JPH0582328B2 - - Google Patents

Info

Publication number
JPH0582328B2
JPH0582328B2 JP7311988A JP7311988A JPH0582328B2 JP H0582328 B2 JPH0582328 B2 JP H0582328B2 JP 7311988 A JP7311988 A JP 7311988A JP 7311988 A JP7311988 A JP 7311988A JP H0582328 B2 JPH0582328 B2 JP H0582328B2
Authority
JP
Japan
Prior art keywords
concentration
crystals
caustic
caustic potash
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7311988A
Other languages
Japanese (ja)
Other versions
JPH01246124A (en
Inventor
Tsuneo Mizukami
Tetsuo Ueda
Teruo Minato
Kazuo Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP7311988A priority Critical patent/JPH01246124A/en
Publication of JPH01246124A publication Critical patent/JPH01246124A/en
Publication of JPH0582328B2 publication Critical patent/JPH0582328B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/30Purification; Separation by crystallisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 発明の目的 〔産業上の利用分野〕 本発明は、苛性カリの精製方法に関するもの
で、苛性カリ中の塩素及びナトリウム分を除去す
ることにより高純度の苛性カリを安価にしかも簡
単なプロセスで得ることができる方法を提供する
ものである。 〔従来の技術〕 一般に苛性カリは、塩化カリウムを原料として
水銀電解法又はイオン交換膜電解法により製造さ
れ、広く産業界で使用されている。 その用途としては、各種カリ塩の製造、医薬
品、化粧品のほか、分析試薬まで多方面にわたり
日常不可欠の無機化学薬品となつている。 最近、この苛性カリが電子材料分野で注目され
るようになつた。周知のようにこの分野では厳し
い品質管理が行われており、使用に際し純度の向
上が要求されている。 例えばアルカリ電池に用いる苛性カリの場合、
重金属及び塩素は数ppm未満、ナトリウムは
100ppm未満が要求されるが、特に塩素及びナト
リウムについては、通常の電解法ではこの水準を
満足させることができないのが現状である。 従来から高純度アルカリの製造方法について
種々の方法が検討されている。 例えば近年実用化が進んだイオン交換膜電解法
を応用した三室電解法はその代表的なものであ
る。 この方法は陽極と陰極の間に二枚の陽イオン交
換膜を介在させて電解を行うもので、陽極室から
陰極室への塩素イオン移動量は著しく抑制され、
低塩素分の陰極液を得ることができる。 例えば通常の二室からなるイオン交換膜電解法
で得られる苛性カリ中の塩素分は、48wt%苛性
カリベースで数十ppmであるが、この三室電解法
によれは3ppm以下のものを得ることができる。 〔発明が解決しようとする課題〕 しかしながら、三室電解法の欠点として、陽極
と陰極の間に二枚の陽イオン交換膜を介在させて
行う結果、電気抵抗の増大により電気ロスが大き
いこと、セル構造が複雑になること、更にナトリ
ウムイオンとカリウムイオンとは電気化学的に同
じ挙動を示すことから、苛性カリからナトリウム
分を分別除去は理論的にも無理のあることが挙げ
られる。 (ロ) 発明の構成 〔課題を解決するためのための手段〕 本発明者らは、以上に述べたイオン交換膜三室
電解法の欠点を解決し、塩素及びナトリウムの含
有量の非常に少ない高純度苛性カリを得る方法に
ついて検討をし、苛性カリ中の塩素を除去する目
的で、同水溶液の晶析による精製を行つたところ
予想外にナトリウムをも完全に近い程度まで除去
できるとの知見を得た。 そこでこの知見を実用化するための条件及び装
置について鋭意検討した結果本発明を完成するに
至つた。 本発明は基本的には、塩素、ナトリウム等不純
分を含む苛性カリ水溶液を真空低圧下で蒸発濃縮
して苛性カリの結晶(以下、単に「結晶」と称す
る。)を析出させて、得られたスラリーを遠心分
離等による固液分離操作によつて結晶と母液に分
離し、結晶を製品とするものである。 尚、本発明で言う「結晶」とは、熱交換機内で
析出した苛性カリの微小固体のことを指し、肉眼
では結晶構造が見えない微小の結晶や、少量存在
する非晶質のものも含むものである。 従来苛性ソーダの製造に当たり、アスベスト等
の膜を用いた電解法(所謂濾隔膜電解法)で得ら
れる苛性ソーダを晶析法により精製する方法は知
られていた。 しかしこれは電解操業中に濾隔膜を通過して陰
極室液内に入り込み、生成苛性ソーダ中に多量に
混入している原料塩化ナトリウムを製品苛性ソー
ダから分離するために行つているもので、本発明
のようにカリウム化合物から性質の極似たナトリ
ウム分を除去し、しかもその程度がppmオーダー
の高純度品を得るというものではない。 本発明の方法によつて得られた結晶は用途によ
りそのまま供してもよいし、或いは水で溶解希釈
して任意の濃度の液状製品にすることもできる。 本発明の方法によつて得られた苛性カリは、極
めて高純度であり、不純物濃度を原液中における
濃度に対して塩素で約1/10、ナトリウムで約1/20
に低下させることができる。 以下図面を用いて本発明を詳細に説明する。 図1は本発明の製造フローである。 蒸発濃縮等公知の方法で濃縮した50〜70wt%、
好ましくは58〜62wt%の苛性カリ水溶液1を、
減圧保持された晶析機3へ供給する。この場合反
応状況を安定させるためには連続供給が好まし
い。 この晶析機としては例えば月島機械(株)製DP型
晶出機等がある。 供給する苛性カリ濃度が50wt%未満の場合は、
水の蒸発に際し高真空を作る必要があり、又
70wt%を超えると晶析前の濃縮コストが高くな
ると共に、この濃度の水溶液は飽和溶解度の関係
から当然温度の高い水溶液であるため、晶析操作
も高温操作になり装置材質の高級化が必要とな
り、各々好ましくない。 苛性カリ水溶液の供給量は真空装置能力に応じ
て適当に選択できる。供給量が大きい程処理量が
大きいが、あまり大きいと蒸発能力(真空装置や
加熱度)を高めても突沸により、ベーパーへの結
晶同伴が起こり易くなり、また供給量が少ないと
処理量が少なくなり好ましくない。上記DP型晶
出機の例では、晶析機中のSVとして3〜5Hrが
適当である。 槽内は適度な沸騰状態に維持することが必要で
あり、激しい沸騰は気相ゾーン壁への結晶の付
着、更に飛沫同伴によりベーパー管内での結晶析
出が起こり、閉塞を招くことになる。 又弱すぎると濃縮が遅く運転効率が悪化する。 具体的な操作法としては、内温が一定となるよ
うに沸騰状態を見てジヤケツトスチーム量や真空
度を調節する方法が操作し易く好ましい。 槽内温は70〜90℃にする必要がある。 温度が高い場合は真空度が低くても晶析が起こ
り易いが、90℃を超えるような高温だと苛性カリ
に対する装置材質の耐食性、装置からの金属の溶
出が問題となる。例えば、通常のステンレス鋼装
置では操作温度として90℃が限界である。 又70℃未満の場合で、運転を行うには系を高真
空にする必要が生じる。 槽内圧は槽内温と関連して調節するが、10〜30
mmHgにすることが好ましい。 10mmHg未満の高真空を得るためには真空装置
の高級化が必要であり、30mmHgを超える場合に
