JPH0585171B2 - - Google Patents

Info

Publication number
JPH0585171B2
JPH0585171B2 JP59078474A JP7847484A JPH0585171B2 JP H0585171 B2 JPH0585171 B2 JP H0585171B2 JP 59078474 A JP59078474 A JP 59078474A JP 7847484 A JP7847484 A JP 7847484A JP H0585171 B2 JPH0585171 B2 JP H0585171B2
Authority
JP
Japan
Prior art keywords
magnetic field
nuclide
predetermined
frequency
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59078474A
Other languages
Japanese (ja)
Other versions
JPS60222758A (en
Inventor
Etsuji Yamamoto
Hideki Kono
Ryusaburo Takeda
Hideaki Koizumi
Nobutake Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59078474A priority Critical patent/JPS60222758A/en
Publication of JPS60222758A publication Critical patent/JPS60222758A/en
Publication of JPH0585171B2 publication Critical patent/JPH0585171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は被検体に含有される1H,31P,23Naなど
からの核磁気共鳴信号を検出し、被検体の内部構
造あるいは被検体の緩和時間分布、ケミカルシフ
ト分布などを測定するのに好適な装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention detects nuclear magnetic resonance signals from 1 H, 31 P, 23 Na, etc. contained in an analyte, and detects the internal structure of the analyte or the analyte. The present invention relates to an apparatus suitable for measuring relaxation time distribution, chemical shift distribution, etc.

〔発明の背景〕[Background of the invention]

従来、人体の頭部、腹部等の内部構造を非破壊
的に検査する装置として、X線CTや超音波撮像
装置が広く利用されている。近年、核核磁気共鳴
(NMR)現象を用いて同様の検査を行う試みが
成功し、X線CTや超音波撮像装置では得られな
い情報を取得できることが明らかになつて来た。
NMR現象を用いた検査装置(以下、単に「検査
装置」という)においては、検査対象物体からの
信号を該対象物体各部に対応させて分離・識別す
る必要がある。そのための方法の1つに、対象物
体に傾斜磁場を印加して対象物体各部の置かれた
静磁場を異ならせ、これにより、上記対象物体各
部の共鳴周波数あるいは位相推移量を異ならせて
位置の情報を得る方法がある。
Conventionally, X-ray CT and ultrasonic imaging devices have been widely used as devices for non-destructively inspecting the internal structures of the human head, abdomen, etc. In recent years, attempts to perform similar tests using the nuclear magnetic resonance (NMR) phenomenon have been successful, and it has become clear that information that cannot be obtained with X-ray CT or ultrasound imaging devices can be obtained.
In an inspection device using the NMR phenomenon (hereinafter simply referred to as an “inspection device”), it is necessary to separate and identify signals from an object to be inspected in correspondence with each part of the object. One method for this is to apply a gradient magnetic field to the target object to vary the static magnetic field placed on each part of the target object, thereby varying the resonant frequency or phase shift of each part of the target object, thereby changing the position. There are ways to get information.

この方法は例えば、プロシーデイング アイイ
ーイーイー(Proc.IEEE)、71,338,(1983),プ
ロシーデイング アイイーイーイー(Proc.
IEEE)、70,1152,(1982),などに詳細に述べら
れているので、ここでは省略するが、検査対象物
体からの信号は、1回の測定に対し、1種類の核
スピンに限定されていた。従つて、1Hのイメージ
ングと31Pのイメージングあるいは局部に限定し
た測定を行う場合、1Hの測定は完了してから31P
の測定(あるいはその逆)を行なうのが通例であ
つた。さて、NMR現象では、測定が終了した
後、次の測定を行なうには該スピンの回復を待た
なければならず、これがイメージング時間を事実
上決める要素となつている。回復に要する時間は
被検体の種類によつても異なるが、通常1秒程度
である。そのためイメージングに要する時間は数
分程度となり、1Hと31Pを測定する場合、さらに
時間がかかるためその短縮が望まれていた。
This method is described, for example, in Proceedings IEEE (Proc. IEEE), 71 , 338, (1983), Proceedings IEEE (Proc. IEEE), 71, 338, (1983).
IEEE), 70 , 1152, (1982), etc., so it is omitted here, but the signal from the object to be inspected is limited to one type of nuclear spin for one measurement. was. Therefore, when performing 1 H imaging and 31 P imaging, or localized measurements, the 31 P measurement must be completed after the 1 H measurement is completed.
It was customary to measure (or vice versa). Now, in the NMR phenomenon, after a measurement is completed, it is necessary to wait for the spin to recover before performing the next measurement, and this is actually a factor that determines the imaging time. The time required for recovery varies depending on the type of subject, but is usually about 1 second. Therefore, the time required for imaging is approximately a few minutes, and since it takes even more time to measure 1 H and 31 P, there has been a desire to shorten this time.

