JPH0582323A - Manufacture of r-tm-b series permanent magnet having improved corrosion resistance - Google Patents

Manufacture of r-tm-b series permanent magnet having improved corrosion resistance

Info

Publication number
JPH0582323A
JPH0582323A JP3239464A JP23946491A JPH0582323A JP H0582323 A JPH0582323 A JP H0582323A JP 3239464 A JP3239464 A JP 3239464A JP 23946491 A JP23946491 A JP 23946491A JP H0582323 A JPH0582323 A JP H0582323A
Authority
JP
Japan
Prior art keywords
corrosion resistance
permanent magnet
plating
series permanent
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3239464A
Other languages
Japanese (ja)
Inventor
Atsushi Tagaya
敦 多賀谷
Hideki Kikuchi
英樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3239464A priority Critical patent/JPH0582323A/en
Publication of JPH0582323A publication Critical patent/JPH0582323A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To remarkably improve corrosion resistance insufficient in conventional plating in a magnet containing rare earth elements and iron as main ingredients. CONSTITUTION:A method for manufacturing an R-TM-B series permanent magnet having improved corrosion resistance comprises the step of electrolytically processing with a current density of 0.5-5A/dm<2> simultaneously during an electrolessly plating for the purpose of improving corrosion resistance of the R-TM-B series permanent magnet containing by weight ratio 5-40% of R (R is a combination of one or more types of rare earth elements including y), 50-90% of TM (TM is transition metal containing Fe as a main ingredient) and 0.2-8% of B (boron).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−TM−B系永久磁
石であって、無電解Ni−Pめっきの処理方法を規定す
る事により耐食性を著しく改善したものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-TM-B type permanent magnet having a significantly improved corrosion resistance by defining a treatment method for electroless Ni-P plating.

【0002】[0002]

【従来の技術】電気・電子機器の高性能・小型化に伴な
って、その一部品たる永久磁石にも同様の要求が強まっ
てきた。すなわち以前の最強の永久磁石は希土類・コバ
ルト(R−Co)系であったが、近年、より強力なR−
TM−B系永久磁石が台頭してきた(特開昭59−46
008号)。ここにRはYを含む希土類元素の1種又は
2種以上の組合わせであり、TMはFe,Co等の遷移
金属中心として、一部を他の金属元素又は非金属元素で
置換したもの、Bは硼素である。しかし、R−TM−B
系永久磁石は極めて錆やすいという問題点があった。そ
のため、耐食性を改善するために、永久磁石体表面に耐
酸化性の被覆層を設ける手段がとられきた。その一つに
磁石体表面に無電解によるNi−Pめっき層を設ける方
法が提案されている(例えば特開平3−3206号)。
この無電解Ni−Pめっきは、外部から電流を流して行
なう電解Niめっきに比べて膜厚精度が良好であり、得
られるめっき膜にピンホールが少ないなどの利点を有し
ている。
2. Description of the Related Art As electric and electronic devices have become more sophisticated and smaller in size, the same requirements have been increased for a permanent magnet, which is one of the components. That is, the strongest permanent magnet before was a rare earth / cobalt (R-Co) system, but in recent years, a stronger R-co
TM-B system permanent magnets have emerged (Japanese Patent Laid-Open No. 59-46).
No. 008). Here, R is one or a combination of two or more rare earth elements including Y, TM is a transition metal center such as Fe or Co, and a part thereof is replaced with another metal element or non-metal element, B is boron. However, R-TM-B
The system permanent magnet has a problem that it is extremely rusty. Therefore, in order to improve the corrosion resistance, a measure has been taken to provide an oxidation resistant coating layer on the surface of the permanent magnet body. As one of them, a method of providing an electroless Ni-P plating layer on the surface of the magnet body has been proposed (for example, JP-A-3-3206).
This electroless Ni-P plating has better film thickness accuracy than electrolytic Ni plating performed by applying a current from the outside, and has the advantage that the resulting plated film has few pinholes.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、R−T
M−B系永久磁石を無電解Ni−Pめっき液に直接浸漬
して無電解めっき処理を施すと、無電解Ni−Pめっき
膜が磁石体表面に析出する以前に磁石体表面がめっき液
により腐食溶解してしまうという問題があった。そのた
め、磁石体表面に平滑かつ良好なめっき皮膜が形成され
ず、耐食性の面で問題となっていた。そこで本発明の目
的は、信頼性の高い耐食性を改善したR−TM−B系永
久磁石を提供することにある。
However, the RT
When the MB permanent magnet is directly immersed in the electroless Ni-P plating solution and subjected to the electroless plating treatment, the surface of the magnet body is exposed to the plating solution before the electroless Ni-P plating film is deposited on the surface of the magnet body. There was the problem of corrosion and dissolution. Therefore, a smooth and good plating film is not formed on the surface of the magnet body, which is a problem in terms of corrosion resistance. Therefore, an object of the present invention is to provide an R-TM-B system permanent magnet with improved reliability and improved corrosion resistance.