運転を効率よく行うには、操作を高温下で行わな
くてはならず、前述のとおり装置材質の高級化が
必要となると共に槽壁面への苛性カリ結晶の付着
が起こり、ロングランの精製操作ができなく、
各々好ましくない。 撹拌数は槽内に析出した結晶粒子が槽下部に沈
積しないように設定する。 槽内で生成する結晶量(スラリー濃度)は、好
ましくは15〜40wt%、更に好ましくは25〜35wt
%になるように、SV、内温及び槽内圧を調節す
る。 スラリー濃度が40wt%を超えると増粘がひど
くスラリーの抜き出しがスムーズにでき難く、又
15wt%未満では得られる結晶量が少なく効率が
悪い。 真空発生装置の能力を高めるため、真空発生装
置へ導くベーパー管の途中に凝縮器8を入れて、
冷水12で蒸気を冷却する方法が望ましい。 真空発生装置は公知のものでよく、例えばスチ
ームエジエクター10,10′とナツシユポンプ
11の組合せで所定の真空度を得ることができ
る。 晶析機内のスラリーは液面を略一定に保持しな
がら断続又は連続的に抜き出し、これを遠心分離
機等13で母液15と結晶16に分離する。 又必要に応じ固液分離中に、例えば遠心分離機
内ケーキ層へ、水又は苛性カリ水溶液14をスプ
レーすることによるリンス操作を組み合わせれば
更に純度を向上させることができる。 得られる結晶は、本発明の操作範囲では苛性カ
リ一水和物であり、苛性カリ濃度約75wt%であ
る。 これをそのまま使用に供してもよいが、一般品
と同様、水で溶解希釈して任意の濃度の液状品と
して使用してもよい。 図2及び図3はイオン交換膜電解法で得られた
苛性カリを原液とし、上記の方法で精製して得ら
れた結晶中の不純分と、使用した原液中の不純物
との関係を示したものである。原液中塩素分濃度
の低い領域は本発明方法で得た精製苛性カリに塩
化カリ(試薬一級)を、ナトリウム分濃度の高い
ものは、苛性ソーダ(試薬一級)を添加して調整
した。数値はベースを揃える意味で、いずれも
48wt%苛性カリベースに換算して示してある。 分離母液は、不純物が濃縮されているが、一部
原液と混合リサイクル使用し、新原液の使用を少
なく抑えるようにすると、経済的で好ましい。図
2及び図3に示すように、原液中の不純物濃度と
製品(結晶)の純度は比例関係になることが明ら
かになつたので、製品所要純度に応じてリサイク
ル量を決定、再利用できることが判明した。 残りの排出母液は、電解工場塩化カリウム水溶
液の精製工程の精製薬剤等として使用することが
できる。 〔作用〕 本発明方法により塩素及びナトリウム含有量が
極めて少ない高純度苛性カリが得られる理由は明
らかでないが、結晶生成時において、これら不純
物が液相の方により多く分配されるためと思われ
る。 〔実施例〕 以下、実施例を挙げて本発明を更に詳しく説明
するが、実施例中「%」とあるは、「wt%」であ
る。 実施例 1 真空晶析機(月島機械(株)製 DP型晶出機450mm
φ×2000mmH)に濃度60%、90℃の苛性カリ水溶
液を40/Hrで供給した。 この時、撹拌数を120rpmとし、晶析機内圧は、
スチームエジエクターとナツシユポンプを組み合
わせた真空発生装置により凝縮器出口で12〜15mm
Hg、内液温度はジヤケツトスチームにより80〜
82℃に保持した。 運転中槽内液面が略一定となるようにスラリー
を逐次抜き出し、その際スラリー濃度を測定して
約3時間後定常となつたことを確認した。 スタートして6時間後のスラリー(スラリー濃
度35.7%)を取り、バスケツト型遠心分離機((株)
田辺鉄工所製、O−15型370mmφ)にて約1000G
で固液分離したところ、粒径1〜2mmの純白色の
結晶を得た。 この結晶を分離機に戻し、運転しながら結晶
100重量部に対して純水1重量部を1分間かけて
噴霧してリンスされた結晶を得た。この時、約6
%の結晶が溶解消失した。 実施例 2 実施例1と同一条件で、59.6%、90℃の苛性カ
リ水溶液を使用し、連続10日間のテストを行い、
最終日にスラリー(スラリー濃度30.3%)を固液
分離して、粒径1〜2mmの純白色の結晶を得た。 この結晶を48%苛性カリ水溶液(塩素濃度
5.1ppm、ナトリウム濃度1100ppm)をリンス液
として、実施例1と同様の方法でリンス操作を行
つた。この時約3%の結晶が溶解消失した。 実施例1、2いずれについても、運転終了後晶
析機内部を点検したところ、機壁へのスケールの
付着は認められず、充分連続運転が可能であるこ
とを確認した。 比較例 1 実施例1と同一の装置に、濃度59.7%、90℃の
苛性カリ水溶液を常圧下、40/Hrで晶析機へ
供給した。この時、撹拌数120rpmで、ジヤケツ
トには水を通し、内温が40〜42℃になるように調
節し連続運転を行つた。 途中、槽内液面が略一定となるように逐次スラ
リーを抜き出し、その際スラリー濃度を測定し、
スタート後約3時間で定常状態になることを確認
した。 スタートして6時間後のスラリー(スラリー濃
度15.5%)を実施例1と同一の分離機で同様の操
作で固液分離したところ、純白色で粒径1〜2mm
の結晶が得られた。 連続10時間運転の後、晶析機内部点検を行つた
ところ、機壁全面にわたつてスケール付着があ
り、撹拌効果向上のためにとりつけられたドラフ
トチユーブ(機壁との間隔50mm)に達するくらい
にスケールの成長が見られるところから、実用的
な長期運転は無理と判断した。 以上の結果を表1にまとめた。 尚、表中、塩素及びナトリウム濃度は48%苛性
カリ水溶液ベースに換算して表示してある。
(a) Purpose of the invention [Field of industrial application] The present invention relates to a method for refining caustic potash, and is a method for obtaining highly pure caustic potash at a low cost and in a simple process by removing chlorine and sodium content from the caustic potash. This provides a method that can be used. [Prior Art] Generally, caustic potash is produced using potassium chloride as a raw material by mercury electrolysis or ion exchange membrane electrolysis, and is widely used in industry. It has become an indispensable inorganic chemical that is used in a wide range of fields, including the production of various potassium salts, pharmaceuticals, cosmetics, and even analytical reagents. Recently, this caustic potash has attracted attention in the field of electronic materials. As is well known, strict quality control is carried out in this field, and improvements in purity are required upon use. For example, in the case of caustic potash used in alkaline batteries,
Heavy metals and chlorine are less than a few ppm, sodium is