〔発明の目的〕[Purpose of the invention]

本発明はこのような欠点を鑑みてなされたもの
で、その目的は検査対象物体に含まれる複数の核
種からの信号を、単一の核種からの信号を測定す
るのとほぼ同じ時間内に測定することにより著し
く測定時間を短縮するのに好適な、NMRを用い
た検査装置を提供することにある。
The present invention was developed in view of these drawbacks, and its purpose is to measure signals from multiple nuclides contained in an object to be inspected within approximately the same time as it would take to measure a signal from a single nuclide. An object of the present invention is to provide an inspection apparatus using NMR, which is suitable for significantly shortening measurement time.

〔発明の概要〕[Summary of the invention]

従来まで行なわれているイメージングでは、例
えば1Hを対象した場合、f=γH/2πで表わされ
る共鳴周波数の高周波磁場を対象物体に印加し、
これからの信号を検出、処理することにより断層
像を構成していた。ここで、γは核磁気回転比で
あり、Hは対象とする核が受ける静磁場である。
イメージングするためにはこの他にも傾斜磁場を
印加するが、測定の大部分は磁化の回復を待つた
めに費され、その期間には高周波磁場も傾斜磁場
も全く印加されない状態が生じる。この無駄な時
間を利用する方法として、複数の核種を測定する
ことを案出した。すなわち、γは核に固有の値で
あるから、同一の磁場強度Hに対し核種が異なれ
ば、共鳴周波も異なるため、前記の無駄な時間
内に他の核種を測定しても、核種間に干渉が全く
生じないことを利用するのである。これにより、
複数の核種を測定した場合、測定時間は最も長い
測定時間を要する核により決まり、各々の核を測
定するのに関する時間の和とはならないため、測
定時間を著しく短縮することが可能になる。
In conventional imaging, for example, when targeting 1 H, a high-frequency magnetic field with a resonant frequency expressed by f = γH / 2π is applied to the target object,
Tomographic images were constructed by detecting and processing future signals. Here, γ is the nuclear gyromagnetic ratio, and H is the static magnetic field that the target nucleus receives.
In order to perform imaging, gradient magnetic fields are also applied, but most of the measurement is spent waiting for the magnetization to recover, and during that period, neither the radio-frequency magnetic field nor the gradient magnetic field is applied at all. As a way to make use of this wasted time, we devised a method to measure multiple nuclides. In other words, since γ is a value unique to a nucleus, different nuclides have different resonance frequencies for the same magnetic field strength H. This takes advantage of the fact that no interference occurs. This results in
When measuring multiple nuclides, the measurement time is determined by the nucleus that requires the longest measurement time and is not the sum of the time required to measure each nucleus, making it possible to significantly shorten the measurement time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて詳細に
説明する。第1図は本発明の一実施例である検査
装置の構成を示すものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the configuration of an inspection device that is an embodiment of the present invention.

図において、制御装置1は各装置へ種々の命令
を一定のタイミングで出力する。高周波パルス発
生器2の出力は増幅器3で増幅され、コイル4を
励振する。コイル4は同時に受信コイルを兼用し
ており、受信された信号成分は増幅器5を通り、
検波器6で検波後、信号処理装置7で画像に変換
される。高周波パルス発生器2の出力は、検波器
6で直角位相検波する時の基準信号としても用い
られる。Z方向およびそれに直角な方向の傾斜磁
場の発生はそれぞれコイル8,9,10で行な
い、これらのコイルはそれぞれ増幅器11,1
2,13により駆動される。静磁場の発生はコイ
ル14で行ない、コイル14は電源15により駆
動される。コイル10はコイル9と同じ形状をな
し、コイル9とはZ軸のまわりに90°回転させた
関係にあり、互いに直交する傾斜磁場を発生す
る。検査対象である人体16はベツト17上に置
かれ、ベツト17は支持台18上を移動する。
In the figure, a control device 1 outputs various commands to each device at a constant timing. The output of the high frequency pulse generator 2 is amplified by an amplifier 3 and excites a coil 4. The coil 4 also serves as a receiving coil, and the received signal component passes through the amplifier 5.
After the wave is detected by the wave detector 6, it is converted into an image by the signal processing device 7. The output of the high frequency pulse generator 2 is also used as a reference signal when the detector 6 performs quadrature phase detection. Generation of gradient magnetic fields in the Z direction and in the direction perpendicular thereto is performed by coils 8, 9 and 10, respectively, and these coils are connected to amplifiers 11 and 1, respectively.
2 and 13. The static magnetic field is generated by a coil 14, and the coil 14 is driven by a power source 15. The coil 10 has the same shape as the coil 9, is rotated 90 degrees around the Z axis, and generates gradient magnetic fields orthogonal to each other. A human body 16 to be examined is placed on a bed 17, and the bed 17 moves on a support stand 18.