【0004】[0004]

【課題を解決するための手段】本発明は重量比でR(こ
こでRはYを含む希土類元素の1種又は2種以上組合わ
せ)5〜40%,TM(ここでTMはFeを主体とする
遷移金属)50〜90%,B(硼素)0.2〜8%から
なるR−TM−B系永久磁石において耐食性改善を目的
として設ける無電解Ni−Pめっき層の被覆方法とし
て、無電解めっき処理中に同じに電流密度0.5〜5A
/dm2の電解処理を施すことを特徴とする耐食性を改
善したR−TM−B系永久磁石の製造方法である。無電
解めっき処理の開始と同じに電解処理を施すと、磁石体
表面には電解析出反応により生じたNi−Pめっき皮膜
が形成される。この電解Ni−Pめっき皮膜が無電解N
i−Pめっき液による磁石体表面の腐食溶解を防止する
ことにより、その後の無電解Ni−Pめっきが良好に行
われ、磁石体表面に均一で平滑なNi−Pめっき膜が形
成されるものと考えられる。本発明は、前記した様に無
電解Ni−Pめっき層の被覆方法として無電解めっき処
理中に同時に電解処理を施すことにより、R−TM−B
系永久磁石の耐食性を向上するものである。前記電解処
理の電流密度に関しては、これが5A/dm2を越える
と、開始時の電解析出により形成された電解Ni−Pめ
っき皮膜が粗雑でピンホールの多い膜となってしまうた
め好ましくない。また0.5A/dm2より小さいと、
電解Ni−Pめっき皮膜が磁石体表面に析出する以前に
磁石体表面が無電解Ni−Pめっき液により腐食溶解し
てしまう可能性があることから、電流密度は0.5A/
dm2が好ましい。本発明において、Fe,Co,Ni
等のTMの一部を置換する元素は、その添加目的に応じ
て、Ga,Al,Ti,V,Cr,Mn,Zr,Hf,
Nb,Ta,Mo,Ge,Sb,Sn,Bi,Ni他を
添加でき、本発明はいかなるR−TM−B系磁石にも適
用できる。また、その製造方法は焼結法、溶湯急冷法、
あるいはそれらの変形法のいずれの方法でもよい。めっ
き前処理に関しては、加工変質層の除去及びめっき前活
性化を図る上で、酸性溶液を用いるのが良い。硫酸や塩
酸等の強酸がめっき前活性化にとって有効であるが、め
っき前処理の材質への影響を極力避けるためには、2〜
10vol%の硝酸による第1エッチング、その後過酸
化水素5〜10vol%、酢酸10〜30vol%の混
酸による第2エッチングが最も望ましい。次いで、電解
によるNiストライクめっき処理を行なう。無電解によ
るNi−P液に磁石体を直接浸漬し、無電解めっき処理
を行なう。また浸漬と同時に、電流密度0.5〜5A/
dm2の電解処理を行なう。無電解Ni−Pめっき液の
組成としては、金属塩として塩化ニッケル、硫酸ニッケ
ル、次亜リン酸ニッケルのうち少なくとも一種を100
g/l以下含有し、還元剤として次亜リン酸ナトリウム
を100g/l以下、pH調整剤とし水酸化ナトリウ
ム、水酸化アンモニウム等の塩基性化合物、無機酸、有
機酸のうち少なくとも一種を150g/l以下含むもの
が好ましい。なおこの電解液には緩衝剤としてクエン酸
ナトリウム、酢酸ナトリウム等のオキシカルボン酸、あ
るいは硼素、炭酸等の無機酸のうち少なくとも1種を1
50g/l以下、錯化剤としてクエン酸ナトリウム、酢
酸ナトリウム、水酸化アンモニウム、エチレングリコー
ル、さらには有機酸(酢酸、グリコール酸、クエン酸、
酒石酸等)のアルカリ塩、チオグリコール酸、アンモニ
ア、トリエタノールアミン、エチレンジアミン、グリシ
ン、ピリジンの少なくとも1種を100g/l含むほか
促進剤、安定剤として10g/l以下の硫化物、塩化
物、フッ化物、界面活性剤をそれぞれ含有することがで
き、この水溶液はpH3〜13の範囲で用い、メッキ時
の浴温は20〜100℃の範囲である。前記被覆方法に
より設けられためっき層の厚さは、耐食性の面で10〜
20μmが適当である。
In the present invention, the weight ratio of R (where R is one or a combination of two or more rare earth elements including Y) is 5 to 40%, TM (here, TM is mainly Fe). As a coating method of an electroless Ni-P plating layer provided for the purpose of improving corrosion resistance in an R-TM-B system permanent magnet composed of 50 to 90% of transition metal) and 0.2 to 8% of B (boron). Same current density of 0.5 to 5 A during electrolytic plating
A method for producing an R-TM-B system permanent magnet with improved corrosion resistance, which is characterized by performing an electrolytic treatment of / dm 2 . When the electrolytic treatment is applied at the same time as the start of the electroless plating treatment, a Ni-P plating film formed by the electrolytic deposition reaction is formed on the surface of the magnet body. This electrolytic Ni-P plating film is electroless N
By preventing corrosion and dissolution of the magnet body surface by the i-P plating solution, subsequent electroless Ni-P plating is favorably performed, and a uniform and smooth Ni-P plating film is formed on the magnet body surface. it is conceivable that. As described above, the present invention provides a method for coating an electroless Ni-P plating layer by performing electrolytic treatment at the same time during the electroless plating treatment to obtain R-TM-B.
