JPH0583140B2 - - Google Patents

Info

Publication number
JPH0583140B2
JPH0583140B2 JP13029988A JP13029988A JPH0583140B2 JP H0583140 B2 JPH0583140 B2 JP H0583140B2 JP 13029988 A JP13029988 A JP 13029988A JP 13029988 A JP13029988 A JP 13029988A JP H0583140 B2 JPH0583140 B2 JP H0583140B2
Authority
JP
Japan
Prior art keywords
gas
membrane
evaluated
pressure difference
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13029988A
Other languages
Japanese (ja)
Other versions
JPH01301144A (en
Inventor
Hatsuo Uehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP13029988A priority Critical patent/JPH01301144A/en
Publication of JPH01301144A publication Critical patent/JPH01301144A/en
Publication of JPH0583140B2 publication Critical patent/JPH0583140B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガス透過膜や多孔体の膜性能評価方
法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for evaluating the performance of gas permeable membranes and porous bodies.

〔従来の技術〕[Conventional technology]

膜のガス透過度を求めて膜の評価を行う場合、
その測定方法には大別して異圧法と等圧法とがあ
る。これら測定方法の測定原理は、いずれも第7
図に示すように被評価膜1を境界膜として2つの
空間A,Bを形成し、この状態に被評価膜1の各
面のガスの分圧を変えて高い分圧側から低い分圧
側に透過したガスの量を検出器2で測定すること
によつて求めるものである。具体的に説明する
と、異圧法は各空間A,Bの被評価膜1に対する
全圧をそれぞれ異ならせて被評価膜1を透過した
ガスの量を測定するもので、この場合低圧側の空
間例えばBは通常真空に形成される。又、等圧法
では、各空間A,Bの被評価膜1に対する各全圧
は等しくするが各空間A,Bのガスの分圧は異な
らせて高い分圧側から低い分圧側に透過したガス
の量を検出器2で測定するものである。よつて、
この場合、ガスの透過側の空間には混合ガスが存
在する。
When evaluating a membrane by determining its gas permeability,
The measurement methods can be roughly divided into different pressure methods and equal pressure methods. The measurement principles of these measurement methods are all based on the seventh
As shown in the figure, two spaces A and B are formed using the membrane 1 to be evaluated as a boundary membrane, and in this state, the partial pressure of gas on each surface of the membrane 1 to be evaluated is changed to permeate from the high partial pressure side to the low partial pressure side. This is determined by measuring the amount of gas with the detector 2. To be more specific, the different pressure method measures the amount of gas that has permeated through the membrane 1 to be evaluated by varying the total pressure of each space A and B to the membrane 1 to be evaluated. B is usually formed in a vacuum. In addition, in the isobaric method, the total pressure of each space A and B relative to the membrane 1 to be evaluated is made equal, but the partial pressure of gas in each space A and B is made different so that the gas permeates from the high partial pressure side to the low partial pressure side. The amount is measured by a detector 2. Afterwards,
In this case, a mixed gas exists in the space on the gas permeation side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のようにガス透過度を求める方法がある
が、これら方法にはそれぞれ次のような問題があ
る。すなわち、異圧法では低圧側の空間を真空に
保持しなければならず、又1回の測定で求められ
るガス透過度は被評価膜1に対して1種のガスの
みとなる。又、等圧法ではガスの透過側が混合ガ
スとなるので、ガス透過度を求めようとするガス
のみを検出できる検出器が必要となる。なお、他
にもガス透過度を測定する方法があるが、その方
法においても質量分析器等の高価な装置が必要と
なる。
There are methods for determining gas permeability as described above, but each of these methods has the following problems. That is, in the differential pressure method, the space on the low pressure side must be kept in a vacuum, and the gas permeability determined in one measurement is for only one type of gas for the membrane 1 to be evaluated. Furthermore, in the isobaric method, since the gas permeation side is a mixed gas, a detector is required that can detect only the gas whose gas permeability is to be determined. Note that there are other methods of measuring gas permeability, but these methods also require expensive equipment such as a mass spectrometer.

そこで本発明は、1種又は2種のガスであつて
も真空を形成する必要が無くかつ高価な質量分析
器等を使用しなくても精度高く膜を評価できる膜
性能評価方法及びその装置を提供することを目的
とする。
Therefore, the present invention provides a membrane performance evaluation method and device that can evaluate membranes with high precision even when using one or two types of gas without the need to create a vacuum and without using an expensive mass spectrometer. The purpose is to provide.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本願第1の発明は、互いに異なる単一成分の第
1及び第2のガスを同一圧力でそれぞれ個別に第
1及び第2のガス封入容器に封入し、これら第1
及び第2のガス封入容器内の各ガスのうち第1の
ガスを被評価膜の一方の面に加圧するとともに第
2のガスを他方の面に加圧し、その後の第1と第
2のガス封入容器内の圧力差の変化率、圧力差の
最大値に及びこの圧力差の最大値に達するまでの
経過時間の各データを測定し、これらデータから
被評価膜の第1及び第2のガスに対する膜透過係
数比及び膜透過係数を求める膜性能評価方法であ
る。
The first invention of the present application is to separately seal first and second gases each having a single component different from each other in first and second gas-filled containers at the same pressure;
Of the gases in the second gas-filled container, the first gas is pressurized on one side of the membrane to be evaluated, and the second gas is pressurized on the other side, and then the first and second gases are pressurized. The rate of change of the pressure difference in the sealed container, the maximum value of the pressure difference, and the elapsed time until the maximum value of this pressure difference is reached are measured, and from these data, the first and second gases of the membrane to be evaluated are determined. This is a membrane performance evaluation method that calculates the membrane permeability coefficient ratio and membrane permeability coefficient.