Although less than 100 ppm is required, it is currently impossible to satisfy this level with ordinary electrolytic methods, especially for chlorine and sodium. Various methods have been studied for producing high-purity alkali. For example, a typical example is the three-chamber electrolysis method that applies the ion-exchange membrane electrolysis method, which has been put into practical use in recent years. This method performs electrolysis by interposing two cation exchange membranes between the anode and cathode, and the amount of chlorine ions transferred from the anode chamber to the cathode chamber is significantly suppressed.
A catholyte with a low chlorine content can be obtained. For example, the chlorine content in caustic potash obtained by the usual two-chamber ion-exchange membrane electrolysis method is several tens of ppm based on 48wt% caustic potash, but this three-chamber electrolysis method can obtain chlorine content of less than 3 ppm. . [Problems to be Solved by the Invention] However, the drawbacks of the three-chamber electrolysis method are that, as a result of interposing two cation exchange membranes between the anode and the cathode, there is a large electrical loss due to an increase in electrical resistance; Since the structure is complex and sodium ions and potassium ions exhibit the same electrochemical behavior, it is theoretically impossible to separate and remove sodium from caustic potash. (b) Structure of the invention [Means for solving the problem] The present inventors have solved the above-mentioned drawbacks of the ion-exchange membrane three-chamber electrolysis method, and have developed a highly After investigating a method for obtaining pure caustic potash and purifying the same aqueous solution by crystallization in order to remove chlorine from the caustic potash, they unexpectedly found that it was possible to remove sodium to an almost complete extent. . Therefore, as a result of intensive study on conditions and equipment for putting this knowledge into practical use, the present invention was completed. The present invention basically consists of evaporating and concentrating a caustic potash aqueous solution containing impurities such as chlorine and sodium under vacuum and low pressure to precipitate caustic potash crystals (hereinafter simply referred to as "crystals"), resulting in a slurry. The crystals are separated into crystals and mother liquor by solid-liquid separation operations such as centrifugation, and the crystals are used as a product. The term "crystals" as used in the present invention refers to minute solids of caustic potassium precipitated within the heat exchanger, and includes minute crystals whose crystal structure cannot be seen with the naked eye and amorphous ones present in small amounts. . Conventionally, in the production of caustic soda, a method has been known in which caustic soda obtained by an electrolytic method using a membrane such as asbestos (so-called filtration membrane electrolysis method) is purified by a crystallization method. However, this is done in order to separate raw material sodium chloride, which passes through the filtration membrane during electrolysis operation and enters the cathode chamber liquid and is mixed in a large amount in the produced caustic soda, from the product caustic soda. However, it is not possible to remove the sodium component, which has very similar properties, from a potassium compound and obtain a product with high purity on the order of ppm. The crystals obtained by the method of the present invention may be used as they are depending on the intended use, or they may be dissolved and diluted with water to form a liquid product of any concentration. The caustic potash obtained by the method of the present invention has extremely high purity, with impurity concentrations of approximately 1/10 for chlorine and approximately 1/20 for sodium relative to the concentration in the original solution.