第2図には、本発明で用いるパルスシーケンス
を示す。これは1Hのイメージングと31Pのケミカ
ルシフトを測定する場合であり、区間Aで1Hを、
区間Bで31Pを測定する。イメージング法として
は投影再構成法を用いるものとする。区間Aでは
90°高周波磁場の印加と同時に傾斜磁場Gzを印加
し、Z方向に垂直なスライスを選択する。続い
て、180°高周波磁場の印加して磁化を反転され、
時刻t0において生じるエコー信号(1Hの信号)
を、傾斜磁場Gxyのもとで検出する。Gxyは互い
に直交する傾斜磁場GxとGyを合成した磁場であ
り、投影角度に応じてその大きさは一定に保つた
まま、合成ベクトルの方向が変化するような傾斜
磁場である。区間Aで印加する高周波磁場の周波
hは、静磁場Hが1.5Tとすると、h=64MHzと
なる。一方、区間Bで測定する31Pの共鳴周波数
pは前記静磁場に対してp=26MHzとなるため、
1Hを測定するために印加された高周波磁場は31P
に何ら影響を及ぼさない。従つて、区間Aとは全
く独立に31Pの信号を測定できる。また、区間A
で印加された傾斜磁場が31Pに及ぼす影響も31Pの
磁化が静磁場の方向を向いているため、傾斜磁場
がoffになると同時に消滅し、高周波磁場と同様
に全く影響を与えない。
FIG. 2 shows a pulse sequence used in the present invention. This is a case of imaging 1 H and measuring chemical shift of 31 P. In section A, 1 H is
Measure 31 P in section B. The projection reconstruction method will be used as the imaging method. In section A
A gradient magnetic field G z is applied simultaneously with the application of a 90° high-frequency magnetic field, and a slice perpendicular to the Z direction is selected. Next, the magnetization is reversed by applying a 180° high-frequency magnetic field.
Echo signal generated at time t 0 ( 1 H signal)
is detected under a gradient magnetic field G xy . G xy is a magnetic field that is a composite of gradient magnetic fields G x and G y that are orthogonal to each other, and is a gradient magnetic field that changes the direction of the composite vector while keeping its magnitude constant depending on the projection angle. The frequency h of the high-frequency magnetic field applied in section A is h = 64MHz, assuming that the static magnetic field H is 1.5T. On the other hand, the resonance frequency of 31 P measured in section B
Since p is 26MHz for the static magnetic field,
The high frequency magnetic field applied to measure 1 H is 31 P
has no effect on Therefore, the 31 P signal can be measured completely independently of section A. Also, section A
Since the magnetization of 31 P is oriented in the direction of the static magnetic field, the effect of the gradient magnetic field applied on 31 P disappears as soon as the gradient magnetic field is turned off, and has no effect at all, similar to the high-frequency magnetic field.

第3図には、本発明の2番目の実施例として
1Hの磁化を反転後td時間待つてから、縦緩和時
間T1の効果を含んだ信号を観測する場合を示す。
31Pの測定はtd時間内にも行なう。勿論、1H磁化の
回復を待つ間にも31Pを測定できるのは、第2図
に示す場合と同様である。
FIG. 3 shows a second embodiment of the present invention.
A case is shown in which a signal including the effect of the longitudinal relaxation time T 1 is observed after waiting t d time after reversing the magnetization of 1 H.
Measurement of 31 P is also carried out during t d time. Of course, 31 P can be measured while waiting for 1 H magnetization to recover, as in the case shown in FIG. 2.