又、本願第2の発明は、第1のガス封入容器及
びバルブが設けられ第1のガス封入容器に封入さ
れた第1のガスを被評価膜の一方の面に供給する
第1のガス供給系と、第2のガス封入容器及びバ
ルブが設けられ第2のガス封入容器に封入された
第2のガスを被評価膜の他方の面に供給する第1
のガス供給系の容積と同一容積に形成された第2
のガス供給系と、これら第1と第2のガス供給系
における各ガスの圧力差を検出する差圧検出器
と、この差圧検出器からの検出信号を受けて圧力
差の変化率、圧力差の最大値及びこの圧力差の最
大値にするまでの経過時間の各データを測定する
測定手段と、の測定手段で測定された各データか
ら被評価膜の第1及び第2のガスに対する膜透過
係数比及び膜透過係数を求める評価データ算出手
段とを備えて上記目的を達成しようとする膜性能
評価装置である。
In addition, the second invention of the present application provides a first gas supply that is provided with a first gas-filled container and a valve and supplies the first gas sealed in the first gas-filled container to one surface of the film to be evaluated. a first system, which is provided with a second gas-filled container and a valve, and supplies a second gas sealed in the second gas-filled container to the other surface of the film to be evaluated;
The second gas supply system is formed to have the same volume as that of the gas supply system.
a gas supply system, a differential pressure detector that detects the pressure difference between each gas in the first and second gas supply systems, and a detection signal from the differential pressure detector to detect the rate of change of the pressure difference, the pressure a measuring means for measuring each data of the maximum value of the difference and the elapsed time until the maximum value of the pressure difference is reached; The present invention is a membrane performance evaluation device that attempts to achieve the above object by being equipped with evaluation data calculation means for determining a permeability coefficient ratio and a membrane permeability coefficient.

さらに本願第3の発明は、単一成分のガスをそ
れぞれ圧力を異ならせてそれぞれ個別に第1及び
第2のガス封入容器に封入し、これら第1及び第
2のガス封入容器内の各ガスをそれぞれ被評価膜
の各別の面にそれぞれ加圧し、その後の第1と第
2のガス封入容器内の圧力差の変化率を測定し、
この圧力差の変化率から被評価膜の前記ガスに対
する膜透過係数を求める膜性能評価方法である。
Furthermore, the third invention of the present application is such that gases having a single component are individually sealed in first and second gas containers at different pressures, and each gas in the first and second gas containers is is applied to each different surface of the membrane to be evaluated, and then the rate of change in the pressure difference in the first and second gas-filled containers is measured,
This is a membrane performance evaluation method for determining the membrane permeability coefficient of the membrane to be evaluated for the gas from the rate of change of this pressure difference.

又本願第4の発明は、第1のガス封入容器及び
バルブが設けられ第1のガス封入容器に封入され
たガスを被評価膜の一方の面に供給する第1のガ
ス供給系と、第2のガス封入容器及びバルブが設
けられ第2のガス封入容器に封入されたガスを被
評価膜の他方の面に供給する第1のガス供給系の
容積と同一容積に形成された第2のガス供給系
と、これら第1と第2のガス供給系における各ガ
スの圧力差を検出する差圧検出器と、この差圧検
出器からの検出信号を受けて各ガスの圧力差の変
化率を測定する測定手段と、この測定手段で測定
された圧力差の変化率から被評価膜のガスに対す
る膜透過係数を求める評価データ算出手段とを備
えて上記目的を達成しようとする膜性能評価装置
である。
A fourth invention of the present application also provides a first gas supply system that is provided with a first gas-filled container and a valve and supplies the gas sealed in the first gas-filled container to one surface of the film to be evaluated; A second gas supply system is provided with a second gas-filled container and a valve, and is formed to have the same volume as the first gas supply system that supplies the gas sealed in the second gas-filled container to the other surface of the film to be evaluated. A gas supply system, a differential pressure detector that detects the pressure difference between each gas in the first and second gas supply systems, and a rate of change in the pressure difference between each gas in response to a detection signal from the differential pressure detector. A membrane performance evaluation device that attempts to achieve the above object, comprising a measurement means for measuring the pressure difference, and an evaluation data calculation means for calculating the membrane permeability coefficient of the membrane to be evaluated from the rate of change of the pressure difference measured by the measurement means. It is.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面を参照し
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は膜性能評価装置の構成図である。同図
において10は恒温槽10であつて、この恒温槽
10の内部には被評価膜11を保持する透過セル
12が配置されている。なお、この透過セル12
は被評価膜11を保持してこの被評価膜11の両
面側にそれぞれ連通しない各空間a,bを形成し
ている。又、この透過セル12には、各空間a,
bとそれぞれ連通する第1及び第2のガス供給管
13,14が設けられ、これら第1及び第2のガ
ス供給管13,14にはそれぞれバルブ15,1
6が設けられている。
FIG. 1 is a configuration diagram of a membrane performance evaluation device. In the figure, 10 is a constant temperature bath 10, and a permeation cell 12 holding a membrane to be evaluated 11 is arranged inside this constant temperature bath 10. Note that this transmission cell 12
holds the film to be evaluated 11 and forms spaces a and b that do not communicate with each other on both sides of the film to be evaluated 11, respectively. Moreover, in this transmission cell 12, each space a,
First and second gas supply pipes 13 and 14 are provided, respectively, which communicate with b, and valves 15 and 1 are provided in these first and second gas supply pipes 13 and 14, respectively.
6 is provided.

