JPH0582792A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0582792A
JPH0582792A JP3243910A JP24391091A JPH0582792A JP H0582792 A JPH0582792 A JP H0582792A JP 3243910 A JP3243910 A JP 3243910A JP 24391091 A JP24391091 A JP 24391091A JP H0582792 A JPH0582792 A JP H0582792A
Authority
JP
Japan
Prior art keywords
layer
trench groove
forming
semiconductor substrate
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3243910A
Other languages
Japanese (ja)
Inventor
Satoshi Yanagiya
諭 柳谷
Noboru Matsuda
昇 松田
Akihiko Osawa
明彦 大澤
Yoshiaki Baba
嘉朗 馬場
Shunichi Kai
俊一 開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3243910A priority Critical patent/JPH0582792A/en
Publication of JPH0582792A publication Critical patent/JPH0582792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

PURPOSE:To increase breakdown strength between a gate/source and a drain of a vertical MOSFET by forming a depletion layer whose distance with a trench groove bottom part is almost fixed. CONSTITUTION:After an implant mask is installed in a place excepting a specified place at a bottom part of a trench groove, B, for example, is introduced and diffused to form a second P layer 10. Thereby, a distance between an area near a corner part C of a trench groove part and a depletion layer 11 keeps an almost fixed distance. Thereby, concentration of electric field in the part C is relaxed and breakdown strength is increased as compared with a conventional technique.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係わり、特に、トレンチ溝を用いる縦型MOS FET の製
造に利用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a vertical MOS FET using a trench groove.

【0002】[0002]

【従来の技術】従来から縦型MOS FET にあっては、図1
に示す断面図のようにN型のシリコン半導体基板1に形
成するいわゆるトレンチ溝2を利用した型も採用してい
る。即ち、不純物としてSbを導入したN型のシリコン
半導体基板1にN層3を形成する。これは、不純物とし
て5×1015/cc程度のPを含有するN層3であり、
ここにドーズ量が1013/cm2 位のBをイオン注入し
てP層4を形成して、トランジスタのベース層として機
能させ、更にその表面付近にN層5を形成する。この表
面には、シリコン酸化物層、窒化珪素層または酸窒化珪
素層などで構成する絶縁物層7を被覆後、公知のフォト
リソグラフィ技術を利用するドライプロセス例えばRI
E(Reactive Ion Etching)法に
よる異方性エッチングによりトレンチ溝2を、トランジ
スタのベース層として機能するP層4よりN層3に達す
る深さに形成する。
2. Description of the Related Art Conventionally, a vertical MOS FET has been shown in FIG.
As shown in the cross-sectional view of FIG. 3, a mold utilizing a so-called trench groove 2 formed in the N-type silicon semiconductor substrate 1 is also adopted. That is, the N layer 3 is formed on the N type silicon semiconductor substrate 1 into which Sb is introduced as an impurity. This is the N layer 3 containing P of about 5 × 10 15 / cc as an impurity,
B having a dose amount of about 10 13 / cm 2 is ion-implanted therein to form a P layer 4, which functions as a base layer of the transistor, and an N layer 5 is formed near the surface thereof. This surface is covered with an insulator layer 7 formed of a silicon oxide layer, a silicon nitride layer, a silicon oxynitride layer, or the like, and then a dry process using a known photolithography technique, for example, RI.
The trench groove 2 is formed to a depth reaching the N layer 3 from the P layer 4 functioning as the base layer of the transistor by anisotropic etching by the E (Reactive Ion Etching) method.

【0003】トレンチ溝2の壁面とN層5表面を被覆す
る絶縁物層6には、公知のフォトリソグラフィ技術によ
り図示しない窓または孔部(トレンチ溝に対応する)を
形成後、導電性金属層例えばソース電極7やゲート電極
8更にN型のシリコン半導体基板3の裏面にドレイン電
極9を形成して、縦型MOS−FETを得る。実際に
は、この外に他の工程を施すが、本発明に直接関係しな
いので省略する。
A window or hole (not shown) (corresponding to the trench groove) (not shown) is formed in the insulator layer 6 covering the wall surface of the trench groove 2 and the surface of the N layer 5 by a known photolithography technique, and then a conductive metal layer is formed. For example, the source electrode 7, the gate electrode 8 and the drain electrode 9 are formed on the back surface of the N-type silicon semiconductor substrate 3 to obtain a vertical MOS-FET. Actually, other steps are performed in addition to this, but they are omitted because they are not directly related to the present invention.