can be lowered to The present invention will be explained in detail below using the drawings. FIG. 1 is a manufacturing flow of the present invention. 50-70wt% concentrated by known methods such as evaporation concentration,
Preferably 58 to 62 wt% caustic potassium aqueous solution 1,
It is supplied to the crystallizer 3 which is kept under reduced pressure. In this case, continuous feeding is preferred in order to stabilize the reaction situation. Examples of this crystallizer include a DP type crystallizer manufactured by Tsukishima Kikai Co., Ltd. If the concentration of caustic potassium supplied is less than 50wt%,
It is necessary to create a high vacuum when water evaporates, and
If it exceeds 70wt%, the cost of concentration before crystallization will increase, and since an aqueous solution at this concentration naturally has a high temperature due to the saturated solubility, the crystallization operation will also need to be performed at a high temperature, requiring higher quality equipment materials. Therefore, each is undesirable. The amount of the caustic potassium aqueous solution supplied can be appropriately selected depending on the capacity of the vacuum equipment. The larger the supply amount, the greater the throughput, but if it is too large, crystal entrainment in the vapor will easily occur due to bumping even if the evaporation capacity (vacuum equipment and heating degree) is increased, and if the supply amount is small, the throughput will be small. I don't like it. In the above example of the DP type crystallizer, the appropriate SV in the crystallizer is 3 to 5 hours. It is necessary to maintain the inside of the tank at an appropriate boiling state, and violent boiling will cause crystals to adhere to the walls of the gas phase zone, and crystals will be deposited in the vapor pipe due to droplet entrainment, leading to blockage. If it is too weak, concentration will be slow and operational efficiency will deteriorate. As a specific method of operation, a method of controlling the amount of steam in the jacket and the degree of vacuum while monitoring the boiling state so that the internal temperature is constant is preferred because it is easy to operate. The temperature inside the tank needs to be 70-90℃. When the temperature is high, crystallization is likely to occur even if the degree of vacuum is low, but at high temperatures exceeding 90°C, problems arise with the corrosion resistance of the equipment material against caustic potash and the elution of metals from the equipment. For example, the operating temperature limit for ordinary stainless steel equipment is 90°C. Furthermore, if the temperature is lower than 70°C, it is necessary to bring the system to a high vacuum for operation. The pressure inside the tank is adjusted in relation to the temperature inside the tank, but it is between 10 and 30.
It is preferable to set it to mmHg. In order to obtain a high vacuum of less than 10 mmHg, it is necessary to upgrade the vacuum equipment, and in order to operate efficiently when the vacuum exceeds 30 mmHg, the operation must be performed at high temperatures, and as mentioned above, the equipment material Along with the need for higher quality products, caustic potassium crystals adhere to the tank walls, making long-run refining operations impossible.