一方、17,18はそれぞれ第1のガス封入容
器、第2のガス封入容器であつて、それぞれ互い
に成分の異なる第1のガス、第2のガスが同一圧
力で封入されている。そして、第1のガス封入容
器17は第1のガス供給管13に接続されるとと
もに第2のガス封入容器18は第2のガス供給管
14に接続されている。なお、第1のガス供給管
13には圧力指示計19が設けられている。しか
るに、第1のガス封入容器17、第1のガス供給
管13バルブ15及び空間aにより第1のガス供
給系が形成され、又第2のガス封入容器18、第
2のガス供給管14バルブ16及び空間bにより
第1のガス供給系が形成され、これら第1と第2
のガス供給系の各容積が同一に形成されている。
On the other hand, 17 and 18 are a first gas-filled container and a second gas-filled container, respectively, in which first gas and second gas having different components are filled at the same pressure. The first gas-filled container 17 is connected to the first gas supply pipe 13, and the second gas-filled container 18 is connected to the second gas supply pipe 14. Note that the first gas supply pipe 13 is provided with a pressure indicator 19 . However, a first gas supply system is formed by the first gas-filled container 17, the first gas supply pipe 13, the valve 15, and the space a, and the second gas-filled container 18, the second gas supply pipe 14, and the valve 14 form a first gas supply system. 16 and space b form a first gas supply system, and these first and second gas supply systems
Each volume of the gas supply system is formed identically.

ところで、第1及び第2のガス供給管13,1
4には差圧検出器としての差圧トランスデユーサ
20が設けられている。この差圧トランスデユー
サ20は第1のガス供給系と第2のガス供給系と
における各ガスの圧力差つまり第1のガス封入容
器17と第2のガス封入容器18とにおける各ガ
スの圧力差を検出する機能を有するもので、その
検出信号は圧力指示計21、記録計22及び評価
装置23に送出されている。この評価装置23は
被評価膜11の膜透過係数比や第1及び第2のガ
スの透過係数を算出する機能を有するもので、測
定手段23−1及び評価データ算出手段23−2
の各機能を有している。測定手段23−1は差圧
トランスデユーサ20からの検出信号を受けて第
1と第2のガスとの圧力差の変化率、第1と第2
のガスとの圧力差の最大値及びこの圧力差の最大
値に達するまでの経過時間の各データを測定する
機能を持つたものであり、評価データ算出手段2
3−2は測定手段23−1で測定された各データ
から被評価膜11の第1及び第2のガスに対する
膜透過係数比及び各膜透過係数を求める機能を持
つたものである。
By the way, the first and second gas supply pipes 13,1
4 is provided with a differential pressure transducer 20 as a differential pressure detector. This differential pressure transducer 20 is based on the pressure difference between each gas in the first gas supply system and the second gas supply system, that is, the pressure of each gas in the first gas-filled container 17 and the second gas-filled container 18. It has a function of detecting a difference, and its detection signal is sent to a pressure indicator 21, a recorder 22, and an evaluation device 23. This evaluation device 23 has a function of calculating the membrane permeability coefficient ratio of the membrane to be evaluated 11 and the permeability coefficients of the first and second gases, and includes a measuring means 23-1 and an evaluation data calculating means 23-2.
It has the following functions. The measuring means 23-1 receives the detection signal from the differential pressure transducer 20 and measures the rate of change of the pressure difference between the first and second gases, the first and second
The evaluation data calculation means 2 has the function of measuring the maximum value of the pressure difference with the gas and the elapsed time until the maximum value of this pressure difference is reached.
3-2 has a function of determining the membrane permeability coefficient ratio and each membrane permeability coefficient for the first and second gases of the membrane to be evaluated 11 from each data measured by the measuring means 23-1.

次に上記装置の作用を説明する前に被評価膜1
1の各面に加わる第1及び第2のガスの圧力差を
測定することによつて被評価膜11に対する膜透
過係数比及び膜透過係数を求める原理について説
明する。ここで、第2図に示すように第1のガス
及び第2のガスの被評価膜11を透過するときの
透過流束をそれぞれNi(i=1,2)とするとと
もに被評価膜11の膜厚をL、その膜面積をAと
する。なお、第2図に示す被評価膜11において
右から左方向にz正方向とする。そうして、第1
のガス封入容器17、第1のガス供給管13及び
空間aで形成される容積と第2のガス封入容器1
8、第2のガス供給管14及び空間bで形成され
る容積とが等しくVとし、さらに第1のガス及び
第2のガスの各モル数をx1,x2、分圧をp1,p2
すると、初期条件は次のように表わされる。
Next, before explaining the operation of the above device, the film to be evaluated 1
The principle of determining the membrane permeability coefficient ratio and membrane permeability coefficient for the membrane to be evaluated 11 by measuring the pressure difference between the first and second gases applied to each surface of the membrane will be explained. Here, as shown in FIG. 2, the permeation fluxes of the first gas and the second gas when permeating through the membrane 11 to be evaluated are respectively Ni (i=1, 2), and the membrane 11 to be evaluated is Let L be the film thickness and A be the film area. Note that in the film to be evaluated 11 shown in FIG. 2, the z-positive direction is from right to left. Then, the first
The volume formed by the gas-filled container 17, the first gas supply pipe 13, and the space a, and the second gas-filled container 1
8. The volumes formed by the second gas supply pipe 14 and the space b are equal to V, and the number of moles of the first gas and the second gas are x 1 , x 2 , and the partial pressure is p 1 , If p 2 , the initial condition is expressed as follows.

x1(0)=0、x1(L)=1 x2(0)=1、x2(L)=0 p(0)=p(L) p1(0)=0、p1(L)=p0(L) (初期ガス充填圧力) p2(0)=p0、p2(0)=0 ……(1) 又、上記装置で形成される系における物質収支
は次のように表わされる。
x 1 (0) = 0, x 1 (L) = 1 x 2 (0) = 1, x 2 (L) = 0 p (0) = p (L) p 1 (0) = 0, p 1 ( L)=p 0 (L) (Initial gas filling pressure) p 2 (0)=p 0 , p 2 (0)=0 ...(1) Also, the mass balance in the system formed by the above device is as follows. It is expressed as follows.

