JPH0584643A - Fine groove machining device - Google Patents

Fine groove machining device

Info

Publication number
JPH0584643A
JPH0584643A JP24888491A JP24888491A JPH0584643A JP H0584643 A JPH0584643 A JP H0584643A JP 24888491 A JP24888491 A JP 24888491A JP 24888491 A JP24888491 A JP 24888491A JP H0584643 A JPH0584643 A JP H0584643A
Authority
JP
Japan
Prior art keywords
tool
burnishing tool
groove
workpiece
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24888491A
Other languages
Japanese (ja)
Inventor
Yukio Maeda
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24888491A priority Critical patent/JPH0584643A/en
Publication of JPH0584643A publication Critical patent/JPH0584643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To provide a fine groove machining device for machining a fine groove for a spectrophotometer and an optical disk, having a function of automatically adjusting a burnishing tool wherein uniformity of burr height in a groove shoulder part and high accuracy of groove shape can be attained by automatically adjusting an angle of the burnishing tool with high precision CONSTITUTION:In a machining device of arranging a spindle 4 for supporting a workpiece 2 rotated by a bearing, tool table 1 linearly moved so as to be orthogonal to the center of a rotary shaft of the spindle 4 and a burnishing tool 7 on the point end of the tool table 1 so that an edge point of the burnishing tool 7 is directed toward the workpiece 2, the machining device comprises the burnishing tool 1, means for converting an angle in a machining direction into the length from intensity distribution of reflected light and a means for automatically correcting the angle of the burnishing tool 1 based on this length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分光光度計に使用され
る回折格子及び光ディスクの成形用金型の溝加工におい
て、特に従来の熟練者による手動調整では得られなかっ
た高精度な微細溝を形成するのに好適な工具の自動調整
手段をもった微細溝加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly precise fine groove, which cannot be obtained by manual adjustment by a person skilled in the art, in the groove processing of a diffraction grating used in a spectrophotometer and a molding die for an optical disk. The present invention relates to a fine groove machining apparatus having a tool automatic adjusting means suitable for forming a groove.

【0002】[0002]

【従来の技術】従来の溝加工用ダイヤモンド工具の角度
調整は、1990年度精密工学会秋季大会学術講演会論
文集「電子ビームを用いた光ディスク案内溝の形状寸法
計測」,P33〜P34,1990年9月5日発行に記
載されたように、予め溝加工を行いその溝形状を加工機
外の測定装置で測定し、作業者がV溝のバランスから目
視で工具の角度調整をする方式であった。この方式で
は、作業者の個人誤差による溝形状のばらつきが発生す
る欠点があった。
2. Description of the Related Art The conventional angle adjustment of a diamond tool for grooving is described in "Analysis of Shapes of Optical Disk Guide Grooves Using Electron Beam", 1990, Precision Engineering Society Autumn Meeting, Academic Lecture Meeting, P33-P34, 1990. As described in the issue on September 5, the method is to perform groove processing in advance, measure the groove shape with a measuring device outside the processing machine, and the operator visually adjusts the tool angle from the balance of the V groove. It was This method has a drawback that the groove shape varies due to individual error of the operator.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、溝加
工用ダイヤモンド工具の角度を高精度に測定し、角度調
整誤差が極めて小さくできるバニシング工具自動調整機
能をもつ微細溝加工装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fine groove machining apparatus having a burnishing tool automatic adjustment function capable of measuring the angle of a diamond tool for groove machining with high accuracy and making the angle adjustment error extremely small. Especially.

【0004】[0004]

【課題を解決するための手段】本発明の微細溝加工装置
は、工作物に工具を圧接して得られた圧痕と、この圧痕
と隣接し加工された連続溝を横切る様に平行光を照射
し、この圧痕と連続溝を横切る反射光を電気信号に変換
する光学系と、この平行光を設定量だけ移動する手段か
ら成る光学測定部と、この光学測定部と連動してバニシ
ング工具を設定量だけ回転,直線移動する手段から成る
加工ヘッド部とから構成される。
The fine groove machining apparatus of the present invention radiates parallel light so as to cross an indentation obtained by press-contacting a workpiece with a tool and a continuous groove adjacent to the indentation and machined. Then, an optical system that converts the reflected light that crosses the indentation and the continuous groove into an electrical signal, an optical measuring unit that moves this parallel light by a set amount, and a burnishing tool is set in conjunction with this optical measuring unit. It is composed of a machining head unit that is configured to rotate and move linearly by a certain amount.

