JPH0584885B2 - - Google Patents

Info

Publication number
JPH0584885B2
JPH0584885B2 JP60272166A JP27216685A JPH0584885B2 JP H0584885 B2 JPH0584885 B2 JP H0584885B2 JP 60272166 A JP60272166 A JP 60272166A JP 27216685 A JP27216685 A JP 27216685A JP H0584885 B2 JPH0584885 B2 JP H0584885B2
Authority
JP
Japan
Prior art keywords
liquid crystal
magnetic particles
magnetic
solvent
various
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60272166A
Other languages
Japanese (ja)
Other versions
JPS62131235A (en
Inventor
Masayoshi Takatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP27216685A priority Critical patent/JPS62131235A/en
Priority to US06/936,180 priority patent/US4701024A/en
Publication of JPS62131235A publication Critical patent/JPS62131235A/en
Publication of JPH0584885B2 publication Critical patent/JPH0584885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13768Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on magneto-optical effects

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は磁性体粒子を混入した液晶及びその製
造方法、更に詳細には本件出願人が特願昭59−
226981号で既に提案したタツチエントリ付液晶表
示装置に使用する液晶及びその製造方法に関す
る。 〔従来の技術〕 コンピユータ等においてその表示部に直接タツ
チすることにより入力できるようにすると便利で
ある。このような入力装置として現在抵抗膜方
式、音響方式、容量方式、光電方式等が提案され
ている。 〔発明が解決しようとする問題点〕 しかし上記のものは何れも表示装置とは別に設
けた装置により入力している。 本発明者は表示装置自体が入力装置として機能
するものとして上記タツチエントリ付液晶表示装
置を提案し、本発明はそれに使用する液晶及びそ
の製造方法を提供するものである。 〔問題点を解決するための手段〕 本発明は液晶表示セル用の液晶材中に、界面活
性剤により被覆された多数の針状磁性体粒子を分
散させると共に、液晶分子の長軸が該磁性体表面
に垂直に配向されるようにしてなるものである。 本発明は各種磁性体粒子の表面を液晶分子の長
軸が磁性体表面に垂直に配向し、かつ磁性体の凝
集を防止し、液晶中に磁性体粒子を均一安定に分
散させる界面活性剤で処理し、液晶と親和性のあ
る液晶用の溶媒中に分散させ、次に上記磁性体粒
子をこの溶媒とともに液晶中に混入し、しかるの
ちにこの溶媒を揮発除去して磁性体粒子を液晶内
に均一安定に混入した液晶の製造法である。 上記各種磁性体粒子は各種フエライト,各種メ
タルのいずれか一つの針状の磁性体粒子である。 上記界面活性剤は液晶分子の長軸が磁性体表面
に垂直に配向し、かつ磁性体の凝集を防止し、液
晶中に磁性体粒子を均一安定に分散させるもの
で、一塩基性カルボン酸多核クロム錯体,ジメチ
ルオクタデシルアミノプロピルトリメトキシルク
ロライド,及び有機シラン化合物のいずれか一つ
である。 上記液晶用の溶媒はトルエン,キシレン,アセ
トン及びクロロホルムのいずれか一つである。 〔作用〕 次に本発明の作用を第1図につき説明する。 磁性体粒子1を液晶中に均一,安定に分散さ
せ、しかも液晶分子2をその表面に垂直に配向さ
せる界面活性剤3で磁性体粒子1の表面を処理
し、これをアセトン及びクロロホルム等に分散
し、液晶に混入し、しかるのちにこれらを除去し
磁性体粒子1を液晶内に混入すると、液晶分子2
は磁性体粒子1の表面に付着した界面活性剤3に
より垂直に配向する。 このような液晶を充填した液晶セルは、電圧印
加状態で磁石を接近させると弱い磁力によつて
も、その部分の磁性体粒子の配向が変化し、電極
間の電気容量が変化する。従つて、その変化でス
イツチング機能が付与でき、この液晶表示装置と
一体になつた機器のエントリー装置としての機能
をもたせることができる。 次に上記液晶により製造した液晶表示セルの作
用を第2,3,4図につき説明する。 第2図において、4,5は内面に透明電極6,
7をコートし、かつ液晶分子2が互いに垂直に配
向するようにラビング処理した透明体、8,9は
上記透明体4,5の外側に設けた互いに偏光方向
が垂直になるようにした偏光板である。光10は
無電界時には第2図ロ示のように透過できるが、
電圧印加時には透過できない。これらの関係は偏
光板8,9の偏光の向きを平行にすれば反対とな
り、従来の液晶表示装置と同様である。 磁性体粒子1(長さ約0.5μ)は第2図示のよう
に無電界時にはねじれ配向している液晶分子2
(長さ約50Å)に沿つて電極6,7の面に対し略
垂直に配向しているが、第3図示の電圧印加時に
は垂直配向している液晶分子2によつてほぼ平行
に配向する。この電圧印加状態で磁石を接近させ
るとその磁力により第4図示のように磁性体粒子
1は電極6,7の面に対し垂直に配向し、これに
よつてそれに付着している液晶分子2は一部が平
行になり、電極6,7間の電気容量が変化し、こ
れを入力情報信号とすることができるものであ
る。 〔実施例〕 実施例 1 各種磁性体粒子(各種フエライト,各種メタ
ル)を液晶の長軸が磁性体粒子表面に垂直に配向
ししかも液晶中で磁性体粒子の凝集を防止し液晶
中に均一,安定に分散させる事のできる界面活性
剤(一塩基性カルボン酸多核クロム錯体,ジメチ
ルオクタデシルアミロプロピルトリメトキシクロ
ライド(DMOAP),各種界面活性剤,各種シラ
ンカツプリング剤)で表面処理を行い液晶を良く
溶かすクロロホルム,アセトンなどに分散させ、
この溶媒とともに液晶中に混入し、しかるのちに
この溶媒を揮発除去してなる磁性体粒子を均一,
安定に混入した液晶(各種ネマテイツク液晶)が
得られた。 実施例 2 上記DMOAPを2重量部混入したメタノール
溶液中にメタル粉(平均粒子サイズ0.2μ)3gを混
入し、ボールミルで5日間粉砕し、しかるのちメ
タノールを揮発除去し、120℃,20分間焼成し、
アセトンで3回洗浄後超音波分散処理を行いアセ
トン中にコロイド状に分散したメタル粉を得た。
このコロイド状溶液に遠心分離(4000rpm 20分
間)を行い、その上澄み液にP型ネマテイツク液
晶を混入し、アセトンを真空揮発除去し、メタル
混入液晶を得、これに超音波分散処理(30分)を
ほどこし、メタルが均一安定に分散した液晶を得
た。 実施例 3 磁性体微粉としてメタル(Fe粒子:0.2μ,アス
ペクト比10:1)にジメチルオクタデシルアミノ
プロピルトリメトキシルクロライド(DMOAP)
で表面処理を行い、これをP型ネマテイツク液晶
にドーピングして、磁性体微粒子ドーピング液晶
を作り、これを第5図イ,ロ示の試験用液晶セル
(ポリビニルアルコール(PVA)ラビング ツイ
ステツドネマテイツク(TN)液晶セル)に充填
し、テスト用液晶スイツチを作つた。図中11,
12はポラロイドフイルム、13,14は透明基
材、15,16はインジウム錫酸化物(ITO)電
極、17,18は配向層、2はスペーサ、21は
本発明による液晶でそのドツト22の大きさは10
×10mm、セル厚約20μである。 この液晶セルスイツチよりなる2枚の支持板に
垂直にマグネツトを近付け、液晶のキヤパシタン
スの変化をLCRメータにて測定した。この試験
結果を第1表に示した。
[Industrial Application Field] The present invention relates to a liquid crystal mixed with magnetic particles and a method for manufacturing the same, and more specifically, the present invention relates to a liquid crystal mixed with magnetic particles and a method for manufacturing the same.