±(dPi/dt) =(R・T・A/V)Ni ……(2) となる。ここで、Rはガス定数、Tは温度であ
り、符号はz=Lに対して「+」、z=0に対し
て「−」をとるものとする。
±(dPi/dt) = (R・T・A/V)Ni……(2). Here, R is a gas constant, T is temperature, and the sign is "+" for z=L and "-" for z=0.

ところで、被評価膜11中に透過するガスの透
過流束は一般に次式で表わされる。
Incidentally, the permeation flux of gas permeating into the membrane 11 to be evaluated is generally expressed by the following equation.

Ni=−(1/R・T)ki(dPi/dz) ……(3) ここで、kiはガスiの膜透過係数である。 Ni=-(1/R・T)ki(dPi/dz)...(3) Here, ki is the membrane permeability coefficient of gas i.

又、上記第(2)式から d=(ΔPi)/dt=−(2R・T・A/V)Ni
……(4) そして、全圧力変化をΔp=ΣΔpiとすると、 d(ΔP)/dt=−(2R・T・A/V)ΣNi
……(5) となる。しかるに、上記第(3)式及び第(4)式から d(Δpi)/dt=−(2A/V)ki(dpi/dz)
……(6) 又、被評価膜11中では何等反応が起こらない
ので、Niは一定となる。従つて、 dpi/dz={pi(L)−pi(0)}/L=−Δpi/L
……(7) となる。以上の関係から最大差圧(Δp)maxに
到達する経過時間t maxを求めると、 t max=1/(2A/VL)(LMKD) ……(8) ここで、LMKDは対数平均透過係数であつて、 LMKD=(k1−k2)÷ln(k1/k2) ……(9) である。
Also, from the above equation (2), d=(ΔPi)/dt=-(2R・T・A/V)Ni
...(4) And if the total pressure change is Δp=ΣΔpi, then d(ΔP)/dt=-(2R・T・A/V)ΣNi
...(5) becomes. However, from equations (3) and (4) above, d(Δpi)/dt=-(2A/V)ki(dpi/dz)
...(6) Also, since no reaction occurs in the film to be evaluated 11, Ni remains constant. Therefore, dpi/dz={pi(L)-pi(0)}/L=-Δpi/L
...(7) becomes. Calculating the elapsed time t max to reach the maximum differential pressure (Δp) max from the above relationship, t max = 1/(2A/VL) (LMKD) ...(8) Here, LMKD is the logarithmic average permeability coefficient. Then, LMKD=(k 1 − k 2 )÷ln(k 1 /k 2 )...(9).

そこで、同一の被評価膜11に対するガスの透
過係数の違いに基づく差圧発生の初期勾配は、p0
を初期ガス充填圧力とすると、 (1/k0){d(Δp)/dt}t0=−(2A/VL)(k
1−k2)……(10) 経過時間t maxに対応する最大差圧(Δp)
maxは次式で表わされる。
Therefore, the initial gradient of differential pressure generation based on the difference in gas permeability coefficient for the same membrane 11 to be evaluated is p 0
When is the initial gas filling pressure, (1/k 0 ) {d(Δp)/dt} t0 =-(2A/VL)(k
1 −k 2 )……(10) Maximum differential pressure (Δp) corresponding to elapsed time t max
max is expressed by the following formula.

(Δp)max/p0=exp(−t max/τ2)−exp(−t
max/τ1)……(11) ここに、 τi=(VL/2A)(1/ki)[sec] である。
(Δp) max/p 0 = exp(-t max/τ 2 )-exp(-t
max/τ 1 )...(11) Here, τi = (VL/2A) (1/ki) [sec].

しかるに、膜透過係数比k1/k2を膜の分離特性
Spと定義すると、上記式は (Δp)max/p0=(1/Sp)1/(Sp-1)−(1/Sp)Sp
/(Sp-1)
……(12) と表わされる。
However, the membrane permeability coefficient ratio k 1 /k 2 is the separation characteristic of the membrane.
If Sp is defined, the above formula is (Δp)max/p 0 = (1/Sp) 1/(Sp-1) − (1/Sp) Sp
It is expressed as /(Sp-1) ……(12).

従つて、この第(12)式から分るように最大差圧
(Δp)maxを測定することによつて被評価膜11
の分離特性Spが求められる。なお、第3図には
最大差圧(Δp)maxと被評価膜11の分離特性
Spとの関係の一例が示されている。又、各ガス
に対する被評価膜11の膜透過係数kiの絶対値は
上記第(8)式、第(10)式及び第(11)式のうちいずれか2
式から求められる。
Therefore, as can be seen from Equation (12), by measuring the maximum differential pressure (Δp)max, the film to be evaluated 11
The separation characteristic Sp is determined. In addition, Fig. 3 shows the maximum differential pressure (Δp) max and the separation characteristics of the membrane 11 to be evaluated.
An example of the relationship with Sp is shown. In addition, the absolute value of the membrane permeability coefficient ki of the membrane to be evaluated 11 for each gas is determined by any two of the above equations (8), (10), and (11).
It can be found from Eq.