It is intended to improve the corrosion resistance of the system permanent magnet. Regarding the current density of the electrolytic treatment, if it exceeds 5 A / dm 2 , it is not preferable because the electrolytic Ni-P plating film formed by electrolytic deposition at the start becomes a rough film with many pinholes. If less than 0.5 A / dm 2 ,
Since the magnet body surface may be corroded and dissolved by the electroless Ni-P plating solution before the electrolytic Ni-P plating film is deposited on the magnet body surface, the current density is 0.5 A /
dm 2 is preferred. In the present invention, Fe, Co, Ni
The elements that partially replace TM such as Ga, Al, Ti, V, Cr, Mn, Zr, Hf,
Nb, Ta, Mo, Ge, Sb, Sn, Bi, Ni and others can be added, and the present invention can be applied to any R-TM-B based magnet. Further, the manufacturing method is a sintering method, a molten metal quenching method,
Alternatively, any of these modified methods may be used. Regarding the pre-plating treatment, it is preferable to use an acidic solution in order to remove the work-affected layer and activate the pre-plating. Strong acids such as sulfuric acid and hydrochloric acid are effective for pre-plating activation, but in order to avoid the influence of pre-plating treatment on the material as much as possible,
Most preferable is a first etching with 10 vol% nitric acid, and then a second etching with a mixed acid of 5 to 10 vol% hydrogen peroxide and 10 to 30 vol% acetic acid. Then, Ni strike plating treatment by electrolysis is performed. The magnet body is directly immersed in the electroless Ni-P solution to perform electroless plating. At the same time as the immersion, the current density is 0.5 to 5 A /
Electrolytic treatment of dm 2 is performed. The composition of the electroless Ni-P plating solution is 100 at least one of nickel chloride, nickel sulfate, and nickel hypophosphite as a metal salt.
g / l or less, sodium hypophosphite as a reducing agent at 100 g / l or less, and a pH adjusting agent at least one of basic compounds such as sodium hydroxide and ammonium hydroxide, inorganic acids, and organic acids at 150 g / l Those containing 1 or less are preferable. In addition, at least one kind of oxycarboxylic acid such as sodium citrate and sodium acetate or inorganic acid such as boron and carbonic acid is used as a buffer in the electrolytic solution.
50 g / l or less, sodium citrate as a complexing agent, sodium acetate, ammonium hydroxide, ethylene glycol, and further organic acids (acetic acid, glycolic acid, citric acid,
Alkali salt of tartaric acid, etc., thioglycolic acid, ammonia, triethanolamine, ethylenediamine, glycine, and pyridine at 100 g / l, as well as accelerators, stabilizers of 10 g / l or less of sulfides, chlorides, fluorides. Compound and a surfactant can be contained respectively, and this aqueous solution is used in the range of pH 3 to 13, and the bath temperature during plating is in the range of 20 to 100 ° C. The thickness of the plating layer provided by the coating method is 10 to 10 in terms of corrosion resistance.
20 μm is suitable.

