C in the product decreases, resulting in a decrease in creep strength.
Although the crystal grain size of the product is mainly determined by the solution heat treatment temperature and does not depend on the cooling rate after the solution heat treatment, it is important to ensure the solid solution amount of Nb, Ti, and C mentioned above.
Rapid cooling is performed to increase creep strength. According to the method of the present invention, as mentioned above, precipitation occurs during temperature rise in solution heat treatment after cold working, or recrystallization occurs due to the action of uniformly dispersed fine carbides that exist before the heat treatment. is delayed, so Nb,
Even when the final solution heat treatment is performed at a high temperature that increases the amount of Ti and C in solid solution, coarsening of crystal grains does not occur as in conventional methods, and fine recrystallized grains can be obtained. Therefore, according to the method of the present invention, an austenitic stainless steel pipe with high high temperature creep strength, fine crystal grains, and excellent steam oxidation resistance can be obtained. [Example] The test materials were three types of steel, S, T, and U, with chemical compositions shown in Table 1, all of which are target steels of the present invention. S,T
are SUS347H with components within JIS standards, respectively.
SUS321H and U are Nb and Ti composite added steels. For these three steel types, steel pipes with an outer diameter of 50 mmφ and a wall thickness of 8 mm were manufactured by the manufacturing process shown in FIG. In FIG. 1, a shows a conventional example, and b and c show an example of the present invention. The cast slab after ingot formation is heated to 1300℃ to dissolve the network-like giant carbonitrides, and then heated to 1200℃,
It was bloomed and air cooled. Then billet processing,
Heating, hot extrusion processing at each temperature shown, air cooling (average cooling rate 2°C/sec. up to 500°C), descaling, 30% cold drawing, solution heat treatment at 1200°C, and water cooling. (Average cooling rate 100℃ to 500℃/
sec.) did. In case c, the cold drawing process was performed twice with an intermediate heat treatment. Each sample material S1~S5, T1~ after final solution heat treatment
Creep rupture tests were conducted at 650℃ and 750℃ using test pieces cut from T3, U2~U3, and 10 5 hr was determined by extrapolating from the average value of the results.
The creep rupture strength is shown in Table 2 along with the grain size. S0 and T0 in Table 2 are standard values for Tp347H and Tp321H steels converted from ASME allowable stress values. All of the steel pipes manufactured by the method of the present invention have a fine grain structure with a grain size number of 7 or more, and have good steam oxidation resistance. S1 manufactured by conventional method
and T1, the creep strength satisfies the ASME standard value, but the crystal grains become coarse during the solution heat treatment after cold drawing, and the steam oxidation resistance is poor. Although the steel pipes manufactured by the method of the present invention all have fine grains with a grain size of No. 7 or more, the S steel (SUS347H) manufactured by the conventional method has a grain size of No. 4.8.
T steel (SUS321H) shows a creep rupture strength equal to or higher than that of grain size No. 3.9 by conventional method, and far exceeds the 10 5 hr rupture strength calculated from the ASME allowable tensile stress value. surpassed. Furthermore, although the U steel to which the method of the present invention is applied also has a fine grain structure with a grain size of No. 7.1 to 7.5, SUS347H with a grain size of No. 4.8 obtained by the conventional method
It has creep rupture strength equal to or higher than ASME
exceeds the equivalent value of allowable tensile stress. Regarding FIGS. 1b and 1c of the method of the present invention, when water cooling was performed after hot extrusion, almost the same results as in the case of air cooling were obtained.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明により、冷間引抜加工後従来法と同じ最
終固溶化熱処理で、MC炭化物を十分母地に固溶
化し、かつ微細粒組織を得ることが可能になつた
ため、クリープ破断強度は、従来法と同等もしく
はそれ以上であり、かつ、耐水蒸気酸化性の良好
なオーステナイト系ステンレス鋼管を製造出来る
ようになり、従つて本発明は産業上に裨益すると
ころが極めて大である。
According to the present invention, it is possible to sufficiently dissolve MC carbide in the matrix and obtain a fine grain structure using the same final solution heat treatment as in the conventional method after cold drawing, so the creep rupture strength is lower than that in the conventional method. It is now possible to manufacture an austenitic stainless steel pipe that is equivalent to or better than , and has good steam oxidation resistance. Therefore, the present invention is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例を示すものであり、aは従来
例、b,cは本発明例である。
FIG. 1 shows an example, in which a is a conventional example and b and c are examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にてCを0.04〜0.10%含有し、Nbと
Tiの1種または2種を(Nb+Ti)でC含有量の
2倍以上1.0%以下含むオーステナイト系ステン
レス鋼の鋳片を、加熱して巨大炭化物を固溶させ
たのち分塊圧延し、任意の冷却速度で冷却し、
1230℃以上で熱間押出加工し、熱間押出加工後の
冷却を、500℃までの平均冷却速度を0.2℃/sec
以上として行い、冷間加工し、1200℃以上で固溶
化熱処理することを特徴とする高温用オーステナ
イト系ステンレス鋼管の製造方法。
1 Contains 0.04 to 0.10% C by weight, and Nb and
An austenitic stainless steel slab containing one or two types of Ti (Nb+Ti) with a C content of 2 times or more and 1.0% or less is heated to dissolve giant carbides in solid solution, and then bloomed and rolled to form any desired Cool at the cooling rate,
Hot extrusion processing at 1230℃ or higher, cooling after hot extrusion processing, average cooling rate up to 500℃ 0.2℃/sec
A method for manufacturing a high-temperature austenitic stainless steel pipe, which comprises performing the above steps, cold working, and solution heat treatment at 1200°C or higher.
JP21332284A 1984-10-12 1984-10-12 Manufacture of austenitic stainless steel pipe for high temperature Granted JPS6191326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21332284A JPS6191326A (en) 1984-10-12 1984-10-12 Manufacture of austenitic stainless steel pipe for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21332284A JPS6191326A (en) 1984-10-12 1984-10-12 Manufacture of austenitic stainless steel pipe for high temperature