次に第1図に示す装置の作用についてポリカー
ボネイト膜を評価する場合について説明する。被
評価膜11には膜厚L=6μm、膜面積A=9.62cm2
のポリカーボネイト膜11が設けられ、又、第1
のガスとしてCO2、第2のガスとしてN2が使用
されている。そして、第1のガス封入容器17、
第1のガス供給管13及び空間aから形成される
容積Vと第2のガス封入容器18、第1のガス供
給管14及び空間bから形成される容積Vとはそ
れぞれ317cm3、初期圧p0は760mmHg、温度Tは
303Kとなつている。
Next, a description will be given of the operation of the apparatus shown in FIG. 1 when evaluating a polycarbonate film. The film to be evaluated 11 has a film thickness L = 6 μm and a film area A = 9.62 cm 2
A polycarbonate film 11 is provided, and a first polycarbonate film 11 is provided.
CO 2 is used as the first gas, and N 2 is used as the second gas. and a first gas-filled container 17;
The volume V formed by the first gas supply pipe 13 and the space a and the volume V formed by the second gas enclosure 18, the first gas supply pipe 14 and the space b are each 317 cm 3 and the initial pressure p 0 is 760mmHg, temperature T is
It is 303K.

しかるに、このような条件において各バルブ1
5,16を連動させて開いてポリカーボネイト膜
11の各面にそれぞれCO2ガスとN2ガスとを同
一圧力で加える。このとき、差圧トランスデユー
サ20はポリカーボネイト膜11の各面に加わる
差圧を検出してその検出信号を送出する。この検
出信号は圧力指示計21、記録計22及び評価装
置23に送られて時間経過とともに変化する差圧
が記録される。第4図はこのときの差圧Δpの変
化記録を示している。
However, under these conditions, each valve 1
5 and 16 are opened in conjunction with each other to apply CO 2 gas and N 2 gas to each side of the polycarbonate membrane 11 at the same pressure. At this time, the differential pressure transducer 20 detects the differential pressure applied to each surface of the polycarbonate membrane 11 and sends out a detection signal. This detection signal is sent to a pressure indicator 21, a recorder 22, and an evaluation device 23, and the differential pressure that changes over time is recorded. FIG. 4 shows a record of changes in the differential pressure Δp at this time.

ところで、測定手段23−1は検出信号を受け
て第4図に示すような測定結果を得て、この測定
結果から差圧の変化率つまり初期勾配、差圧の最
大値及びこの最大値に到達するまでの経過時間の
各データを求める。しかるに、評価データ算出手
段3−1は差圧の最大値(Δp)max、初期圧p0
を上記第(12)式に代入して演算し、CO2ガス及び
N2ガスに対するポリカーボネイト膜11の分離
特性Spを求める。なお、この分離特性Spは6.55
として求められた。又、評価データ算出手段23
−2は上記第(8)式、第(10)式及び第(11)式のうちいず
れか2式を演算して各ガスCO2,N2に対する膜
透過係数kiを求める。すなわち、 例えば初期勾配1.926×10-6(1/sec)と差圧
の最大値(Δp)max458.94(mmHg)とから kCO2=2.60×10-8 [cm2/sec] kN2=7.97×10-9 [cm2/sec] 初期勾配と経過時間t maxとから kCO2=2.55×10-8 [cm2/sec] kN2=7.46×10-9 [cm2/sec] 経過時間t maxと最大値(Δp)maxとから kCO2=2.50×10-8 [cm2/sec] kN2=7.67×10-9 [cm2/sec] が求められる。
By the way, the measuring means 23-1 receives the detection signal and obtains a measurement result as shown in FIG. Find each piece of data on the elapsed time until However, the evaluation data calculation means 3-1 calculates the maximum value (Δp) max of the differential pressure, the initial pressure p 0
Substitute into the above equation (12) and calculate, CO 2 gas and
The separation characteristic Sp of the polycarbonate membrane 11 with respect to N 2 gas is determined. Note that this separation characteristic Sp is 6.55
It was requested as. In addition, evaluation data calculation means 23
-2 calculates the membrane permeability coefficient ki for each gas CO 2 and N 2 by calculating any two of the above equations (8), (10), and (11). That is, for example, from the initial slope of 1.926×10 -6 (1/sec) and the maximum value of differential pressure (Δp) max458.94 (mmHg), k CO2 = 2.60×10 -8 [cm 2 /sec] k N2 = 7.97 ×10 -9 [cm 2 /sec] From the initial slope and elapsed time t max k CO2 = 2.55 × 10 -8 [cm 2 /sec] k N2 = 7.46 × 10 -9 [cm 2 /sec] Elapsed time t k CO2 = 2.50×10 -8 [cm 2 /sec] k N2 = 7.67×10 -9 [cm 2 /sec] is calculated from max and maximum value (Δp)max.

このように上記実施例においては、各ガスCO2
N2をそれぞれポリカーボネイト膜11の各面に
加圧してこのときの差圧の変化率、差圧の最大値
及びこの差圧の最大値に達するまでの経過時間の
各データからポリカーボネイト膜11の透過特性
Sp及び膜透過係数kCO2,kN2を求めるようにした
ので、予め分圧の低い側を真空に形成する必要が
無く、又高価な質量分析器等を使用する必要もな
い。そのうえ、簡単な構成の装置で測定も容易に
遂行できて正確にポリカーボネイト膜11の評価
ができる。
In this way, in the above embodiment, each gas CO2 ,
N 2 is applied to each side of the polycarbonate membrane 11, and the permeation of the polycarbonate membrane 11 is determined from the data on the rate of change in differential pressure, the maximum value of the differential pressure, and the elapsed time until the maximum value of the differential pressure is reached. Characteristic
Since Sp and membrane permeability coefficients kCO2 and kN2 are determined, there is no need to create a vacuum on the side with lower partial pressure in advance, and there is no need to use an expensive mass spectrometer or the like. Moreover, the measurement can be easily carried out using a device with a simple configuration, and the polycarbonate film 11 can be evaluated accurately.