Each is unfavorable. The stirring number is set so that the crystal particles deposited in the tank do not settle at the bottom of the tank. The amount of crystals generated in the tank (slurry concentration) is preferably 15 to 40 wt%, more preferably 25 to 35 wt%.
%, adjust the SV, internal temperature, and tank internal pressure. If the slurry concentration exceeds 40wt%, the viscosity will increase and it will be difficult to draw out the slurry smoothly.
If it is less than 15 wt%, the amount of crystals obtained is small and the efficiency is poor. In order to increase the capacity of the vacuum generator, a condenser 8 is inserted in the middle of the vapor tube leading to the vacuum generator.
A method of cooling the steam with cold water 12 is preferable. The vacuum generating device may be a known device, and for example, a predetermined degree of vacuum can be obtained by a combination of steam ejectors 10, 10' and a nut pump 11. The slurry in the crystallizer is extracted intermittently or continuously while keeping the liquid level substantially constant, and is separated into mother liquor 15 and crystals 16 by a centrifuge 13 or the like. If necessary, the purity can be further improved by combining a rinsing operation, for example, by spraying water or a caustic potassium aqueous solution 14 onto the cake layer in the centrifuge during solid-liquid separation. The resulting crystals are caustic potassium monohydrate within the operating range of the present invention and have a caustic potassium concentration of approximately 75 wt%. This may be used as it is, but like general products, it may be dissolved and diluted with water and used as a liquid product of any concentration. Figures 2 and 3 show the relationship between the impurities in the crystals obtained by purifying the caustic potash obtained by ion-exchange membrane electrolysis using the above method and the impurities in the stock solution used. It is. Regions with low chlorine concentration in the stock solution were adjusted by adding potassium chloride (first class reagent) to purified caustic potassium obtained by the method of the present invention, and those with high sodium concentration were adjusted by adding caustic soda (first class reagent). The numbers are meant to align the bases, and all
Shown in terms of 48wt% caustic potash base. Although the separated mother liquor is concentrated in impurities, it is economical and preferable to partially mix it with the stock solution and recycle it, thereby minimizing the use of new stock solution. As shown in Figures 2 and 3, it has become clear that there is a proportional relationship between the impurity concentration in the stock solution and the purity of the product (crystals), so it is possible to determine the amount of recycling and reuse according to the required purity of the product. found. The remaining discharged mother liquor can be used as a refining agent in the process of refining potassium chloride aqueous solution in an electrolytic plant. [Function] The reason why highly pure caustic potash with extremely low chlorine and sodium contents can be obtained by the method of the present invention is not clear, but it is thought that it is because these impurities are distributed more into the liquid phase during crystal formation. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In the Examples, "%" means "wt%". Example 1 Vacuum crystallizer (DP type crystallizer 450 mm manufactured by Tsukishima Kikai Co., Ltd.)