【0005】[0005]

【実施例】Nd(Fe0.7Co0.20.07Ga0.036.5
なる組成の合金をアーク溶解にて作製し、得られたイン
ゴットをスタンプミル及びディスクミルで粗粉砕した。
粉砕媒体としてはN2ガスを用いジェットミルで微粉砕
を行なう粉砕粒度3.5μm(FSSS)の微粉砕を得
た。得られた原料粉を15kOeの磁場中で配向し、2
トン/cm2の圧力で円筒体に成形した。本成形体を真
空中で1090℃×2時間焼結した。焼結体を18×1
0×6mm寸法に切り出し次いで900℃のアルゴン雰
囲気中に2時間加熱保持した後に急冷し温度を600℃
に保持したアルゴン雰囲気中で1時間保持した。こうし
て得られた試料について、めっき前処理として5vol
%の硝酸による第1エッチング、その後過酸化水素10
vol%、酢酸25vol%の混酸による第2エッチン
グを行なった。その後、表1に示す作業条件で、各種表
面処理を施した。
EXAMPLES Nd (Fe 0.7 Co 0.2 B 0.07 Ga 0.03 ) 6.5
An alloy having the following composition was produced by arc melting, and the obtained ingot was roughly crushed by a stamp mill and a disc mill.
N 2 gas was used as the grinding medium to carry out fine grinding with a jet mill to obtain fine grinding having a grinding particle size of 3.5 μm (FSSS). The obtained raw material powder was oriented in a magnetic field of 15 kOe, and 2
It was molded into a cylinder at a pressure of ton / cm 2 . The compact was sintered in vacuum at 1090 ° C for 2 hours. 18x1 sintered body
Cut out to a size of 0 x 6 mm, heat and hold in an argon atmosphere at 900 ° C for 2 hours, then cool rapidly to 600 ° C.
It was kept for 1 hour in the argon atmosphere kept at 1. For the sample thus obtained, 5 vol was used as a pretreatment for plating.
% Etching with nitric acid, then hydrogen peroxide 10
The second etching was performed using a mixed acid of vol% and acetic acid 25 vol%. Then, various surface treatments were performed under the working conditions shown in Table 1.

【0006】[0006]

【表1】 [Table 1]

【0007】なお、表1に記載した試料のめっき層の膜
厚は、1.2ともに20μmであった。表1に示した試
料に関して、119.6℃100%RH 2気圧での1
00時間の耐食試験および80℃90%RHでの500
時間の耐湿試験を行なった。結果を表2に示す。
The thicknesses of the plating layers of the samples shown in Table 1 were both 1.2 μm and 1.2 μm. For the samples shown in Table 1, 1 at 119.6 ° C. 100% RH 2 atm.
00 hour corrosion resistance test and 500 at 80 ° C 90% RH
A moisture resistance test for hours was performed. The results are shown in Table 2.