Publications (2)

Publication Number Publication Date
JPS6191326A JPS6191326A (en) 1986-05-09
JPH0585614B2 true JPH0585614B2 (en) 1993-12-08

Family

ID=16637228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21332284A Granted JPS6191326A (en) 1984-10-12 1984-10-12 Manufacture of austenitic stainless steel pipe for high temperature

Country Status (1)

Country Link
JP (1) JPS6191326A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632672B2 (en) 2002-03-08 2005-03-23 住友金属工業株式会社 Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870955A (en) * 1981-10-08 1983-04-27 フエルアイニヒテ・エ−デルシユタ−ルヴエルケ・アクチエンゲゼルシヤフト(フアウ・エ−・ヴエ−) Manufacture of seamless pipe
JPS5887224A (en) * 1981-11-20 1983-05-25 Sumitomo Metal Ind Ltd Production of boiler tube made of austenitic stainless steel
JPS58167726A (en) * 1982-03-29 1983-10-04 Sumitomo Metal Ind Ltd Method of preparing austenitic stainless steel
JPS6187821A (en) * 1984-10-06 1986-05-06 Nippon Steel Corp Manufacture of material for austenitic stainless steel pipe for high temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870955A (en) * 1981-10-08 1983-04-27 フエルアイニヒテ・エ−デルシユタ−ルヴエルケ・アクチエンゲゼルシヤフト(フアウ・エ−・ヴエ−) Manufacture of seamless pipe
JPS5887224A (en) * 1981-11-20 1983-05-25 Sumitomo Metal Ind Ltd Production of boiler tube made of austenitic stainless steel
JPS58167726A (en) * 1982-03-29 1983-10-04 Sumitomo Metal Ind Ltd Method of preparing austenitic stainless steel
JPS6187821A (en) * 1984-10-06 1986-05-06 Nippon Steel Corp Manufacture of material for austenitic stainless steel pipe for high temperature

Also Published As

Publication number Publication date
JPS6191326A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH04107214A (en) Inline softening treatment for air-hardening seamless steel tube
JPH0571647B2 (en)
JP2001192730A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL AND ITS HEAT TREATMENT METHOD
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JPH029647B2 (en)
JP3232120B2 (en) Low Yield Ratio Hot Rolled Steel Strip for Buildings Excellent in Fire Resistance and Toughness and Method for Producing the Strip
CN111479944A (en) Ferrite-based stainless steel having excellent impact toughness and method for producing the same
JPH0569885B2 (en)
JPH0585614B2 (en)
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JPH0585615B2 (en)
JP2682335B2 (en) Manufacturing method of ferritic stainless steel hot rolled strip
JPS6157892B2 (en)
JPH0233774B2 (en)
JPH027369B2 (en)
JPS6191327A (en) Manufacture of austenitic stainless steel pipe for high temperature
JPS60100621A (en) Manufacture of austenitic stainless steel with superior strength at high temperature
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JPH0254405B2 (en)
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JPH09111345A (en) Production of martensitic stainless steel oil well pipe
JPS629186B2 (en)
JPH0577727B2 (en)
JP3183880B2 (en) Method for producing Nb-containing heat-resistant ferritic stainless steel having excellent high-temperature strength