【0004】[0004]

【発明が解決しようとする課題】図1に示した縦型MO
S−FETでは、ゲート・ソースとドレイン間の耐圧
は、n層3、5とp層4を最適条件で形成しても、トレ
ンチ溝2底部のコーナ部Aに電界が集中する度合いで決
定することになる。しかし、トレンチ溝2底部のコーナ
Aの形状は、縦型MOS−FETの機種に依存する程度
が大きく簡単に変えられない。従って、縦型MOS−F
ETの耐圧は、このコーナ部Aに大きく依存した上に、
向上させることができない。
[Problems to be Solved by the Invention] The vertical MO shown in FIG.
In the S-FET, the breakdown voltage between the gate and the source and the drain is determined by the degree to which the electric field is concentrated in the corner portion A at the bottom of the trench groove 2 even if the n layers 3 and 5 and the p layer 4 are formed under the optimum conditions. It will be. However, the shape of the corner A at the bottom of the trench groove 2 largely depends on the model of the vertical MOS-FET and cannot be easily changed. Therefore, the vertical MOS-F
The withstand voltage of ET largely depends on the corner portion A, and
Cannot be improved.

【0005】本発明は、このような事情により成された
もので、特に、ゲート・ソースとドレイン間の耐圧を上
げることを目的とするものである。
The present invention has been made under such circumstances, and it is an object of the present invention to increase the breakdown voltage between the gate and source and the drain.

【0006】[0006]

【課題を解決するための手段】第1導電型を示す半導体
基板にpn接合を形成する工程と,前記pn接合を貫い
て半導体基板内部に達するトレンチ溝を形成する工程
と,前記トレンチ溝内部を被覆する絶縁物層を形成する
工程と,前記絶縁物層に隣接する電極を形成する工程
と,前記トレンチ溝底部との距離がほぼ一定の空乏層を
形成する手段に本発明に係わる半導体装置の製造方法の
特徴がある。
A step of forming a pn junction in a semiconductor substrate showing a first conductivity type, a step of forming a trench groove penetrating the pn junction and reaching the inside of the semiconductor substrate, and a step of forming a trench groove in the trench groove The step of forming an insulating layer to cover, the step of forming an electrode adjacent to the insulating layer, and the means of forming a depletion layer having a substantially constant distance from the bottom of the trench groove are used in the semiconductor device according to the present invention. There is a feature of the manufacturing method.

【0007】[0007]

【作用】第1導電型を示す半導体基板に形成するpn接
合を貫いてトレンチ溝を形成する半導体素子例えば縦型
MOS−FETの耐圧を向上するに当たって,トレンチ
溝底部との距離がほぼ一定の空乏層を形成する手段とし
て例えばP層をトレンチ溝底部に設置することにより、
トレンチ溝底部における電界集中を緩和することができ
更に、耐圧が向上する事実を基に本発明は、完成したも
のである。
In improving the breakdown voltage of a semiconductor device, such as a vertical MOS-FET, having a trench groove formed through a pn junction formed in a semiconductor substrate having the first conductivity type, depletion with a substantially constant distance from the bottom of the trench groove is performed. As a means for forming a layer, for example, by providing a P layer at the bottom of the trench groove,
The present invention has been completed based on the fact that the electric field concentration at the bottom of the trench groove can be relaxed and the breakdown voltage is improved.

【0008】[0008]

【実施例】本発明に係わる実施例を図2乃至図4を参照
して説明する。なお従来と同じ部品には同一番号を付け
る。
Embodiments of the present invention will be described with reference to FIGS. The same parts as in the past will be given the same numbers.

【0009】図2に明らかなように、Sbを〜2×10
18/cc程度含有する半導体基板1に、ρが0.8〜1
Ωcm(5×1015/cc)でPを不純物として含む第
1n層3を例えばエピタキシャル法により堆積してから
更に、第1p層4及び第2n層5を例えばイオン注入法
により形成する。
As is apparent from FIG. 2, Sb is ˜2 × 10
Ρ is 0.8 to 1 in the semiconductor substrate 1 containing about 18 / cc.
A first n layer 3 containing P as an impurity at Ωcm (5 × 10 15 / cc) is deposited by, for example, an epitaxial method, and then a first p layer 4 and a second n layer 5 are further formed by, for example, an ion implantation method.