A caustic potassium aqueous solution of 60% concentration and 90°C was supplied at a rate of 40/Hr. At this time, the stirring number was 120 rpm, and the internal pressure of the crystallizer was:
12 to 15 mm at the condenser outlet using a vacuum generator that combines a steam ejector and a Natsushi pump.
Hg, internal liquid temperature is 80~ by jacket steam
It was held at 82°C. During operation, the slurry was extracted one after another so that the liquid level in the tank remained approximately constant, and the slurry concentration was measured to confirm that it became steady after about 3 hours. Six hours after starting, the slurry (slurry concentration 35.7%) was taken and placed in a basket centrifuge (Co., Ltd.).
Approximately 1000G with O-15 type 370mmφ) made by Tanabe Iron Works
Upon solid-liquid separation, pure white crystals with a particle size of 1 to 2 mm were obtained. The crystals are returned to the separator and crystallized while operating.
A rinsed crystal was obtained by spraying 1 part by weight of pure water per 100 parts by weight for 1 minute. At this time, about 6
% of the crystals dissolved and disappeared. Example 2 A test was conducted for 10 consecutive days under the same conditions as Example 1 using a 59.6% caustic potassium aqueous solution at 90°C.
On the final day, the slurry (slurry concentration 30.3%) was subjected to solid-liquid separation to obtain pure white crystals with a particle size of 1 to 2 mm. Add these crystals to a 48% caustic potassium aqueous solution (chlorine concentration
A rinsing operation was carried out in the same manner as in Example 1 using a rinsing liquid of 5.1 ppm and sodium concentration of 1100 ppm. At this time, about 3% of the crystals dissolved and disappeared. In both Examples 1 and 2, when the inside of the crystallizer was inspected after the completion of operation, no scale was observed on the machine wall, and it was confirmed that sufficient continuous operation was possible. Comparative Example 1 In the same apparatus as in Example 1, a caustic potassium aqueous solution having a concentration of 59.7% and a temperature of 90°C was supplied to a crystallizer at a rate of 40/Hr under normal pressure. At this time, water was passed through the jacket at a stirring speed of 120 rpm, and the internal temperature was adjusted to 40 to 42°C, and continuous operation was performed. During the process, the slurry was extracted one after another so that the liquid level in the tank remained approximately constant, and the slurry concentration was measured at that time.
It was confirmed that a steady state was reached approximately 3 hours after the start. Six hours after starting, the slurry (slurry concentration 15.5%) was subjected to solid-liquid separation using the same separator as in Example 1 in the same manner as in Example 1. It was pure white and had a particle size of 1 to 2 mm.
Crystals were obtained. After 10 hours of continuous operation, we inspected the inside of the crystallizer and found scale adhesion all over the machine wall, reaching the draft tube (50mm distance from the machine wall) installed to improve the stirring effect. Since scale growth was observed in the above, it was determined that practical long-term operation would be impossible. The above results are summarized in Table 1. In the table, the chlorine and sodium concentrations are calculated based on a 48% caustic potassium aqueous solution.