【0005】[0005]

【作用】バニシング工具を加工ヘッド部に取り付けた
後、バニシング工具をダミーの工作物に圧接し、工作物
を一回転させて連続溝を形成する。その後、この連続溝
に隣接した位置に工具を移動させ、工作物に圧接し工具
の圧痕をつける。
After the burnishing tool is attached to the machining head, the burnishing tool is pressed against the dummy workpiece and the workpiece is rotated once to form a continuous groove. After that, the tool is moved to a position adjacent to this continuous groove, and is pressed against the workpiece to make an impression of the tool.

【0006】この圧痕の長手方向に平行光を間欠的に設
定量だけ相対変位させ、ある停止位置での反射光の強度
分布を測定し、その信号から圧痕と連続溝の間隔を長さ
に変換し、次の停止位置でも同様に圧痕と連続溝の間隔
を長さに変換する反射光幅検出手段を備え、前記二個所
の反射光の幅変化から工具の傾きを検知すると共に、こ
の傾きを検出精度内でゼロに補正すべく工具の傾きを修
正する駆動手段により、工具の自動調整をする。工具の
自動調整終了後、正規の工作物を主軸に取付け微細溝加
工する。
The parallel light is intermittently displaced relative to the longitudinal direction of the indentation by a set amount, the intensity distribution of the reflected light at a certain stop position is measured, and the distance between the indentation and the continuous groove is converted to the length from the signal. However, at the next stop position as well, a reflected light width detection means for converting the distance between the indentation and the continuous groove into a length is similarly provided, and the inclination of the tool is detected from the change in the width of the reflected light at the two points, and this inclination is also detected. The tool is automatically adjusted by the driving means for correcting the inclination of the tool so as to correct it to zero within the detection accuracy. After the automatic adjustment of the tool is completed, a regular work piece is attached to the spindle and fine groove machining is performed.

【0007】[0007]

【実施例】本発明の実施例を図1ないし図9に示す。図
1は加工機の斜視図である。全体構成は、除振装置6で
支持された定盤5上には、主軸4と工具テーブル1、光
学測定装置3が固定されている。主軸4には、工作物2
が吸着保持されており、この主軸4の回転軸心と直交方
向に直線移動可能な工具テーブル1が配置されており、
工具テーブル1の先端部には、刃先が工作物2に向くよ
うにバニシング工具7が固定されている。さらに、加工
表面を測定できるように光学系が工作物2に向くように
光学測定装置3が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention is shown in FIGS. FIG. 1 is a perspective view of a processing machine. The overall configuration is such that a spindle 4, a tool table 1, and an optical measuring device 3 are fixed on a surface plate 5 supported by a vibration isolation device 6. The work piece 2 is attached to the spindle 4.
Is adsorbed and held, and a tool table 1 which is linearly movable in a direction orthogonal to the rotational axis of the main shaft 4 is arranged,
A burnishing tool 7 is fixed to the tip of the tool table 1 so that the cutting edge faces the workpiece 2. Furthermore, an optical measuring device 3 is arranged so that the optical system faces the workpiece 2 so that the machining surface can be measured.

【0008】次に、図1のバニシング工具7により工作
物2を加工する状態を図2に示す。頂角α,曲率半径R
をもつ舟底形状のバニシング工具7を工作物2に一定荷
重で圧接し、バニシング工具7と工作物2に相対速度を
与え、バニシング工具7の切れ刃稜線方向に加工する。
Next, FIG. 2 shows a state in which the workpiece 2 is machined by the burnishing tool 7 shown in FIG. Vertical angle α, radius of curvature R
The burnishing tool 7 in the shape of a boat having a bottom is pressed against the work piece 2 with a constant load to give a relative speed to the burnishing tool 7 and the work piece 2, and the burnishing tool 7 is machined in the cutting edge ridge direction.