This invention relates to a liquid crystal used in a liquid crystal display device with touch entry, which was already proposed in No. 226981, and a method for manufacturing the same. [Prior Art] It is convenient to be able to input information by directly touching the display of a computer or the like. As such input devices, resistive film type, acoustic type, capacitive type, photoelectric type, etc. are currently proposed. [Problems to be Solved by the Invention] However, in all of the above, input is performed using a device provided separately from the display device. The present inventor proposed the above-mentioned liquid crystal display device with touch entry, in which the display device itself functions as an input device, and the present invention provides a liquid crystal used therein and a method for manufacturing the same. [Means for Solving the Problems] The present invention involves dispersing a large number of acicular magnetic particles coated with a surfactant in a liquid crystal material for a liquid crystal display cell, and in which the long axis of the liquid crystal molecules is aligned with the magnetic material. It is oriented perpendicular to the body surface. The present invention is a surfactant that allows the long axes of liquid crystal molecules to align perpendicularly to the surface of the magnetic material on the surface of various magnetic particles, prevents agglomeration of the magnetic material, and disperses the magnetic particles uniformly and stably in the liquid crystal. The magnetic particles are then mixed into the liquid crystal together with the solvent, and the solvent is then removed by evaporation to disperse the magnetic particles within the liquid crystal. This is a method for producing liquid crystals that are uniformly and stably mixed into liquid crystals. The various magnetic particles mentioned above are acicular magnetic particles of any one of various ferrites and various metals. The above surfactant has the long axis of the liquid crystal molecules aligned perpendicular to the surface of the magnetic material, prevents agglomeration of the magnetic material, and uniformly and stably disperses the magnetic particles in the liquid crystal. It is any one of a chromium complex, dimethyloctadecylaminopropyltrimethoxyl chloride, and an organic silane compound. The solvent for the liquid crystal is one of toluene, xylene, acetone, and chloroform. [Function] Next, the function of the present invention will be explained with reference to FIG. The surface of the magnetic particles 1 is treated with a surfactant 3 that allows the magnetic particles 1 to be uniformly and stably dispersed in the liquid crystal, and the liquid crystal molecules 2 are aligned perpendicularly to the surface, and then dispersed in acetone, chloroform, etc. When the magnetic particles 1 are mixed into the liquid crystal and then removed and the magnetic particles 1 are mixed into the liquid crystal, the liquid crystal molecules 2
are vertically oriented by the surfactant 3 attached to the surface of the magnetic particles 1. In a liquid crystal cell filled with such liquid crystal, when a magnet is brought close to the cell while a voltage is applied, the orientation of the magnetic particles in that area changes even with a weak magnetic force, and the capacitance between the electrodes changes. Therefore, a switching function can be provided by this change, and a function as an entry device for equipment integrated with this liquid crystal display device can be provided. Next, the operation of a liquid crystal display cell manufactured using the above liquid crystal will be explained with reference to FIGS. 2, 3 and 4. In FIG. 2, 4 and 5 are transparent electrodes 6 on the inner surface,
A transparent body coated with 7 and subjected to a rubbing treatment so that the liquid crystal molecules 2 are oriented perpendicularly to each other, and 8 and 9 are polarizing plates provided outside the transparent bodies 4 and 5 so that the polarization directions are perpendicular to each other. It is. When there is no electric field, the light 10 can be transmitted as shown in FIG.
It cannot be transmitted when voltage is applied. These relationships are reversed if the directions of polarization of the polarizing plates 8 and 9 are made parallel, which is the same as in conventional liquid crystal display devices. As shown in the second diagram, the magnetic particles 1 (length approximately 0.5μ) are twisted and oriented in the absence of an electric field.
(length approximately 50 Å), the liquid crystal molecules are aligned substantially perpendicularly to the planes of the electrodes 6 and 7, but when a voltage is applied as shown in FIG. When a magnet is brought close to the magnet while this voltage is being applied, the magnetic particles 1 are oriented perpendicularly to the planes of the electrodes 6 and 7 due to the magnetic force as shown in the fourth figure, thereby causing the liquid crystal molecules 2 attached to them to A part of the electrodes becomes parallel, and the capacitance between the electrodes 6 and 7 changes, which can be used as an input information signal. [Example] Example 1 Various magnetic particles (various ferrites, various metals) were oriented so that the long axis of the liquid crystal was perpendicular to the magnetic particle surface, and the agglomeration of the magnetic particles was prevented in the liquid crystal, so that they were uniformly distributed in the liquid crystal. Surface treatment with surfactants that can stably disperse (monobasic carboxylic acid polynuclear chromium complex, dimethyloctadecylamylopropyltrimethoxychloride (DMOAP), various surfactants, various silane coupling agents) improves the liquid crystal. Dissolve in chloroform, acetone, etc.,
The magnetic particles are mixed into the liquid crystal together with this solvent, and then the solvent is evaporated off to produce uniform magnetic particles.
Stably mixed liquid crystals (various nematic liquid crystals) were obtained. Example 2 3 g of metal powder (average particle size 0.2μ) was mixed into a methanol solution containing 2 parts by weight of the above DMOAP, ground in a ball mill for 5 days, then methanol was removed by volatilization, and baked at 120°C for 20 minutes. death,
After washing three times with acetone, ultrasonic dispersion treatment was performed to obtain metal powder colloidally dispersed in acetone.
This colloidal solution was centrifuged (4000 rpm for 20 minutes), P-type nematic liquid crystal was mixed into the supernatant, and the acetone was removed by vacuum evaporation to obtain metal-containing liquid crystal, which was subjected to ultrasonic dispersion treatment (30 minutes). By applying this process, we obtained a liquid crystal in which metal was uniformly and stably dispersed. Example 3 Dimethyloctadecylaminopropyltrimethoxyl chloride (DMOAP) was added to metal (Fe particles: 0.2μ, aspect ratio 10:1) as magnetic fine powder.
This is then doped into a P-type nematic liquid crystal to produce a liquid crystal doped with magnetic fine particles. A test liquid crystal switch was made by filling a liquid crystal cell (TN) with liquid crystal. 11 in the figure,
12 is a Polaroid film, 13 and 14 are transparent substrates, 15 and 16 are indium tin oxide (ITO) electrodes, 17 and 18 are alignment layers, 2 is a spacer, and 21 is a liquid crystal according to the present invention, the size of the dot 22. is 10
×10mm, cell thickness approximately 20μ. A magnet was vertically brought close to two support plates made of this liquid crystal cell switch, and changes in the capacitance of the liquid crystal were measured using an LCR meter. The test results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明により液晶分子が磁性体粒子に垂直に配
向し、その磁性体を液晶中に均一,安定に分散さ
せた磁性体粒子混入液晶を製造でき、またこの磁
性体微粒子をドーピングした液晶を充填してなる
液晶セルは比較的弱い磁界でキヤパシタンスの変
化をおこし、スイツチ機能を有する。したがつて
本発明により従来の電気光学効果を利用した各種
液晶表示装置に容易に磁界によるスイツチング機
能を付与でき、これら液晶表示装置と一体となつ
たエントリー装置が可能となり、例えばコンピユ
ータ用の新しい入力装置としてキーボードに代え
て利用できるものである。
According to the present invention, it is possible to produce a liquid crystal containing magnetic particles in which the liquid crystal molecules are aligned perpendicularly to the magnetic particles, and the magnetic substance is uniformly and stably dispersed in the liquid crystal. The liquid crystal cell, which is made of liquid crystal, changes its capacitance with a relatively weak magnetic field and has a switch function. Therefore, according to the present invention, it is possible to easily add a switching function using a magnetic field to various liquid crystal display devices that utilize the conventional electro-optic effect, and it is possible to create an entry device that is integrated with these liquid crystal display devices, for example, a new input device for computers. It can be used as a device in place of a keyboard.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の作用を示す説明図、第2図イ
は本発明による液晶セルの原理を示す説明用断面
図、ロは同斜視図、第3図イは同電圧印加時の説
明用断面図、ロはその斜視図、第4図は同磁石に
接近させた状態における説明用断面図、第5図イ
は実施例3における試験用液晶セルの断面図、ロ
はその平面図である。 1……磁性体粒子、2……液晶分子、3……界
面活性剤。
Fig. 1 is an explanatory diagram showing the operation of the present invention, Fig. 2 A is an explanatory sectional view showing the principle of the liquid crystal cell according to the invention, B is a perspective view thereof, and Fig. 3 A is an explanatory diagram when the same voltage is applied. 4 is an explanatory cross-sectional view in a state where it is brought close to the magnet, FIG. 5 A is a cross-sectional view of the test liquid crystal cell in Example 3, and B is a plan view thereof. . 1...Magnetic particles, 2...Liquid crystal molecules, 3...Surfactant.

Claims (1)

【特許請求の範囲】 1 液晶表示セル用の液晶材中に、界面活性剤に
より被覆された多数の針状磁性体粒子を分散させ
ると共に、液晶分子の長軸が該磁性体表面に垂直
に配向されるようにしてなる磁性体粒子を混入し
た液晶。 2 各種磁性体粒子の表面を液晶分子の長軸が磁
性体表面に垂直に配向し、かつ磁性体の凝集を防
止し、液晶中に磁性体粒子を均一安定に分散させ
る界面活性剤で処理し、液晶と親和性のある液晶
用の溶媒中に分散させ、次に上記磁性体粒子をこ
の溶媒とともに液晶中に混入し、しかるのちにこ
の溶媒を揮発除去して磁性体粒子を液晶内に均一
安定に混入した液晶の製造法。 3 上記各種磁性体粒子は各種フエライト,各種
メタルのいずれか一つの針状の磁性体粒子である
特許請求の範囲第2項記載の液晶の製造方法。 4 上記液晶分子の長軸が磁性体表面に垂直に配
向し、かつ磁性体の凝集を防止し、液晶中に磁性
体粒子を均一安定に分散させる界面活性剤は一塩
基性カルボン酸多核クロム錯体,ジメチルオクタ
デシルアミノプロピルトリメトキシルクロライ
ド,及び有機シラン化合物のいずれか一つである
特許請求の範囲第2項記載の液晶の製造方法。 5 上記液晶用の溶媒はトルエン,キシレン,ア
セトン及びクロロホルムのいずれか一つである特
許請求の範囲第2項記載の液晶の製造方法。
[Claims] 1. A large number of acicular magnetic particles coated with a surfactant are dispersed in a liquid crystal material for a liquid crystal display cell, and the long axes of the liquid crystal molecules are aligned perpendicular to the surface of the magnetic material. Liquid crystal mixed with magnetic particles. 2 The surface of various magnetic particles is treated with a surfactant that ensures that the long axes of liquid crystal molecules are oriented perpendicular to the surface of the magnetic material, prevents agglomeration of the magnetic material, and disperses the magnetic particles uniformly and stably in the liquid crystal. The magnetic particles are then dispersed in a liquid crystal solvent that has an affinity for the liquid crystal, and then the magnetic particles are mixed into the liquid crystal together with this solvent.The solvent is then evaporated off to uniformly distribute the magnetic particles within the liquid crystal. A method for producing liquid crystals with stable mixtures. 3. The method for manufacturing a liquid crystal according to claim 2, wherein the various magnetic particles are acicular magnetic particles of any one of various ferrites and various metals. 4. The surfactant, in which the long axes of the liquid crystal molecules are oriented perpendicularly to the surface of the magnetic material, prevents agglomeration of the magnetic material, and uniformly and stably disperses the magnetic particles in the liquid crystal, is a monobasic carboxylic acid polynuclear chromium complex. , dimethyloctadecylaminopropyltrimethoxyl chloride, and an organic silane compound. 5. The method for producing a liquid crystal according to claim 2, wherein the solvent for the liquid crystal is any one of toluene, xylene, acetone, and chloroform.
JP27216685A 1985-12-02 1985-12-02 Liquid crystal mixed with magnetic body particle and preparation of said liquid crystal Granted JPS62131235A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27216685A JPS62131235A (en) 1985-12-02 1985-12-02 Liquid crystal mixed with magnetic body particle and preparation of said liquid crystal
US06/936,180 US4701024A (en) 1985-12-02 1986-12-01 Liquid crystal material including magnetic particles and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27216685A JPS62131235A (en) 1985-12-02 1985-12-02 Liquid crystal mixed with magnetic body particle and preparation of said liquid crystal

Publications (2)

Publication Number Publication Date
JPS62131235A JPS62131235A (en) 1987-06-13
JPH0584885B2 true JPH0584885B2 (en) 1993-12-03

Family

ID=17509998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27216685A Granted JPS62131235A (en) 1985-12-02 1985-12-02 Liquid crystal mixed with magnetic body particle and preparation of said liquid crystal

Country Status (1)

Country Link
JP (1) JPS62131235A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194424A (en) * 1984-03-16 1985-10-02 Seiko Epson Corp Electrooptical light bulb

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194424A (en) * 1984-03-16 1985-10-02 Seiko Epson Corp Electrooptical light bulb

Also Published As

Publication number Publication date
JPS62131235A (en) 1987-06-13

Similar Documents

Publication Publication Date Title
US4701024A (en) Liquid crystal material including magnetic particles and method of producing the same
US11188169B2 (en) Touch display panel and touch display device with switchable viewing angles
TWI233570B (en) Touch panel display apparatus and method of fabricating the same
JPS63204313A (en) Pressure sensor
TW200823527A (en) Liquid crystal display device
CN103116231A (en) Input display device
US10551648B2 (en) Switchable liquid crystal display device
US20170227814A1 (en) Liquid Crystal Display Device and Method of Manufacturing the Same
Cham et al. Anisotropic gigahertz antiferromagnetic resonances of the easy-axis van der Waals antiferromagnet CrSBr
TWI231873B (en) Liquid crystal display
JPH04267220A (en) Electro-optical device and manufacture thereof
JPH05143219A (en) Transparent input panel
JP3746333B2 (en) Liquid crystal display
JPH0584885B2 (en)
US5583672A (en) Process for forming liquid crystal layer of PDLCD by forming layers of polymer, liquid crystal and polymer in that order
JPH04140718A (en) Liquid crystal device
JP2000111951A (en) Active matrix-type liquid crystal display device and its production
JPH052209B2 (en)
JPH0372969B2 (en)
JPS62253127A (en) Magnetic field sensitive liquid crystal
JPS62229231A (en) Liquid crystal display device
JPS6126024A (en) Liquid crystal multicolor display device
JPH03118517A (en) Liquid crystal display device
JPH0695133A (en) Liquid crystal electrooptical device
JPH0584525B2 (en)