以上の実施例では、先に1Hを測定し次に31Pを
測定しているが、その逆でも勿論可能である。た
だし、31Pのケミカルシフトの測定では1Hを先に
測定するのが望ましい。さらに、31Pの測定は微少
部位のケミカルシフトに限らず、密度分布、ケミ
カルシフト分布を測定する場合でも本法を用いる
ことは可能である。その場合には、第2図に示す
区間Bのシーケンスのかわり、例えば、ソサイア
テイ オブ マグネテツク レゾナンス イン
メデイシン(Sociery of Magnetic Resonance
in Medicine)のセコンド アンニユアル ミー
テイグ、オーガスト(Second Annual Meeting,
August)16−19,1983,サン フランシスコ
カリフオルニア(San Francisco,California)
でのピー.エー.ボトムレー(P.A.Bottomley)
の報告(P.53〜P54)に記載のシーケンスを用い
ればよい。
In the above embodiments, 1 H is measured first and 31 P is measured next, but the reverse is of course possible. However, when measuring the chemical shift of 31P , it is preferable to measure 1H first. Furthermore, the measurement of 31 P is not limited to chemical shifts at minute sites, but can also be used to measure density distributions and chemical shift distributions. In that case, instead of the sequence of section B shown in FIG.
Medicine (Society of Magnetic Resonance)
in Medicine) Second Annual Meeting, August (Second Annual Meeting,
August) 16-19, 1983, San Francisco
California (San Francisco, California)
Pee at. A. Bottomley (PABottomley)
The sequence described in the report (P.53-P54) may be used.

なお、測定時間の有効利用の1つとしてマルチ
スライスイメージングが提案されている。これは
磁化の回復を待つ間に、他のスライス面の信号を
検出するものであるが、この場合でも、複数スラ
イスを測定する時間の一部を用いて31Pを測定す
ればよく、スライス面が1つ減少するだけであ
る。また、その拡張として31Pのイメージングも
マルチスライスイングすることが可能である。こ
の場合には、1Hと31Pの測定を交互に複数のスラ
イスに対して繰り返せばよい。
Note that multi-slice imaging has been proposed as one way to effectively utilize measurement time. This is to detect signals from other slice planes while waiting for magnetization to recover, but even in this case, it is sufficient to measure 31 P using a portion of the time taken to measure multiple slices. only decreases by one. Furthermore, as an extension of this, 31P imaging can also be multi-sliced. In this case, 1 H and 31 P measurements may be repeated alternately on multiple slices.

さて、これまでは1Hと31Pの組合せについての
み述べて来たが、この組合せに限らず、23Na,19F
など2種類以上の核種について同時測定が可能な
のは以上の説明により明らかであろう。
So far, we have only talked about the combination of 1 H and 31 P, but this combination is not limited to 23 Na, 19 F.
It is clear from the above explanation that it is possible to simultaneously measure two or more types of nuclides.