【0010】イオン注入による第1p層4の形成におい
ては、Bのドーズ量がほぼ1013/cm2 加速電圧50
KeV、第2n層5は、Asのド−ズ量が2×1015
cm2 加速電圧40KeVの条件で形成する。なお、イ
オン注入工程後、公知の加熱工程を行うのは勿論であ
る。
In the formation of the first p-layer 4 by ion implantation, the dose amount of B is approximately 10 13 / cm 2 accelerating voltage 50
KeV, the second n layer 5 has an As dose of 2 × 10 15 /
It is formed under the conditions of a cm 2 acceleration voltage of 40 KeV. Of course, a known heating step is performed after the ion implantation step.

【0011】このような処理を終えた半導体基板1表面
には、絶縁物層6を厚さ500〜1000オングストロ
ーム被覆後、異方性エッチング法例えば反応性イオンイ
オンエッチング法(Reactive Ion Etc
hing)法により所定の位置にいわゆるトレンチ溝2
を深さ4μm程度形成する。この結果、トレンチ溝2の
底部と半導体基板1との距離は大体6μmとなる。
On the surface of the semiconductor substrate 1 which has been subjected to such treatment, an insulating layer 6 having a thickness of 500 to 1000 angstrom is coated, and then an anisotropic etching method such as a reactive ion etching method (Reactive Ion Etc) is used.
so-called trench groove 2 at a predetermined position by the Hing method.
To a depth of about 4 μm. As a result, the distance between the bottom of the trench groove 2 and the semiconductor substrate 1 is about 6 μm.

【0012】更に、トレンチ溝2の底部の所定の位置以
外にインプラマスクを設置してから例えばBを導入拡散
して第2P層10を図2に明らかにしたように形成す
る。
Further, an implantation mask is provided at a position other than a predetermined position on the bottom of the trench 2, and then, for example, B is introduced and diffused to form the second P layer 10 as shown in FIG.

【0013】このように第2P層10の形成を終えてか
ら厚さ500〜1000オングストロームの絶縁物層6
を半導体基板1表面に堆積する。材質としては、珪素酸
化物、窒化窒素、酸窒化珪素(オキシ窒化珪素:SiON )
などが適用可能であり、その複数種を重ねることもでき
る。
After the formation of the second P layer 10 as described above, the insulating layer 6 having a thickness of 500 to 1000 angstroms is formed.
Are deposited on the surface of the semiconductor substrate 1. Materials include silicon oxide, nitrogen nitride, silicon oxynitride (silicon oxynitride: SiON)
Etc. are applicable, and a plurality of types thereof can be stacked.

【0014】この絶縁物層6には、公知のフォトリソグ
ラフィ工程を施して窓を設け、ここに導電性金属層とし
てAlまたはAl合金例えばAl−SiやAl−Si−
Cuを堆積するが、その後、公知のフォトリソグラフィ
工程により所定の形状として縦型MOS−FETのソー
ス電極7とゲート電極8を形成し、更に半導体基板1の
裏面にはドレイン電極9を形成する。実際には、縦型M
OS−FETのソース電極7とゲート電極8を電気的に
短絡する。
This insulating layer 6 is provided with a window by a known photolithography process, and a window is provided therein with Al or an Al alloy such as Al--Si or Al--Si-- as a conductive metal layer.
Cu is deposited, and thereafter, the source electrode 7 and the gate electrode 8 of the vertical MOS-FET are formed into a predetermined shape by a known photolithography process, and further, the drain electrode 9 is formed on the back surface of the semiconductor substrate 1. Actually, vertical M
The source electrode 7 and the gate electrode 8 of the OS-FET are electrically short-circuited.

【0015】縦型MOS−FETとしては、この他の工
程があるが、本発明に関係がないので省略する。
As the vertical MOS-FET, there are other steps, but they are omitted because they are not related to the present invention.

【0016】[0016]

【発明の効果】図3及び図4は、本発明の効果を説明す
る図面で、前者が従来の技術、後者が本発明を示してお
り、特に空乏層11の延び方を表している。即ち、トレ
ンチ溝底部のコーナ部図3のBと、図4のC部付近と空
乏層11間の距離が、際立って相違していることが明ら
かである。
3 and 4 are views for explaining the effect of the present invention. The former shows the conventional technique and the latter shows the present invention, and particularly shows how the depletion layer 11 extends. That is, it is apparent that the distance between the corner portion at the bottom of the trench groove, B in FIG. 3 and the vicinity of C portion in FIG. 4 and the depletion layer 11 is significantly different.