【0009】図1の加工方式におけるバニシング工具の
角度調整を図3で説明する。図3は溝加工状態を工具側
から見た図であり、工具移動方向とバニシング工具の切
れ刃稜線が傾きθをもつと、溝断面A−Aに示す様に、
溝肩部のばり高さが不均一になり、高精度な溝形状が得
られないと言う問題点がある。
The angle adjustment of the burnishing tool in the machining system of FIG. 1 will be described with reference to FIG. FIG. 3 is a view of the groove processing state viewed from the tool side. When the tool moving direction and the cutting edge ridge of the burnishing tool have an inclination θ, as shown in the groove cross section AA,
There is a problem that the flash height of the groove shoulder portion becomes non-uniform and a highly accurate groove shape cannot be obtained.

【0010】そこで、この問題点を解決するために考案
したバニシング工具の角度調整法を図4,図5に示す。
図4はバニシング工具を工作物に圧接して得られる圧痕
と、この工具を用いて5〜10μm離れた位置に加工さ
れた連続溝の顕微鏡写真である。図5は、図4から角度
測定する説明図であり、工具の圧痕と溝との距離Δ1
Δ2の差と測定個所の距離lから、角度誤差θはtan~
1((Δ1−Δ2)/L)で求めることができる。
The angle adjusting method of the burnishing tool devised to solve this problem is shown in FIGS.
FIG. 4 is a photomicrograph of an indentation obtained by press-contacting a workpiece with a burnishing tool and a continuous groove processed at a position separated by 5 to 10 μm using this tool. FIG. 5 is an explanatory view for measuring the angle from FIG. 4, and the angle error θ is tan ~ from the difference between the distance Δ 1 and Δ 2 between the indentation of the tool and the groove and the distance l at the measurement point.
It can be obtained by 1 ((Δ 1 −Δ 2 ) / L).

【0011】図6は、図5の測定法のΔ1及びΔ2を光学
的に検出する図1の光学測定装置3の光学系を示す。光
源10から入射された光は、コリメータレンズ11,シ
リンドリカルレンズA,B12,13及びスリット板1
4を介して平行光になり、集光レンズ15を介して工作
物2の表面に入射される。このとき入射光は、工作物表
面の圧痕と連続溝を横切るように光軸調整されている。
この反射光をコリメータレンズ16,偏光板17,凸レ
ンズ18を介してフォトダイオードアレイ19に結像さ
せ、この反射光をアンプ20を介して電気信号に変換す
る。
FIG. 6 shows the optical system of the optical measuring device 3 of FIG. 1 for optically detecting Δ 1 and Δ 2 of the measuring method of FIG. Light incident from the light source 10 is collimator lens 11, cylindrical lenses A, B 12, 13 and slit plate 1.
It becomes parallel light via 4 and enters the surface of the workpiece 2 via the condenser lens 15. At this time, the incident light has its optical axis adjusted so as to traverse the indentation on the workpiece surface and the continuous groove.
This reflected light is imaged on the photodiode array 19 via the collimator lens 16, the polarizing plate 17, and the convex lens 18, and this reflected light is converted into an electric signal via the amplifier 20.

【0012】図6の光学系で反射光を電気信号に変換し
た出力信号を図7に示す。フォトダイオードアレイ19
はn1〜niまでの番号に対応した出力電圧を得ることが
でき、出力電圧のしきい値Vsでスレスホールドすると
圧痕の溝位置に対応したフォトダイオードアレイの位
置、na,nbが検出され、連続溝の位置に対応した位置
nc,ndが求まる。
FIG. 7 shows an output signal obtained by converting the reflected light into an electric signal by the optical system shown in FIG. Photodiode array 19
Can obtain the output voltage corresponding to the numbers from n1 to ni, and when the threshold voltage Vs of the output voltage is thresholded, the positions of the photodiode array corresponding to the groove position of the indentation, na and nb, are detected. The positions nc and nd corresponding to the positions of the continuous grooves are obtained.