次に単一ガス成分の場合について第5図に示す
構成図を参照して説明する。なお、第1図と同一
部分には同一符号を付してその詳しい説明は省略
する。ところで、この場合第1及び第2のガス封
入容器30,31には同一のガス例えばCO2が封
入されてそれぞれ第1のガス供給管32、第2の
ガス供給管33と接続されている。そして、第1
のガス封入容器30、第1のガス供給管32、バ
ルブ15及び空間aで第1のガス供給系が形成さ
れ、又第2のガス封入容器31、第2のガス供給
管33、バルブ16及び空間bで第2のガス供給
系が形成され、これら第1のガス供給系と第2の
ガス供給計との容積は同一に形成されている。一
方、評価装置34の測定手段34−1は各ガスの
圧力差の変化率を測定し、又評価データ算出手段
34−2は測定手段34−1で測定された圧力差
の変化率から被評価膜のガスに対する膜透過係数
を求める機能を有するものとなる。
Next, the case of a single gas component will be explained with reference to the configuration diagram shown in FIG. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted. Incidentally, in this case, the first and second gas-filled containers 30 and 31 are filled with the same gas, such as CO 2 , and are connected to a first gas supply pipe 32 and a second gas supply pipe 33, respectively. And the first
A first gas supply system is formed by the gas-filled container 30, the first gas supply pipe 32, the valve 15, and the space a, and the second gas-filled container 31, the second gas supply pipe 33, the valve 16, and the space a. A second gas supply system is formed in the space b, and the volumes of the first gas supply system and the second gas supply meter are formed to be the same. On the other hand, the measuring means 34-1 of the evaluation device 34 measures the rate of change in the pressure difference of each gas, and the evaluation data calculating means 34-2 evaluates the rate of change in the pressure difference measured by the measuring means 34-1. It has the function of determining the membrane permeability coefficient of the membrane for gas.

ここで、単一ガスの場合に差圧を検出すること
によつて被評価膜11の膜透過係数が求められる
ことについて説明する。この場合、被評価膜11
の各面に加わる全圧は異なる。しかるに、初期圧
に差Δp0を与えると、差圧Δpは次式で表わされ
る。
Here, it will be explained that the membrane permeability coefficient of the membrane to be evaluated 11 is determined by detecting the differential pressure in the case of a single gas. In this case, the film to be evaluated 11
The total pressure applied to each side of is different. However, if a difference Δp 0 is given to the initial pressure, the differential pressure Δp is expressed by the following equation.

Δp/Δp0=exp{−(2A/VL)k1・t}1−(2A/
VL)k1・t[for small(2A/VL)k1・t]
……(13) 従つて、この第(13)式からバルブ15,16
を開いた後に差圧の初期時間に対する勾配を求め
ることによつて透過係数kが求められる。
Δp/Δp 0 =exp{−(2A/VL)k 1・t}1−(2A/
VL) k 1・t [for small (2A/VL) k 1・t]
...(13) Therefore, from this equation (13), valves 15 and 16
The permeability coefficient k is determined by determining the slope of the differential pressure with respect to the initial time after opening .

しかるに、上記2種のガスを使用した場合と同
一条件において各バルブ15,16を連動させて
開いてポリカーボネイト膜11の各面にそれぞれ
CO2ガスを異なる全圧で加える。このとき、差圧
トランスデユーサ20はポリカーボネイト膜11
の各面に加わる差圧を検出してその検出信号を送
出する。この検出信号は圧力指示計21、記録計
22及び評価装置34に送られて時間経過ととも
に変化する差圧が記録される。第6図はこのとき
の差圧Δp/Δp0の変化記録を示している。なお、
同図においてkは差圧Δp/Δp0で形成される曲
線に対する接線である。
However, under the same conditions as when using the above two types of gases, the valves 15 and 16 are opened in conjunction with each other, and each side of the polycarbonate film 11 is exposed to
Add CO2 gas at different total pressures. At this time, the differential pressure transducer 20
Detects the differential pressure applied to each surface of the sensor and sends out a detection signal. This detection signal is sent to a pressure indicator 21, a recorder 22, and an evaluation device 34, and the differential pressure that changes over time is recorded. FIG. 6 shows the change record of the differential pressure Δp/Δp 0 at this time. In addition,
In the figure, k is a tangent to the curve formed by differential pressure Δp/Δp 0 .

ところで、測定手段34−1は検出信号を受け
て第4図に示すような測定結果を得て、この測定
結果から差圧の変化率つまり初期勾配を求める。
そして、評価データ算出手段34−2は上記第(1
3)式を演算してガスCO2に対する膜透過係数kiを
求める。この場合、求められた膜透過係数kCO2は kCO2=2.44×10-8 [cm2/sec] となつた。
By the way, the measuring means 34-1 receives the detection signal and obtains a measurement result as shown in FIG. 4, and from this measurement result, the rate of change of the differential pressure, that is, the initial gradient is determined.
Then, the evaluation data calculation means 34-2
3) Calculate the formula to determine the membrane permeability coefficient ki for gas CO 2 . In this case, the determined membrane permeability coefficient k CO2 was k CO2 =2.44×10 -8 [cm 2 /sec].