最後に、ここで示した実施例では2次元イメー
ジングの場合であつたが、本発明は2次元に限ら
ず3次元にも適用できるのは勿論である。
Finally, although the embodiment shown here deals with two-dimensional imaging, the present invention is of course applicable not only to two-dimensional imaging but also to three-dimensional imaging.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、1種類の核種を測定する時間
内に、複数の核種を測定できるため、測定時間を
著しく低減させることが可能である。
According to the present invention, a plurality of nuclides can be measured within the time it takes to measure one type of nuclides, so the measurement time can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる検査装置のブ
ロツク図、第2図および第3図は本発明装置の操
作例を示すパルスシーケンス図である。
FIG. 1 is a block diagram of an inspection apparatus according to an embodiment of the present invention, and FIGS. 2 and 3 are pulse sequence diagrams showing an example of operation of the apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1 検査対象が置かれる静磁場と、前記検査対象
に印加される傾斜磁場の発生手段と、前記検査対
象に照射され前記検査対象中の所定の核種のスピ
ンを励起するための所定の周波数の高周波磁場の
発生手段と、前記高周波磁場の照射により生じる
スピン共鳴信号を検出する信号検出手段と、該信
号検出手段による検出信号の演算を行なう演算手
段とを有し、前記の所定の周波数の高周波磁場に
より生じたスピン共鳴信号を検出し、前記核種の
磁化が回復するのを待つためのインターバルをお
いて前記のスピンの励起とスピン共鳴信号の検出
を繰り返す核磁気共鳴を用いた検査装置におい
て、前記所定の核種の磁化が回復するのを待つた
めのインターバルの期間内に前記所定の周波数と
異なる周波数の高周波磁場を前記検査対象に照射
することにより前記所定の核種と異なる核種のス
ピンを励起し、これにより生じるスピン共鳴信号
をさらに検出することを特徴とする核磁気共鳴を
用いた検査装置。 2 前記所定の核種と異なる核種のスピンを励起
し、これにより生じるスピン共鳴信号をさらに検
出し、少なくとも前記所定の核種と異なる核種の
スピンの密度分布を得ることを特徴とする特許請
求の範囲第1項に記載の核磁気共鳴を用いた検査
装置。 3 検査対象が置かれる静磁場と、前記検査対象
に印加される傾斜磁場の発生手段と、前記検査対
象からの核磁気共鳴信号を検出する信号検出手段
と、該信号検出手段による検出信号の演算を行な
う演算手段とを有し、高周波磁場の発生手段によ
つて、前記検査対象に核スピンを反転させるため
の所定の周波数の高周波磁場を照射することによ
り前記検査対象中の所定の核種の磁化を反転し、
該磁化の回復を待つてその回復過程の途中で前記
所定の核種のスピンを励起し、これによる核磁気
共鳴信号を前記信号検出手段が検出する核磁気共
鳴を用いた検査装置において、前記磁化の回復を
待つ期間中に前記所定の周波数と異なる周波数の
高周波磁場を前記検査対象に照射することにより
前記所定の核種と異なる核種のスピンを励起し、
これにより生じるスピン共鳴信号をさらに検出す
ることを特徴とする核磁気共鳴を用いた検査装
置。 4 検査対象が置かれる静磁場と、前記検査対象
に印加される傾斜磁場の発生手段と、前記検査対
象に照射され前記検査対象中の所定の核種のスピ
ンを励起するための所定の周波数の高周波磁場の
発生手段と、前記高周波磁場の照射により生じる
スピン共鳴信号を検出する信号検出手段と、該信
号検出手段による検出信号の演算を行なう演算手
段とを有し、前記の所定の周波数の高周波磁場に
より生じたスピン共鳴信号を検出し、前記核種の
磁化が回復するのを待つためのインターバルをお
いて前記のスピンの励起とスピン共鳴信号の検出
を繰り返し、複数断層に関して前記所定の核種の
スピン情報を得る核磁気共鳴を用いた検査装置に
おいて、前記所定の核種の磁化が回復するのを待
つためのインターバルの期間内に前記所定の周波
数と異なる周波数の高周波磁場を前記所定の断層
と異なる断層内に照射することにより前記所定の
核種と異なる核種のスピンを励起し、これにより
生じるスピン共鳴信号をさらに検出することを特
徴とする核磁気共鳴を用いた検査装置。
[Claims] 1. A static magnetic field in which an inspection object is placed, means for generating a gradient magnetic field applied to the inspection object, and a means for irradiating the inspection object to excite spins of a predetermined nuclide in the inspection object. a means for generating a high-frequency magnetic field of a predetermined frequency; a signal detecting means for detecting a spin resonance signal generated by irradiation with the high-frequency magnetic field; and a calculating means for calculating a detection signal by the signal detecting means; Using nuclear magnetic resonance, a spin resonance signal generated by a high-frequency magnetic field of a predetermined frequency is detected, and excitation of the spins and detection of the spin resonance signal are repeated with an interval to wait for the magnetization of the nuclide to recover. In the inspection apparatus, a nuclide different from the predetermined nuclide is detected by irradiating the inspection object with a high-frequency magnetic field of a frequency different from the predetermined frequency within an interval period for waiting for the magnetization of the predetermined nuclide to recover. 1. An inspection device using nuclear magnetic resonance, which excites the spins of and further detects a spin resonance signal generated thereby. 2. Exciting spins of a nuclide different from the predetermined nuclide, further detecting a spin resonance signal generated thereby, and obtaining at least a density distribution of spins of a nuclide different from the predetermined nuclide. An inspection device using nuclear magnetic resonance according to item 1. 3. A static magnetic field in which an inspection object is placed, means for generating a gradient magnetic field applied to the inspection object, signal detection means for detecting a nuclear magnetic resonance signal from the inspection object, and calculation of a detection signal by the signal detection means. the magnetization of a predetermined nuclide in the test object by irradiating the test object with a high-frequency magnetic field of a predetermined frequency for reversing nuclear spins by the high-frequency magnetic field generating means. Flip the
In an inspection apparatus using nuclear magnetic resonance, in which the spins of the predetermined nuclide are excited during the recovery process after waiting for the magnetization to recover, and the signal detecting means detects the resulting nuclear magnetic resonance signal. Exciting spins of a nuclide different from the predetermined nuclide by irradiating the inspection object with a high-frequency magnetic field of a frequency different from the predetermined frequency during a period of waiting for recovery;
An inspection device using nuclear magnetic resonance characterized by further detecting a spin resonance signal generated thereby. 4. A static magnetic field in which an inspection object is placed, a gradient magnetic field generation means applied to the inspection object, and a high frequency wave of a predetermined frequency that is irradiated onto the inspection object and excites spins of a predetermined nuclide in the inspection object. The radio frequency magnetic field having the predetermined frequency has a magnetic field generating means, a signal detecting means for detecting a spin resonance signal generated by the irradiation of the high frequency magnetic field, and a calculating means for calculating a detection signal by the signal detecting means. The spin excitation and spin resonance signal detection are repeated with an interval for waiting for the magnetization of the nuclide to recover, and spin information of the predetermined nuclide is obtained with respect to multiple slices. In an inspection apparatus using nuclear magnetic resonance that obtains a magnetic field, a high-frequency magnetic field of a frequency different from the predetermined frequency is applied to a cross-section different from the predetermined cross-section within an interval period for waiting for the magnetization of the predetermined nuclide to recover. An inspection apparatus using nuclear magnetic resonance, characterized in that the spins of a nuclide different from the predetermined nuclide are excited by irradiating the same with the above-mentioned predetermined nuclide, and a spin resonance signal generated thereby is further detected.
JP59078474A 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance Granted JPS60222758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078474A JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078474A JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS60222758A JPS60222758A (en) 1985-11-07
JPH0585171B2 true JPH0585171B2 (en) 1993-12-06