【0008】[0008]

【表2】 [Table 2]

【0009】表2において、耐食試験結果及び耐湿試験
結果は試料の外観変化を示したものである。表2より、
本発明による永久磁石は、従来の磁石と比較して、耐食
性を著しく向上し得ることがわかる。
In Table 2, the corrosion resistance test results and the humidity resistance test results show changes in the appearance of the samples. From Table 2,
It can be seen that the permanent magnet according to the present invention can significantly improve the corrosion resistance as compared with the conventional magnet.

【0010】[0010]

【発明の効果】本発明により、希土類と鉄を主体とした
磁石において、従来のめっきでは不十分であった耐食性
の顕著な向上が図られた。
According to the present invention, in the magnet mainly composed of rare earth and iron, the corrosion resistance, which was insufficient by the conventional plating, was remarkably improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比でR(ここでRは、Yを含む希土
類元素の1種又は2種以上組合わせ)5〜40%,TM
(ここでTMはFeを主体とする遷移金属)50〜90
%,B(硼素)0.2〜8%からなるR−TM−B系永
久磁石の耐食性改善を目的として設ける無電解めっき処
理中に同時に電流密度0.5〜5A/dm2の電解処理
を施すことを特徴とする耐食性を改善したR−TM−B
系永久磁石の製造方法。
1. A weight ratio of R (where R is one or a combination of two or more rare earth elements including Y) 5 to 40%, TM
(Here, TM is a transition metal mainly composed of Fe) 50 to 90
%, B (boron) 0.2 to 8% R-TM-B based permanent magnet for the purpose of improving the corrosion resistance of the electroless plating treatment is performed simultaneously with the current density of 0.5 to 5 A / dm 2 electrolytic treatment. R-TM-B with improved corrosion resistance characterized by being applied
Method for manufacturing a permanent magnet.
JP3239464A 1991-09-19 1991-09-19 Manufacture of r-tm-b series permanent magnet having improved corrosion resistance Pending JPH0582323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239464A JPH0582323A (en) 1991-09-19 1991-09-19 Manufacture of r-tm-b series permanent magnet having improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239464A JPH0582323A (en) 1991-09-19 1991-09-19 Manufacture of r-tm-b series permanent magnet having improved corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0582323A true JPH0582323A (en) 1993-04-02

Family

ID=17045153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239464A Pending JPH0582323A (en) 1991-09-19 1991-09-19 Manufacture of r-tm-b series permanent magnet having improved corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0582323A (en)

Similar Documents

Publication Publication Date Title
US7517555B2 (en) Copper plating solution and method for copper plating
JP4983619B2 (en) permanent magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JPH0582323A (en) Manufacture of r-tm-b series permanent magnet having improved corrosion resistance
JP2002332592A (en) R-t-b-base magnet and electrolytic copper plating method for the same
JP3337558B2 (en) Corrosion resistant magnetic alloy
JPH0582322A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JP2002212775A (en) Ni ELECTROPLATING METHOD FOR RARE EARTH BASED PERMANENT MAGNET
JP2968605B2 (en) Manufacturing method of permanent magnet
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2617113B2 (en) Rare earth permanent magnet excellent in corrosion resistance and method for producing the same
JP2001176709A (en) High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JPH0582320A (en) R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity
JP2001295091A (en) Surface-treating method and method for manufacturing magnet
JPH083763A (en) Corrosion resistant magnetic alloy
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
JP3650141B2 (en) permanent magnet
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JP3325933B2 (en) Surface treatment of metals and alloys
JPH07331486A (en) Corrosion resistant magnetic alloy
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JPH06318512A (en) Permanent magnet and manufactured thereof
JPH0712005B2 (en) High corrosion resistance rare earth permanent magnet
JP2617117B2 (en) Rare earth permanent magnet and method of manufacturing the same
JP2894816B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method of manufacturing the same