しかるに、以上単一ガスの場合においては、ガ
ス封入容器30,31内のガスCO2をポリカーボ
ネイト膜11の各面にそれぞれ圧力を異ならせて
加圧してこのときの差圧の変化率を測定しこの圧
力差の変化率からポリカーボネイト膜11のガス
CO2に対する膜透過係数を求めるようにしたの
で、上記2種のガスを使用した場合と同様に予め
分圧の低い側を真空に形成する必要が無く、又高
価な質量分析器等を使用する必要もない。そのう
え、簡単な構成の装置で測定も容易に遂行できて
正確にポリカーボネイト膜11の評価ができる。
However, in the case of a single gas, the gas CO 2 in the gas-filled containers 30 and 31 is applied to each surface of the polycarbonate membrane 11 at different pressures, and the rate of change in the differential pressure at this time is measured. From the rate of change of this pressure difference, the gas in the polycarbonate membrane 11
Since the membrane permeability coefficient for CO 2 is determined, there is no need to create a vacuum on the side with lower partial pressure in advance, as in the case of using the above two gases, and there is no need to use an expensive mass spectrometer, etc. There's no need. Moreover, the measurement can be easily carried out using a device with a simple configuration, and the polycarbonate film 11 can be evaluated accurately.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、1種又は
2種のガスであつても真空を形成する必要が無く
かつ高価な質量分析器等を使用しなくても精度高
く膜を評価できる膜性能評価方法及びその装置を
提供できる。
As detailed above, according to the present invention, there is no need to create a vacuum even when using one or two types of gas, and the membrane can be evaluated with high accuracy without using an expensive mass spectrometer or the like. A performance evaluation method and device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明に係わる膜性能評価
装置の第1の実施例を説明するための図であつ
て、第1図は構成図、第2図は透過作用を説明す
るための模式図、第3図は差圧最大値と膜透過係
数比との関係図、第4図は差圧測定結果を示す
図、第5図及び第6図は本発明装置の第2の実施
例を説明するための図であつて、第5図は構成
図、第6図は差圧変化を示す図、第7図は膜の透
過度測定を説明するための図である。 10……恒温槽、11……被評価膜、12……
透過セル、13……第1のガス供給管、14……
第2のガス供給管、15,16……バルブ、17
……第1のガス封入容器、18……第2のガス封
入容器、20……差圧トランスデユーサ、23…
…評価装置、23−1……測定手段、23−2…
…評価データ算出手段、30……第1のガス封入
容器、31……第2のガス封入容器、32……第
1のガス供給管、33……第2のガス供給管、3
4……評価装置、34−1……測定手段、34−
2……評価データ算出手段。
1 to 4 are diagrams for explaining the first embodiment of the membrane performance evaluation device according to the present invention, in which FIG. 1 is a configuration diagram and FIG. 2 is a diagram for explaining the permeation effect. A schematic diagram, FIG. 3 is a relationship diagram between the maximum value of differential pressure and membrane permeability coefficient ratio, FIG. 4 is a diagram showing the results of differential pressure measurement, and FIGS. 5 and 6 are a second embodiment of the device of the present invention. FIG. 5 is a diagram for explaining the configuration, FIG. 6 is a diagram showing changes in differential pressure, and FIG. 7 is a diagram for explaining membrane permeability measurement. 10... Constant temperature chamber, 11... Film to be evaluated, 12...
Permeation cell, 13... First gas supply pipe, 14...
Second gas supply pipe, 15, 16...Valve, 17
...First gas-filled container, 18... Second gas-filled container, 20... Differential pressure transducer, 23...
...Evaluation device, 23-1...Measurement means, 23-2...
...Evaluation data calculation means, 30...First gas-filled container, 31...Second gas-filled container, 32...First gas supply pipe, 33...Second gas supply pipe, 3
4...Evaluation device, 34-1...Measurement means, 34-
2...Evaluation data calculation means.

Claims (1)