【0013】例えば、フォトダイオードアレイの全個数
ni=4096、画素のピッチ8μmの場合、光学系の総
合倍率を二千倍とすると、画素の一ピッチで測定できる
分解能は0.004μm、測定距離は16.384μm
となる。図7の出力信号をもとに圧痕と連続溝の間隔Δ
1は、[(nd−nc)/2−(nb−na)/2]×
0.004μmで求まる。同様にΔ2を求めることによ
り、角度誤差θはtan~1(Δ1−Δ2/16.384)か
ら算出できる。
For example, if the total number of photodiode arrays is ni = 4096 and the pixel pitch is 8 μm, and the total magnification of the optical system is 2000 times, the resolution that can be measured at one pixel pitch is 0.004 μm and the measurement distance is 16.384 μm
Becomes Based on the output signal in Fig. 7, the gap Δ between the indentation and the continuous groove
1 is [(nd-nc) / 2- (nb-na) / 2] ×
It can be obtained by 0.004 μm. Similarly, by determining the delta 2, the angle error θ can be calculated from tan ~ 1 (Δ 1 -Δ 2 /16.384).

【0014】図8は、図7で算出された角度誤差θを自
動調整する装置の斜視図を示す。主軸4の回転軸心に直
交するように配置されたXテーブル21のスライダに積
載されるYテーブル27と、Yテーブル27のスライダ
上に設置された回転テーブル23と、回転テーブル23
上に固定されたZテーブルから構成されている。
FIG. 8 is a perspective view of an apparatus for automatically adjusting the angle error θ calculated in FIG. The Y table 27 mounted on the slider of the X table 21 arranged so as to be orthogonal to the rotational axis of the main shaft 4, the rotary table 23 installed on the slider of the Y table 27, and the rotary table 23.
It consists of a Z table fixed on top.

【0015】図9に図8の装置の動作を示す。光学測定
装置3からの補正信号を回転テーブル用モータ24に入
力し、回転テーブル用駆動ギア28を介して回転テーブ
ル23をθだけ回転させる。その後、芯ずれ量δ=Lsi
nθを修正するためYテーブル用モータ22に入力し、
芯ずれ量δを補正する。
FIG. 9 shows the operation of the apparatus shown in FIG. The correction signal from the optical measuring device 3 is input to the rotary table motor 24, and the rotary table 23 is rotated by θ via the rotary table drive gear 28. After that, misalignment amount δ = Lsi
Input to the Y table motor 22 to correct nθ,
Correct the misalignment amount δ.

【0016】以上のバニシング工具7の切れ刃稜線を加
工方向に対して、高精度に自動角度調整した後、バニシ
ング工具7を工作物2に圧接し、工作物2を回転させる
と同時にバニシング工具7を支持するXテーブル21を
移動させ、工作物2の円周方向に微細溝を加工する。
After automatically adjusting the cutting edge ridge of the burnishing tool 7 with respect to the machining direction with high precision, the burnishing tool 7 is pressed against the workpiece 2 to rotate the workpiece 2 and at the same time burnishing tool 7 is rotated. The X table 21 that supports the workpiece is moved to form a fine groove in the circumferential direction of the workpiece 2.

【0017】[0017]

【発明の効果】本発明によれば、舟底形状のバニシング
工具の切れ刃稜線と加工方向を±0.006°の高精度
な角度調整ができ、分光光度計に用いられる回折格子
や、光ディスクの成形用金型の微細溝を加工する時、溝
肩部のばり高さの低減、溝形状の高精度化ができる。こ
れにより、回折効率の向上や光ディスクの高密度化が図
れる。
According to the present invention, the cutting edge ridge of a boat-bottomed burnishing tool and the machining direction can be adjusted with a high accuracy of ± 0.006 °, and a diffraction grating used in a spectrophotometer or an optical disk. When processing the fine groove of the molding die, it is possible to reduce the flash height of the groove shoulder and improve the accuracy of the groove shape. As a result, the diffraction efficiency can be improved and the density of the optical disc can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】微細溝加工装置の斜視図、FIG. 1 is a perspective view of a fine groove processing apparatus,

【図2】バニシング工具により加工している状態の説明
図、
FIG. 2 is an explanatory view of a state of processing by a burnishing tool,

【図3】バニシング工具による溝加工例の説明図、FIG. 3 is an explanatory view of an example of groove processing by a burnishing tool,

【図4】バニシング工具の圧痕と溝加工した面の説明
図、
FIG. 4 is an explanatory view of an indentation and a grooved surface of the burnishing tool,

【図5】バニシング工具の圧痕と円周溝による角度測定
の説明図、
FIG. 5 is an explanatory diagram of angle measurement by an indentation and a circumferential groove of a burnishing tool,

【図6】角度測定するための光学系の説明図、FIG. 6 is an explanatory view of an optical system for measuring an angle,

【図7】光学系の出力信号の例の説明図、FIG. 7 is an explanatory diagram of an example of an output signal of the optical system,

【図8】バニシング工具の角度調整部の斜視図、FIG. 8 is a perspective view of an angle adjusting unit of the burnishing tool,

【図9】角度調整部の動作の説明図。FIG. 9 is an explanatory diagram of the operation of the angle adjusting unit.