【0017】従来の技術では、Bと空乏層11間の距離
は、他の空乏層11とトレンチ溝2間の距離が違ってい
るのに対して、図4では、殆ど一定の距離を保ってい
る。このことは、C部分における電界の集中が緩和され
ることになり、図3の従来技術より耐圧が増加すること
になる。
In the prior art, the distance between B and the depletion layer 11 is different from the distance between the other depletion layer 11 and the trench groove 2, whereas in FIG. 4, the distance is kept almost constant. There is. This means that the concentration of the electric field at the C portion is alleviated, and the breakdown voltage is higher than that of the conventional technique shown in FIG.

【0018】従って、縦型MOS−FETに要求される
耐圧52vを完全に満たすと共に、60vも得られるの
で、量産上の効果は極めて大きいものがある。
Therefore, the withstand voltage 52v required for the vertical MOS-FET can be completely satisfied and 60v can be obtained, so that the effect in mass production is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の縦型MOS−FETの要部を示す断面図
である。
FIG. 1 is a cross-sectional view showing a main part of a conventional vertical MOS-FET.

【図2】本発明に係わる縦型MOS−FETの要部を示
す断面図である。
FIG. 2 is a sectional view showing a main part of a vertical MOS-FET according to the present invention.

【図3】従来の縦型MOS−FETに電圧印加時の空乏
層の伸びを明らかにする断面図である。
FIG. 3 is a cross-sectional view showing the extension of a depletion layer when a voltage is applied to a conventional vertical MOS-FET.

【図4】本発明の縦型MOS−FETに電圧印加時の空
乏層の伸びを明らかにする断面図である。
FIG. 4 is a cross-sectional view showing the extension of a depletion layer when a voltage is applied to the vertical MOS-FET of the present invention.

【符号の説明】[Explanation of symbols]

1:半導体基板、 2:トレンチ溝、 3:第1n層、 4:第1p層、 5:第2n層、 6:絶縁物層、 7:ソース電極、 8:ゲート電極、 9:ドレイン電極、 10:第2p層。 1: semiconductor substrate, 2: trench groove, 3: first n layer, 4: first p layer, 5: second n layer, 6: insulator layer, 7: source electrode, 8: gate electrode, 9: drain electrode, 10 : Second p layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 嘉朗 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝多摩川工場内 (72)発明者 開 俊一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝多摩川工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Baba No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Tamagawa Plant, Toshiba Corporation (72) Inventor Shun-ichi Komu-shishi-cho, Kawasaki-shi, Kanagawa No. 1 Stock Company Toshiba Tamagawa Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型を示す半導体基板と,前記半
導体基板に隣接してより高抵抗の領域を設置する工程
と,前記高抵抗の領域に達するトレンチ溝を形成する工
程と,前記高抵抗の領域に連続して設置する半導体層
と,前記トレンチ溝内部及び半導体層を被覆する絶縁物
層を形成する工程と,前記絶縁物層に電極を形成する工
程と,前記トレンチ溝底部との距離がほぼ一定の空乏層
を形成する手段を具備することを特徴とする半導体装置
の製造方法
1. A semiconductor substrate having a first conductivity type, a step of providing a region of higher resistance adjacent to the semiconductor substrate, a step of forming a trench groove reaching the region of high resistance, A semiconductor layer continuously provided in the region of the resistance; a step of forming an insulating layer covering the inside of the trench groove and the semiconductor layer; a step of forming an electrode on the insulating layer; and a bottom portion of the trench groove. A method of manufacturing a semiconductor device, comprising means for forming a depletion layer having a substantially constant distance.
JP3243910A 1991-09-25 1991-09-25 Manufacture of semiconductor device Pending JPH0582792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3243910A JPH0582792A (en) 1991-09-25 1991-09-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3243910A JPH0582792A (en) 1991-09-25 1991-09-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0582792A true JPH0582792A (en) 1993-04-02

Family

ID=17110828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3243910A Pending JPH0582792A (en) 1991-09-25 1991-09-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0582792A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JPH1098188A (en) * 1996-08-01 1998-04-14 Kansai Electric Power Co Inc:The Insulated gate semiconductor device
WO1998026458A1 (en) * 1996-12-11 1998-06-18 The Kansai Electric Power Co., Inc. Insulated gate semiconductor device
US5864159A (en) * 1994-12-13 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device structure to prevent a reduction in breakdown voltage
US5969378A (en) * 1997-06-12 1999-10-19 Cree Research, Inc. Latch-up free power UMOS-bipolar transistor
US6121633A (en) * 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
US6534830B2 (en) * 1999-05-12 2003-03-18 Infineon Technologies Ag Low impedance VDMOS semiconductor component
US6570185B1 (en) 1997-02-07 2003-05-27 Purdue Research Foundation Structure to reduce the on-resistance of power transistors
JP2006319282A (en) * 2005-05-16 2006-11-24 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP2009260253A (en) * 2008-03-26 2009-11-05 Rohm Co Ltd Semiconductor device and method for manufacturing the same
CN102396070A (en) * 2009-04-13 2012-03-28 罗姆股份有限公司 Semiconductor device and method for manufacturing semiconductor device
CN103107193A (en) * 2011-11-11 2013-05-15 上海华虹Nec电子有限公司 Grooved type insulated gate field effect transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864159A (en) * 1994-12-13 1999-01-26 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device structure to prevent a reduction in breakdown voltage
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5831288A (en) * 1996-06-06 1998-11-03 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JPH1098188A (en) * 1996-08-01 1998-04-14 Kansai Electric Power Co Inc:The Insulated gate semiconductor device
WO1998026458A1 (en) * 1996-12-11 1998-06-18 The Kansai Electric Power Co., Inc. Insulated gate semiconductor device
US6570185B1 (en) 1997-02-07 2003-05-27 Purdue Research Foundation Structure to reduce the on-resistance of power transistors
US6121633A (en) * 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
US5969378A (en) * 1997-06-12 1999-10-19 Cree Research, Inc. Latch-up free power UMOS-bipolar transistor
US6534830B2 (en) * 1999-05-12 2003-03-18 Infineon Technologies Ag Low impedance VDMOS semiconductor component
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP2006319282A (en) * 2005-05-16 2006-11-24 Fuji Electric Device Technology Co Ltd Manufacturing method of semiconductor device
US9496387B2 (en) 2008-03-26 2016-11-15 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US9166038B2 (en) 2008-03-26 2015-10-20 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
JP2009260253A (en) * 2008-03-26 2009-11-05 Rohm Co Ltd Semiconductor device and method for manufacturing the same
US10290733B2 (en) 2008-03-26 2019-05-14 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US10686067B2 (en) 2008-03-26 2020-06-16 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
US11127851B2 (en) 2008-03-26 2021-09-21 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
CN102396070A (en) * 2009-04-13 2012-03-28 罗姆股份有限公司 Semiconductor device and method for manufacturing semiconductor device
CN103107193A (en) * 2011-11-11 2013-05-15 上海华虹Nec电子有限公司 Grooved type insulated gate field effect transistor

Similar Documents

Publication Publication Date Title
US5861334A (en) Method for fabricating semiconductor device having a buried channel
US4354309A (en) Method of manufacturing a metal-insulator-semiconductor device utilizing a graded deposition of polycrystalline silicon
US4249968A (en) Method of manufacturing a metal-insulator-semiconductor utilizing a multiple stage deposition of polycrystalline layers
US5371024A (en) Semiconductor device and process for manufacturing the same
US5465000A (en) Threshold adjustment in vertical DMOS devices
US3936857A (en) Insulated gate field effect transistor having high transconductance
US20030060013A1 (en) Method of manufacturing trench field effect transistors with trenched heavy body
US3909306A (en) MIS type semiconductor device having high operating voltage and manufacturing method
JPH07122745A (en) Semiconductor device and its manufacture
JPH0355984B2 (en)
JP4030139B2 (en) Power semiconductor device and manufacturing method thereof
JPH0824145B2 (en) Method for manufacturing CMOS semiconductor device
JPH0582792A (en) Manufacture of semiconductor device
JPS58147074A (en) Metal oxide semiconductor transistor device and method of producing same
US5932913A (en) MOS transistor with controlled shallow source/drain junction, source/drain strap portions, and source/drain electrodes on field insulation layers
US4507846A (en) Method for making complementary MOS semiconductor devices
US4859630A (en) Method of manufacturing a semiconductor device
JP3216206B2 (en) Semiconductor device and manufacturing method thereof
JPH06104446A (en) Semiconductor device
EP0198446B1 (en) Semiconductor device with short-length electrode and fabrication process therefor
JPH01120067A (en) Semiconductor device and its manufacture
JPH0321101B2 (en)
JP2703883B2 (en) MIS transistor and method of manufacturing the same
JP2888857B2 (en) Semiconductor device
EP0994511A1 (en) Semiconductor device and manufacturing method of the same