【特許請求の範囲】 1 互いに異なる単一成分の第1及び第2のガス
を同一圧力でそれぞれ個別に第1及び第2のガス
封入容器に封入しこれら第1及び第2のガス封入
容器内の各ガスのうち前記第1のガスを被評価膜
の一方の面に加圧するとともに前記第2のガスを
他方の面に加圧し、その後の前記第1と第2のガ
ス封入容器内の圧力差の変化率、前記圧力差の最
大値及びこの圧力差の最大値に達するまでの経過
時間の各データを測定し、これらデータから前記
被評価膜の前記第1及び第2のガスに対する膜透
過係数比及び膜透過係数を求めることを特徴とす
る膜性能評価方法。 2 第1のガス封入容器及びバルブが設けられ前
記第1のガス封入容器に封入された第1のガスを
前記被評価膜の一方の面に供給する第1のガス供
給系と、第2のガス封入容器及びバルブが設けら
れ前記第2のガス封入容器に封入された第2のガ
スを前記被評価膜の他方の面に供給する前記第1
のガス供給系の容積と同一容積に形成された第2
のガス供給系と、これら第1と第2のガス供給系
における各ガスの圧力差を検出する差圧検出器
と、この差圧検出器からの検出信号を受けて前記
圧力差の変化率、前記圧力差の最大値及びこの圧
力差の最大値に達するまでの経過時間の各データ
を測定する測定手段と、この測定手段で測定され
た各データから前記被評価膜の前記第1及び第2
のガスに対する膜透過係数比及び膜透過係数を求
める評価データ算出手段とを具備したことを特徴
とする膜性能評価装置。 3 単一成分のガスをそれぞれ圧力を異ならせて
それぞれ個別に第1及び第2のガス封入容器に封
入し、これら第1及び第2のガス封入容器内の各
ガスをそれぞれ被評価膜の各別の面に加圧し、そ
の後の前記第1と第2のガス封入容器内の圧力差
の変化率を測定し、この圧力差の変化率から前記
被評価膜の前記ガスに対する膜透過係数を求める
ことを特徴とする膜性能評価方法。 4 第1のガス封入容器及びバルブが設けられ前
記第1のガス封入容器に封入されたガスを被評価
膜の一方の面に供給する第1のガス供給系と、第
2のガス封入容器及びバルブが設けられ前記第2
のガス封入容器に封入されたガスを前記被評価膜
の他方の面に供給する前記第1のガス供給系の容
積と同一容積に形成された第2のガス供給系と、
これら第1と第2のガス供給系における各ガスの
圧力差を検出する差圧検出器と、この差圧検出器
からの検出信号を受けて前記各ガスの圧力差の変
化率を測定する測定手段と、この測定手段で測定
された圧力差の変化率から前記被評価膜の前記ガ
スに対する膜透過係数を求める評価データ算出手
段とを具備したことを特徴とする膜性能評価装
置。
[Scope of Claims] 1. First and second gases each having a single component different from each other are individually sealed in first and second gas-filled containers at the same pressure, and the inside of these first and second gas-filled containers are The first gas is pressurized to one side of the membrane to be evaluated, and the second gas is pressurized to the other side, and the subsequent pressure in the first and second gas-filled containers is The rate of change of the difference, the maximum value of the pressure difference, and the elapsed time until the maximum value of the pressure difference is reached are measured, and from these data, the membrane permeation of the first and second gases of the membrane to be evaluated is determined. A membrane performance evaluation method characterized by determining a coefficient ratio and a membrane permeability coefficient. 2. A first gas supply system that is provided with a first gas-filled container and a valve and supplies a first gas sealed in the first gas-filled container to one surface of the film to be evaluated; The first gas-filled container is provided with a gas-filled container and a valve and supplies a second gas sealed in the second gas-filled container to the other surface of the film to be evaluated.
The second gas supply system is formed to have the same volume as that of the gas supply system.
a gas supply system, a differential pressure detector that detects the pressure difference between each gas in the first and second gas supply systems, and a rate of change of the pressure difference in response to a detection signal from the differential pressure detector; a measuring means for measuring each data of the maximum value of the pressure difference and the elapsed time until reaching the maximum value of the pressure difference;
1. A membrane performance evaluation device comprising: evaluation data calculation means for determining a membrane permeability coefficient ratio and a membrane permeability coefficient for a gas. 3 Single-component gases are individually sealed in the first and second gas-filled containers at different pressures, and each gas in the first and second gas-filled containers is applied to each of the films to be evaluated. Apply pressure to another surface, measure the rate of change in the pressure difference between the first and second gas-filled containers, and determine the membrane permeability coefficient of the membrane to be evaluated for the gas from the rate of change in the pressure difference. A membrane performance evaluation method characterized by: 4 a first gas supply system that is provided with a first gas-filled container and a valve and supplies the gas sealed in the first gas-filled container to one surface of the film to be evaluated; a second gas-filled container; a valve is provided said second
a second gas supply system formed to have the same volume as the first gas supply system that supplies the gas sealed in the gas-filled container to the other surface of the film to be evaluated;
A differential pressure detector that detects the pressure difference between each gas in the first and second gas supply systems, and a measurement that measures the rate of change of the pressure difference between the gases in response to a detection signal from the differential pressure detector. 1. A membrane performance evaluation device comprising: a means for evaluating the performance of a membrane; and an evaluation data calculating means for determining a membrane permeability coefficient of the membrane to be evaluated for the gas from a rate of change in the pressure difference measured by the measuring means.
JP13029988A 1988-05-30 1988-05-30 Method and device for evaluating film performance Granted JPH01301144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13029988A JPH01301144A (en) 1988-05-30 1988-05-30 Method and device for evaluating film performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13029988A JPH01301144A (en) 1988-05-30 1988-05-30 Method and device for evaluating film performance

Publications (2)

Publication Number Publication Date
JPH01301144A JPH01301144A (en) 1989-12-05
JPH0583140B2 true JPH0583140B2 (en) 1993-11-24

Family

ID=15030997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13029988A Granted JPH01301144A (en) 1988-05-30 1988-05-30 Method and device for evaluating film performance

Country Status (1)

Country Link
JP (1) JPH01301144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651345U (en) * 1992-12-22 1994-07-12 松下電工株式会社 Eaves fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651345U (en) * 1992-12-22 1994-07-12 松下電工株式会社 Eaves fitting

Also Published As

Publication number Publication date
JPH01301144A (en) 1989-12-05

Similar Documents

Publication Publication Date Title
Pye et al. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus
Durrill et al. Diffusion and solution of gases in thermally softened or molten polymers: Part I. Development of technique and determination of data
JPH01142430A (en) Seal degree testing method and apparatus for hollow container
EP0143837A1 (en) Porosimeter and methods of assessing porosity.
JP3179611B2 (en) Compressed gas introduction and control method for impurity analysis
US20150362400A1 (en) Device and method for differentiating a gas in a sample
US5824892A (en) Acoustic device for measuring volume difference
US4815316A (en) Diffusion measurement
Moyls et al. Exponential decay method for determining gas transmission rate of films
US2892346A (en) Volume flowmeter
US4433575A (en) Flow splitting device for fluid flow meter
JPH08271372A (en) Method for testing leakage of pipe
Bomberg et al. A test method to determine air flow resistance of exterior membranes and sheathings
GB2226142A (en) A method and apparatus for determining the density of a gas
JPH0583140B2 (en)
EP3021103A1 (en) System and method for gas diffusion coefficient measurement of three-dimensional hollow bodies having one opening
US8225642B2 (en) Apparatus and method for condition monitoring of a component or structure
US3431772A (en) Method and apparatus for determining the permeability of a material
WO1988009484A1 (en) Method and apparatus for measuring the volume of a gas in a container
JPS56111423A (en) Measuring device for gas flow rate of nozzle valve or the like
GB2079465A (en) Measure of true density
JPH0540442Y2 (en)
JPH02134515A (en) Flow measurement
DAVIS JR The pyrolysis of methyl formate in shock waves
JPS5817417B2 (en) Flowmeter