Family

ID=13663010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078474A Granted JPS60222758A (en) 1984-04-20 1984-04-20 Inspector employing nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS60222758A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7477054B2 (en) * 2004-04-29 2009-01-13 Koninklijke Philips Electronics N.V. Magnetic resonance imaging at several RF frequencies
JP2009513218A (en) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Simultaneous MR excitation of multiple nuclei using a single RF amplifier

Also Published As

Publication number Publication date
JPS60222758A (en) 1985-11-07

Similar Documents

Publication Publication Date Title
US4254778A (en) Imaging systems
US4315216A (en) Imaging systems
JPH0644904B2 (en) A device that determines the spatial variation of the magnetic field strength, a device that calculates the shim gradient from the inhomogeneity map, a device that corrects the magnetic field represented by the inhomogeneity map, and a magnetic field with an off-center quadratic component. Device to correct
US4581581A (en) Method of projection reconstruction imaging with reduced sensitivity to motion-related artifacts
JP2625492B2 (en) Nuclear spin tomography equipment
JPH02255126A (en) Magnetic resonance imaging method
US5317262A (en) Single shot magnetic resonance method to measure diffusion, flow and/or motion
JPH0454448B2 (en)
JPH0583250B2 (en)
JPH0585171B2 (en)
JP3175939B2 (en) Magnetic resonance imaging
JP2585278B2 (en) Inspection equipment using nuclear magnetic resonance
JPH07102207B2 (en) Nuclear magnetic resonance apparatus
JP2607466B2 (en) Inspection equipment using nuclear magnetic resonance
JP3167038B2 (en) Magnetic resonance imaging equipment
JP2004237102A (en) Method for excitation between nmr inspections
JP3249114B2 (en) MRI apparatus and gradient magnetic field applying method in MRI apparatus
JP3152690B2 (en) Magnetic resonance imaging
JPH05309078A (en) Magnetic resonance imaging device
JP3473631B2 (en) Inspection device using nuclear magnetic resonance
JP3322695B2 (en) Magnetic resonance imaging equipment
JPH0470013B2 (en)
JP2647066B2 (en) Inspection equipment using nuclear magnetic resonance
JPS59230149A (en) Nmr imaging device
JPS63109850A (en) Examination apparatus using nuclear magnetic resonance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees