JPH0584865A - Composite damping steel plate excellent in spot weldability - Google Patents

Composite damping steel plate excellent in spot weldability

Info

Publication number
JPH0584865A
JPH0584865A JP3273589A JP27358991A JPH0584865A JP H0584865 A JPH0584865 A JP H0584865A JP 3273589 A JP3273589 A JP 3273589A JP 27358991 A JP27358991 A JP 27358991A JP H0584865 A JPH0584865 A JP H0584865A
Authority
JP
Japan
Prior art keywords
resin
damping steel
steel plate
rubber layer
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273589A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3273589A priority Critical patent/JPH0584865A/en
Publication of JPH0584865A publication Critical patent/JPH0584865A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite damping steel plate excellent in spot weldability and formed by providing a resin or rubber layer between a plurality of steel plates. CONSTITUTION:In a composite damping steel plate wherein a resin or rubber layer is interposed between a plurality of steel plates, a carbon fiber with a diameter of 0.01-2mum and a length of 1-1000mum is added to the resin or rubber layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、家電製品等に
使用される制振鋼板に関するものであり、とくにスポッ
ト溶接性にすぐれた複合制振鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping steel plate used for automobiles, home electric appliances and the like, and more particularly to a composite vibration damping steel plate having excellent spot weldability.

【0002】[0002]

【従来の技術】複合制振鋼板とは、複数の鋼板の間に振
動を熱に変える性質の樹脂層、またはゴム層を介在させ
た構造を持っており、実際の装置、製品等には、電気溶
接、とくにスポット溶接により組みこまれる。樹脂やゴ
ムは一般的には電気絶縁性であるので、前記のように溶
接を可能にするため各種の技術が開発されている。まず
樹脂層またはゴム層に導電性を賦与するための各種の導
性性物質を含ませる技術が開発されている。例えば特開
昭50−79920号等の公報には金属粉を含ませたも
の、特開昭61−41540号公報にはリン化鉄を含ま
せた樹脂層に関するものが開示されている。
2. Description of the Related Art A composite damping steel plate has a structure in which a resin layer or a rubber layer having a property of converting vibration into heat is interposed between a plurality of steel plates. It is assembled by electric welding, especially spot welding. Since resins and rubbers are generally electrically insulating, various techniques have been developed to enable welding as described above. First, a technique has been developed in which various conductive substances for imparting conductivity to a resin layer or a rubber layer are contained. For example, Japanese Patent Application Laid-Open No. 50-79920 and the like disclose those containing metal powder, and Japanese Patent Application Laid-Open No. 61-41540 discloses those relating to a resin layer containing iron phosphide.

【0003】また炭素質を含ませ軽量化したものとし
て、例えば特開昭57−163559号公報には、ポリ
アクリルニトリル系、ピッチ系等の炭素繊維を、特開昭
57−163560号公報にはカーボンブラックを、ま
た特開昭58−160141号公報には黒鉛粉を含ませ
た樹脂層に関するものが開示されている。さらに特開昭
61−20672号公報には樹脂層を有する複合型制振
鋼板の改良スポット溶接方法が開示されている。以上の
如く複合型制振鋼板のスポット溶接性の向上には、制振
鋼板の樹脂又はゴム層自身の導電性の向上を主とするも
のと、スポット溶接法そのものの改良によるものとに大
別される。
[0003] Further, as a material containing carbonaceous material to reduce the weight, for example, Japanese Unexamined Patent Publication No. 57-163559 discloses polyacrylonitrile-based, pitch-based carbon fibers and Japanese Unexamined Patent Publication No. 57-163560. Japanese Patent Application Laid-Open No. 58-160141 discloses a resin layer containing carbon black and graphite powder. Further, Japanese Patent Laid-Open No. 61-20672 discloses an improved spot welding method for a composite type vibration damping steel plate having a resin layer. As described above, the improvement of the spot weldability of the composite type vibration-damping steel plate is roughly classified into the one that mainly improves the conductivity of the resin or the rubber layer of the vibration-damping steel plate and the improvement of the spot welding method itself. To be done.

【0004】前者において導電性物質として前述のよう
に金属粉を含ませた場合、金属粉自身は内部損失(振動
を熱に変換する能力の目安であり例えばtanδで示さ
れる)を殆どもっていない。したがって金属粉を樹脂
層、またはゴム層に含ませた場合、それらの層の電気伝
導性は増加するが、制振性能はむしろ低下するという現
象を生ずる。したがって金属粉を添加する場合は、これ
らを勘案して実用的に最適値が得られるようにする必要
がある。一方炭素質添加の場合は金属粉添加のような問
題は生じない。炭素質としては前述のように炭素繊維、
カーボンブラック等の添加技術が開発されている。
In the former case, when the metal powder is included as a conductive substance as described above, the metal powder itself has almost no internal loss (a measure of the ability to convert vibration into heat, which is represented by tan δ, for example). Therefore, when the metal powder is contained in the resin layer or the rubber layer, the electric conductivity of those layers increases, but the vibration damping performance rather deteriorates. Therefore, in the case of adding the metal powder, it is necessary to take these factors into consideration so that the optimum value can be practically obtained. On the other hand, in the case of adding carbonaceous matter, the problem of adding metal powder does not occur. As the carbonaceous material, carbon fiber,
Technology for adding carbon black has been developed.

【0005】炭素繊維は従来は主としてポリアクリロニ
トリル、セルローズ等を熱処理して製造されており、特
開昭57−163559においては、これらの炭素繊維
を0.1〜30mm程度の長さに細かく切断したものが
樹脂中に10〜70重量%混合されている。
Conventionally, carbon fibers have been manufactured mainly by heat-treating polyacrylonitrile, cellulose and the like. In JP-A-57-163559, these carbon fibers are finely cut into a length of about 0.1 to 30 mm. 10 to 70% by weight is mixed in the resin.

【0006】[0006]

【発明が解決しようとする課題】近年気相法熱分解によ
り、従来の方法で製造された炭素繊維に比しはるかに微
少な炭素繊維が大量かつ安定的な生産が可能となった。
本発明者らはこの気相法により製造された微細な炭素繊
維に着目し、これらを利用すれば、極めてすぐれた性能
の複合型制振鋼板を開発しうることを確信し、研究の結
果本発明を完成した。
In recent years, vapor-phase pyrolysis has made it possible to stably produce a large amount of carbon fibers, which are much smaller than carbon fibers produced by conventional methods.
The inventors of the present invention focused on the fine carbon fibers produced by the vapor phase method, and were convinced that a composite type vibration damping steel sheet with extremely excellent performance could be developed by using these carbon fibers. Completed the invention.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、複数
の鋼板と該鋼板間にはさまれた樹脂層またはゴム層より
なる複合型制振鋼板において、樹脂層またはゴム層には
直径が0.01〜2μm、長さが1〜1000μmの炭
素繊維が含まれていることを特徴とする複合型制振鋼板
に関する。このような微細な炭素繊維は気相法により容
易に製造され、適当の曲りと分枝をもっている。そして
そのカサ密度は0.005〜0.1g/cm3 と非常に
小さく軽量である。このように微細な炭素繊維は樹脂
層、ゴム層において次のような微細構造を形成してい
る。
That is, the present invention provides a composite type vibration damping steel sheet comprising a plurality of steel sheets and a resin layer or a rubber layer sandwiched between the steel sheets, wherein the resin layer or the rubber layer has a diameter of 0. The present invention relates to a composite type vibration damping steel plate characterized by containing carbon fibers having a length of 0.01 to 2 μm and a length of 1 to 1000 μm. Such fine carbon fibers are easily manufactured by the vapor phase method and have proper bending and branching. The bulk density is 0.005-0.1 g / cm 3, which is very small and lightweight. Such fine carbon fibers form the following fine structure in the resin layer and the rubber layer.

【0008】すなわち前述の実質的には気相法で製造さ
れる微細な炭素繊維は層内で互いにからみあって複雑な
網目を形成している。溶接の場合、電気はこの網目を流
れる。又層に圧力が加えられると、炭素繊維の網目は一
層密になるので電気抵抗は著しく低下するという感圧特
性をもっている。さらに層自体が変形した場合、網目構
造は変化するが、網目そのものが破壊されることはな
く、導電性には影響しない。むしろこのような場合、網
目のずれの発生により変位は熱にかわり、制振性は向上
する。
That is, the above-mentioned substantially fine carbon fibers produced by the vapor phase method are entangled with each other in a layer to form a complicated network. In the case of welding, electricity flows through this mesh. Further, when pressure is applied to the layer, the mesh of the carbon fibers becomes denser, so that the electric resistance is remarkably reduced, which is a pressure-sensitive property. Further, when the layer itself is deformed, the mesh structure is changed, but the mesh itself is not destroyed and the conductivity is not affected. Rather, in such a case, the displacement is replaced by heat due to the occurrence of the mesh shift, and the vibration damping property is improved.

【0009】炭素繊維はその製造における熱処理が、8
00〜2000℃の低温熱処理のもの、2000℃をこ
える高温熱処理の両方あるが、本発明の複合型制振鋼板
においてはいずれも用いることができる。微細な炭素繊
維と樹脂またはゴムとの混合は、樹脂またはゴム100
重量部に対して、炭素繊維10〜200重量部である。
炭素繊維が10重量部未満の場合は、添加の効果は少な
く、また200重量部をこえると、全体の中のゴムまた
は樹脂の配合割合が低下し、制振効果が減少し、さらに
樹脂、またはゴム層の強度も低下する。
The heat treatment in the production of carbon fiber is 8
There are both low temperature heat treatment of 00 to 2000 ° C. and high temperature heat treatment of more than 2000 ° C., but any of them can be used in the composite vibration-damping steel sheet of the present invention. Mixing of fine carbon fibers with resin or rubber should be done with resin or rubber 100
It is 10 to 200 parts by weight of carbon fiber with respect to parts by weight.
When the amount of carbon fiber is less than 10 parts by weight, the effect of addition is small, and when it exceeds 200 parts by weight, the compounding ratio of rubber or resin in the whole is decreased, the vibration damping effect is decreased, and further, resin, or The strength of the rubber layer also decreases.

【0010】そして実用的には、樹脂又はゴム100重
量部に対して15〜100重量部の範囲が好ましい。炭
素繊維と樹脂またはゴムとの混練は、通常の混練装置に
より行うことができる。フィルム状への成型はTダイ押
出等で行うことができる。また鋼板との積層はホットプ
レス等の常法の手段で実施できる。
Practically, the range of 15 to 100 parts by weight is preferable to 100 parts by weight of resin or rubber. The kneading of the carbon fiber and the resin or rubber can be performed by a usual kneading device. Molding into a film can be performed by T-die extrusion or the like. The lamination with the steel plate can be carried out by a conventional method such as hot pressing.

【0011】本発明の樹脂層を形成する樹脂としては、
従来の複合制振型鋼板に用いられる樹脂がすべて用いら
れる。例えばポリエチレン、ポリプロピレン、ポリスチ
レン、ナイロン等である。またゴム層を形成するゴムと
してはブタジエンゴム、ウレタンゴム等を例示できる。
As the resin forming the resin layer of the present invention,
All the resins used for conventional composite vibration control type steel sheets are used. For example, polyethylene, polypropylene, polystyrene, nylon and the like. Examples of the rubber forming the rubber layer include butadiene rubber and urethane rubber.

【0012】[0012]

【作用】本発明における微細な、実質的には気相法で製
造される炭素繊維は、従来の炭素繊維に比し、はるかに
微小であり、又は適当な曲りと分岐をもっている。この
ため樹脂層、ゴム層中で密にからみあって存在してお
り、樹脂層、ゴム層の導電性を向上させ、かつ制振効果
も維持している。即ち本発明の複合型制振鋼板はすぐれ
たスポット溶接性をも併せもった材料である。
The fine, substantially carbon fiber produced by the vapor phase method according to the present invention is much finer than the conventional carbon fibers, or has appropriate bending and branching. Therefore, the resin layer and the rubber layer are intimately entangled with each other, improving the conductivity of the resin layer and the rubber layer and maintaining the vibration damping effect. That is, the composite vibration-damping steel sheet of the present invention is a material that also has excellent spot weldability.

【0013】次に実験例、実施例、比較例により、本発
明を説明する。 実験例1 ゴムに30重量%の平均直径0.2μmの、平均長さ1
0μmの気相法炭素繊維(熱処理温度、2400℃)を
添加その内部損失を測定した。tanδは0.3〜0.
4であった。 実験例2 気相法炭素繊維に変えてオイルファーネス系カーボンブ
ラック(平均粒径0.03μm´)を用いた以外実験例
1と同様に処理して内部損失を測定した。tanδ0.
1〜0.2であった。即ち制振性能はカーボンブラック
添加の場合より、気相法炭素繊維使用の方が明らかにす
ぐれている。
Next, the present invention will be described with reference to experimental examples, examples and comparative examples. Experimental Example 1 30% by weight of rubber having an average diameter of 0.2 μm and an average length of 1
0 μm of vapor grown carbon fiber (heat treatment temperature, 2400 ° C.) was added and its internal loss was measured. tan δ is 0.3 to 0.
It was 4. Experimental Example 2 The internal loss was measured in the same manner as in Experimental Example 1 except that oil furnace carbon black (average particle size 0.03 μm ′) was used instead of the vapor grown carbon fiber. tan δ0.
It was 1 to 0.2. That is, the damping performance is clearly better when the vapor grown carbon fiber is used than when carbon black is added.

【0014】実施例1〜6 長さ1800mm、巾900mm、厚さ1mmの鋼板2
枚の間に、Tダイ押出しで作成された厚さ0.08mm
の樹脂層、またはゴム層をホットプレスにより圧接し、
長さ100mm、巾20mmの試験片を切りだした。樹
脂層及びゴム層の組成を変化させた各種の試験片を作製
し、それぞれの試験片について、スポット溶接性、内部
損失(tanα)、剪断強度を測定した。スポット溶接
は電極径5mmφ、加圧力300Kgf、電流10K
A、0.3secで行った。樹脂またはゴム層の組成、
測定効果を、表1に示す。
Examples 1 to 6 Steel plate 2 having a length of 1800 mm, a width of 900 mm and a thickness of 1 mm
0.08mm thickness created by T-die extrusion between sheets
The resin layer or rubber layer of is pressed by hot pressing,
A test piece having a length of 100 mm and a width of 20 mm was cut out. Various test pieces having different compositions of the resin layer and the rubber layer were prepared, and spot weldability, internal loss (tan α), and shear strength were measured for each test piece. For spot welding, electrode diameter is 5mmφ, pressure is 300Kgf, current is 10K.
A, 0.3 sec. Composition of resin or rubber layer,
The measurement effects are shown in Table 1.

【表1】 [Table 1]

【0015】比較例1〜6 樹脂層、ゴム層の組成を本発明外とした以外、実施例と
同様に試験片を作成し、実施例と同様に各種の測定を行
った。試験片の組成、測定結果を表2に示す。
Comparative Examples 1 to 6 Test pieces were prepared in the same manner as in the examples except that the compositions of the resin layer and the rubber layer were outside the scope of the present invention, and various measurements were performed in the same manner as in the examples. Table 2 shows the composition of the test pieces and the measurement results.

【表2】 [Table 2]

【0016】[0016]

【発明の効果】実施例に示される微細な炭素繊維を含む
樹脂層、ゴム層を有する制振鋼板は電導性、制振性のい
ずれの点においても比較例に示される樹脂層まはゴム層
に比しスポット溶接に適した性質を有する。
The vibration-damping steel sheet having the resin layer containing the fine carbon fibers and the rubber layer shown in the examples is the resin layer or the rubber layer shown in the comparative example in terms of both electric conductivity and vibration damping property. It has properties suitable for spot welding in comparison with.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の鋼板と該鋼板間にはさまれた樹脂
層またはゴム層よりなる複合型制振鋼板において、 樹脂層またはゴム層には直径が0.01〜2μm、長さ
が1〜1000μmの炭素繊維が含まれていることを特
徴とする複合型制振鋼板。
1. A composite vibration damping steel sheet comprising a plurality of steel sheets and a resin layer or a rubber layer sandwiched between the steel sheets, wherein the resin layer or the rubber layer has a diameter of 0.01 to 2 μm and a length of 1 A composite vibration-damping steel sheet containing carbon fibers of up to 1000 μm.
【請求項2】 炭素繊維は気相法でつくられたものであ
る請求項1の複合型制振鋼板。
2. The composite vibration-damping steel sheet according to claim 1, wherein the carbon fiber is produced by a vapor phase method.
【請求項3】 炭素繊維は樹脂またはゴム100重量部
に対して10〜200重量部含まれている請求項1の複
合型制振鋼板。
3. The composite vibration-damping steel sheet according to claim 1, wherein the carbon fiber is contained in an amount of 10 to 200 parts by weight based on 100 parts by weight of the resin or rubber.
JP3273589A 1991-09-26 1991-09-26 Composite damping steel plate excellent in spot weldability Pending JPH0584865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273589A JPH0584865A (en) 1991-09-26 1991-09-26 Composite damping steel plate excellent in spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273589A JPH0584865A (en) 1991-09-26 1991-09-26 Composite damping steel plate excellent in spot weldability

Publications (1)

Publication Number Publication Date
JPH0584865A true JPH0584865A (en) 1993-04-06

Family

ID=17529899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273589A Pending JPH0584865A (en) 1991-09-26 1991-09-26 Composite damping steel plate excellent in spot weldability

Country Status (1)

Country Link
JP (1) JPH0584865A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063426A (en) * 2005-08-31 2007-03-15 Bridgestone Corp Highly damping rubber composition
WO2010004634A1 (en) * 2008-07-10 2010-01-14 日信工業株式会社 Carbon nanofiber, process for producing the same, and carbon fiber composite material
US8329293B2 (en) 2006-04-28 2012-12-11 Nissin Kogyo Co., Ltd. Carbon fiber composite material
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063426A (en) * 2005-08-31 2007-03-15 Bridgestone Corp Highly damping rubber composition
US8329293B2 (en) 2006-04-28 2012-12-11 Nissin Kogyo Co., Ltd. Carbon fiber composite material
US9000085B2 (en) 2006-04-28 2015-04-07 Nissin Kogyo Co., Ltd. Carbon fiber composite resin material and method of producing the same
WO2010004634A1 (en) * 2008-07-10 2010-01-14 日信工業株式会社 Carbon nanofiber, process for producing the same, and carbon fiber composite material

Similar Documents

Publication Publication Date Title
US7214430B2 (en) Composite material
Cunningham et al. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer
JP3850427B2 (en) Carbon fiber bonded body and composite material using the same
Mathur et al. Effect of different carbon fillers on the properties of graphite composite bipolar plate
KR100722812B1 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
TWI352716B (en)
JP5567534B2 (en) Conductive structure, method for producing the same, and separator for fuel cell
WO2006025141A1 (en) Carbon fiber structure
Gautam et al. Synergistic effects of carbon fillers of phenolic resin based composite bipolar plates on the performance of PEM fuel cell
JP2001126744A (en) Separator for fuel cell and fabricating method therefor
JP2005353585A (en) Conductive structure, method for manufacturing the same and separator for fuel cell
JP4937529B2 (en) Conductive resin composition for fuel cell separator and fuel cell separator
WO2007044585A2 (en) Compression moldable composite bipolar plates with high through-plane conductivity
JPH0584865A (en) Composite damping steel plate excellent in spot weldability
JP2007042326A (en) Separator for fuel cell and manufacturing method thereof
JP3259051B2 (en) Fuel cell separator base and fuel cell separator using the base
JP4657000B2 (en) Conductive molding material and fuel cell separator
JP2004099355A (en) Graphite powder, its manufacturing method, and conductive material consisting thereof for battery
US20100021790A1 (en) Elastomeric bipolar plates
JP6557448B2 (en) Metal-bonded conductive resin film and conductive resin-metal composite
JP2003213137A (en) Thermosetting resin molding material and molded article obtained by molding the same
JP2004075954A (en) Epoxy resin composition for fuel cell separator
EP2752463A1 (en) Heat-curable resin composition, method for producing cured article and molded article thereof, cured article, molded article, and separator for fuel cell
JP2003257446A (en) Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
JP3296801B2 (en) Carbon composite molding