【表】 比較例 2 Ti−Ru系不溶性電極を有したTi製陽極室、電
極面を有しない額縁状中間枠(SUS304製3mm
t)及びSUS304製メツシユ状陰極を有した
SUS304製陰極室からなるフイルタープレス型電
解槽を使用して、塩化カリウム水溶液の三室電解
を行つた。 陽イオン交換膜として、Du Pont社製ナフイオ
ンNX90209を中間枠の両側にセツトし、陰極極
間に電極の存在しない2枚の膜と中間枠で構成さ
れる隔室(以下「中間室」と称する。)を設けた。 陽極室には濃度300g/の塩化カリウム水溶
液(Na濃度0.5〜0.6g/)を供給した。供給量
は、電解槽出口で塩化カリウム濃度が200g/
になるように調整した。 中間室には濃度15〜20%の苛性カリ水溶液を供
給したが、受槽を設け中間室とポンプ循環するよ
うにした。運転中、Na+濃度は0.03〜0.04%で変
化しないがCl-濃度は徐々に上昇するため、新液
を追加してCl-濃度が0.1%を超えないようにし
た。循環流量は0.5/(A/dm2)・Hrである。 陰極室には濃度31%の苛性カリ水溶液を供給し
たが、受槽を設け陰極室とポンプ循環するように
した。 ポンプ吐出後で陰極室入口直前の苛性カリ水溶
液に補給水を供給し、電解槽出口における苛性カ
リ濃度が31%になるようにした。生成苛性カリ液
は受槽液面を一定に維持し、液面増加分を抜き出
した。循環流量は10/(A/dm2)・Hrであ
る。 温度は、電解槽出口苛性カリ液温が85℃を維持
するように、供給塩化カリウム水溶液温度を調節
した。 電流密度は30A/dm2である。 以上の条件で1年8ケ月運転を行い、その間陰
極液中のNa+濃度およびCl-濃度を1週間に1度
チエツクを行つたところ、全期間を通じてNa+
度800〜1000ppm、Cl-濃度1.2〜2.2ppm(いずれ
も48%苛性カリベースに換算した値)の範囲であ
つた。 (ハ) 発明の効果 本発明の方法を用いると、今までの三室電解法
では得られなかつた、塩素及びナトリウム含有量
が共に極めて少ない苛性カリを安価に、かつ簡単
なプロセスで得ることができる。
[Table] Comparative Example 2 Ti anode chamber with Ti-Ru insoluble electrode, frame-shaped intermediate frame without electrode surface (3 mm made of SUS304)
t) and a mesh cathode made of SUS304.
Three-chamber electrolysis of potassium chloride aqueous solution was performed using a filter press type electrolytic cell consisting of a cathode chamber made of SUS304. As a cation exchange membrane, Nafion NX90209 manufactured by Du Pont was set on both sides of the intermediate frame, and a compartment (hereinafter referred to as the "intermediate chamber") consisting of two membranes and the intermediate frame with no electrode between the cathode and electrode was set. ) was established. A potassium chloride aqueous solution (Na concentration 0.5 to 0.6 g/) with a concentration of 300 g/was supplied to the anode chamber. The supply amount is 200g/potassium chloride concentration at the electrolyzer outlet.
I adjusted it so that A caustic potassium aqueous solution with a concentration of 15 to 20% was supplied to the intermediate chamber, and a receiving tank was installed to circulate it with the intermediate chamber using a pump. During operation, the Na + concentration remained unchanged at 0.03–0.04%, but the Cl - concentration gradually increased, so new solution was added to prevent the Cl - concentration from exceeding 0.1%. The circulation flow rate is 0.5/(A/dm 2 )·Hr. A caustic potassium aqueous solution with a concentration of 31% was supplied to the cathode chamber, and a receiving tank was installed to circulate it with the cathode chamber using a pump. After pump discharge, makeup water was supplied to the caustic potassium aqueous solution immediately before the cathode chamber inlet, so that the caustic potassium concentration at the electrolytic cell outlet was 31%. The resulting caustic potash solution maintained a constant liquid level in the receiving tank, and the increased liquid level was extracted. The circulation flow rate is 10/(A/dm 2 )·Hr. The temperature of the potassium chloride aqueous solution supplied was adjusted so that the temperature of the caustic potassium solution at the outlet of the electrolytic cell was maintained at 85°C. The current density is 30A/ dm2 . The device was operated under the above conditions for 1 year and 8 months, during which time the Na + concentration and Cl - concentration in the catholyte were checked once a week. During the entire period, the Na + concentration was 800 to 1000 ppm, and the Cl - concentration was 1.2. ~2.2 ppm (all values converted to 48% caustic potash base). (c) Effects of the Invention By using the method of the present invention, caustic potash having extremely low chlorine and sodium contents, which could not be obtained by conventional three-chamber electrolysis methods, can be obtained at low cost and through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の製造フローである。 1……苛性カリ水溶液、2……フローメータ
ー、3……真空晶析機、4……撹拌機、5……ド
ラフトチユーブ、6……ジヤケツト、7……スチ
ーム、8……凝縮器、9……凝縮ドレン受槽、1
0,10……エジエクター、11……ナツシユポ
ンプ、12……水、13……遠心分離機、14…
…リンス液、15……分離母液、16……結晶。 図2は原液及び析出結晶中に含まれる塩素量の
相関関係を示した図である。 図3は原液及び析出結晶中に含まれるナトリウ
ム量の相関関係を示した図である。
FIG. 1 is a manufacturing flow of the present invention. 1... Caustic potassium aqueous solution, 2... Flow meter, 3... Vacuum crystallizer, 4... Stirrer, 5... Draft tube, 6... Jacket, 7... Steam, 8... Condenser, 9... ...Condensate drain tank, 1
0,10... Ejector, 11... Natsushi pump, 12... Water, 13... Centrifugal separator, 14...
... Rinse liquid, 15 ... Separated mother liquor, 16 ... Crystal. FIG. 2 is a diagram showing the correlation between the amounts of chlorine contained in the stock solution and the precipitated crystals. FIG. 3 is a diagram showing the correlation between the amounts of sodium contained in the stock solution and the precipitated crystals.