【符号の説明】[Explanation of symbols]

1…工具テーブル、2…工作物、3…光学測定装置、4
…主軸、5…定盤、6…除振装置、7…バニシング工
具。
1 ... Tool table, 2 ... Workpiece, 3 ... Optical measuring device, 4
... spindle, 5 ... surface plate, 6 ... anti-vibration device, 7 ... burnishing tool.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】工作物を回転軸受支持する主軸と、前記主
軸の回転軸心に直交するように直線移動するテーブル
と、前記テーブルの先端には工具の刃先が工作物に向く
ように配置された加工装置において、前記工具と加工方
向とのなす角度を反射光の強度分布から測定する光学測
定手段と、この角度測定をもとに角度誤差を自動補正す
る手段とからなることを特徴とする微細溝加工装置。
1. A main shaft for supporting a workpiece in a rotary bearing, a table that linearly moves so as to be orthogonal to the axis of rotation of the main shaft, and a tip of the table is arranged so that a cutting edge of a tool faces the workpiece. In the processing apparatus, it is characterized by comprising an optical measuring means for measuring the angle formed by the tool and the processing direction from the intensity distribution of reflected light, and means for automatically correcting an angle error based on this angle measurement. Fine groove processing equipment.
JP24888491A 1991-09-27 1991-09-27 Fine groove machining device Pending JPH0584643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24888491A JPH0584643A (en) 1991-09-27 1991-09-27 Fine groove machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24888491A JPH0584643A (en) 1991-09-27 1991-09-27 Fine groove machining device

Publications (1)

Publication Number Publication Date
JPH0584643A true JPH0584643A (en) 1993-04-06

Family

ID=17184876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24888491A Pending JPH0584643A (en) 1991-09-27 1991-09-27 Fine groove machining device

Country Status (1)

Country Link
JP (1) JPH0584643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195057A (en) * 2001-12-25 2003-07-09 Towa Corp Light guide plate forming method and light guide plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195057A (en) * 2001-12-25 2003-07-09 Towa Corp Light guide plate forming method and light guide plate

Similar Documents

Publication Publication Date Title
KR102637460B1 (en) Method and apparatus for gear skiving
DE102008011057B4 (en) Measuring device for a workpiece held on a clamping table and a laser processing machine
US3749500A (en) Optical caliper and edge detector-follower for automatic gaging
US8403725B2 (en) Method and device for machining workpieces
US8215211B2 (en) Method and apparatus for machning V grooves
EP1036300B1 (en) Surface measuring apparatus
JPH10328867A (en) Laser beam machining device, focusing jig therefor and jig for measuring diameter of condensed laser beam
JP3267340B2 (en) Tool measuring device
JPH04233403A (en) Inspecting apparatus for rotating symmetrical workpiece
JPS6377639A (en) Method and device for machining working plane of roll by cutting
US3905116A (en) Crankshaft bearing measuring apparatus
GB2040074A (en) Laser beam machining
CN117232440A (en) System and method for online measurement of surface roughness of ultra-precise cutting machining
CN108205290B (en) Workpiece leveling device based on laser displacement sensor
JPH0584643A (en) Fine groove machining device
JP2003039282A (en) Free-form surface working device and free-form surface working method
KR100467060B1 (en) Apparatus for measuring roughness and flatness
CN115493545A (en) Device and method for measuring straightness error of guide rail installation surface
JPS6130856B2 (en)
JPS59192457A (en) Positioner
JPH05164556A (en) Focusing type non-contact displacement gage
JPS62208839A (en) Machine tool conducting cutting work
JP2000263380A (en) Machining method and device for work
JPS62147306A (en) Apparatus for measuring shape of round shaft shaped member
RU2178140C1 (en) Unit for contact-free measurement of geometric parameters of cylindrical articles