Claims (1)

【特許請求の範囲】[Claims] 1 濃度50〜70wt%の苛性カリ水溶液を撹拌機
付き晶析機に供給して、70〜90℃の温度で沸騰状
態に維持することにより苛性カリの結晶を析出さ
せ、得られたスラリーから固液分離により苛性カ
リ結晶を分取することを特徴とする高純度苛性カ
リの製造方法。
1. A caustic potash aqueous solution with a concentration of 50 to 70 wt% is supplied to a crystallizer equipped with a stirrer and maintained in a boiling state at a temperature of 70 to 90°C to precipitate caustic potash crystals, and solid-liquid separation is performed from the resulting slurry. A method for producing high-purity caustic potash, characterized by separating caustic potash crystals by a method.
JP7311988A 1988-03-29 1988-03-29 Production of high-purity potassium hydroxide Granted JPH01246124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311988A JPH01246124A (en) 1988-03-29 1988-03-29 Production of high-purity potassium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311988A JPH01246124A (en) 1988-03-29 1988-03-29 Production of high-purity potassium hydroxide

Publications (2)

Publication Number Publication Date
JPH01246124A JPH01246124A (en) 1989-10-02
JPH0582328B2 true JPH0582328B2 (en) 1993-11-18

Family

ID=13509040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311988A Granted JPH01246124A (en) 1988-03-29 1988-03-29 Production of high-purity potassium hydroxide

Country Status (1)

Country Link
JP (1) JPH01246124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045679A (en) * 2005-08-11 2007-02-22 Toagosei Co Ltd High purity potassium hydroxide containing heavy metals in low content and its producing method
JP2007045678A (en) * 2005-08-11 2007-02-22 Toagosei Co Ltd Vessel useful for producing high purity potassium hydroxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114820B2 (en) * 2000-09-13 2013-01-09 旭硝子株式会社 Sodium chloride purification method and sodium hydroxide production method
EP1930296B1 (en) * 2005-08-11 2014-06-04 Toagosei Co., Ltd Method for producing high purity caustic potash

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045679A (en) * 2005-08-11 2007-02-22 Toagosei Co Ltd High purity potassium hydroxide containing heavy metals in low content and its producing method
JP2007045678A (en) * 2005-08-11 2007-02-22 Toagosei Co Ltd Vessel useful for producing high purity potassium hydroxide

Also Published As

Publication number Publication date
JPH01246124A (en) 1989-10-02

Similar Documents

Publication Publication Date Title
US8771380B2 (en) Sodium chloride production process
US4747917A (en) Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity
US4115219A (en) Brine purification process
US20010015322A1 (en) Process for producing sodium persulfate
US2764472A (en) Brine purification
JPH033747B2 (en)
US3883406A (en) Process for recovering electrolytically produced alkali metal chlorates
JPH0582328B2 (en)
US5093089A (en) Process for the separation of sulphate
EP1773715B1 (en) Manufacture of high-strength, low-salt hypochlorite bleach
US3218121A (en) Manufacture of ammonium perchlorate
US4888099A (en) Process for the production of alkali metal chlorate
KR20080036093A (en) Method for producing high purity caustic potash
EP0123749B1 (en) Continuous process for the manufacture of calcium hypochlorite
US3407128A (en) Process for the manufacture of chlorine, sodium hydroxide and hydrogen by the electrolysis of sodium chloride in mercury cells
JPH01246125A (en) Production of high-purity potassium hydroxide
US3690845A (en) Crystallization of a metal chlorate from a chlorate-chloride containing solution
US2594723A (en) Process for producing granular clusters of crystalline matter
RU2105717C1 (en) Method for production of potassium sulfate
US959730A (en) Process of treating electrolytic and similar solutions.
WO2006124196A1 (en) Perchlorate removal from sodium chlorate process
CN219585937U (en) BOE waste liquid recycling treatment system
US5087334A (en) Continuous process for the manufacture of potassium chlorate by coupling with a sodium chlorate production plant
EP4186997A1 (en) Preparation of lithium hydroxide
JPH0397880A (en) Method for preparation of aqeous sodium hydroxide solution of high cencentration

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees