JPH0582180B2 - - Google Patents

Info

Publication number
JPH0582180B2
JPH0582180B2 JP61081817A JP8181786A JPH0582180B2 JP H0582180 B2 JPH0582180 B2 JP H0582180B2 JP 61081817 A JP61081817 A JP 61081817A JP 8181786 A JP8181786 A JP 8181786A JP H0582180 B2 JPH0582180 B2 JP H0582180B2
Authority
JP
Japan
Prior art keywords
sweetness
bean paste
starch
branched
branched dextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081817A
Other languages
Japanese (ja)
Other versions
JPS62236446A (en
Inventor
Tadashi Takahashi
Masaki Matsudaira
Masami Aochi
Tsukasa Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANMATSU KOGYO CO
Original Assignee
SANMATSU KOGYO CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANMATSU KOGYO CO filed Critical SANMATSU KOGYO CO
Priority to JP61081817A priority Critical patent/JPS62236446A/en
Publication of JPS62236446A publication Critical patent/JPS62236446A/en
Publication of JPH0582180B2 publication Critical patent/JPH0582180B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Confectionery (AREA)
  • Grain Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、あんの甘味を低減させると共に、あ
んの色や艶を良好にする、あんの甘味低減剤に関
する。 従来の技術 あんは、和生菓子の素材として欠くことができ
ない食品であつて、近年はアイスクリーム等の食
品にも広く利用されている。 しかしながら、最近における消費者の嗜好上の
変化並びに健康上から、一般に甘味離れが進み、
甘味度を低減させた菓子類へ嗜好が高くなつてき
ている。このような状況から、製あん業界におい
ても甘味度を極力低減させる対策がとられてき
た。 従来、あんの甘味を低減させるための対策はマ
ルトース、水飴及び高糖化還元水飴(高圧水素還
元した水飴)等を甘味低減剤として用いることが
試みられている。しかし、これらの甘味低減剤
は、砂糖の甘味度を100とした場合に40〜50程度
の甘味度を有するので、あんの甘味を低減させる
ためには可成りの量をあんに添加しなければなら
ず、その結果あんの品質を損うようになる。すな
わち、上掲の糖質を甘味低減剤として用いると、
それらは砂糖の半分近い甘味度を有するため、あ
んにおける砂糖の使用量の可成りの部分を上記甘
味低減剤と置換することになつて、該甘味低減剤
に起因する欠点が生ずるようになる。 例えば、甘味低減剤としてマルトースを用いる
場合には、あんの甘味度を15%低減させるために
は、砂糖の使用量の約30%をマルトースで置換し
なければならず、そのためあんの風味が悪くな
り、また、マルトースが還元糖であることから加
熱による褐変であんの色相が悪化する欠点がみら
れる。 このような欠点は水飴を用いた場合にも見られ
る。なお、高糖化還元水飴は非還元性であるの
で、加熱による変色はみられないものの、マルト
ースと同程度の甘味度を有するので、あんの甘味
低減には多量添加する必要があるが、この還元水
飴の特性として緩下作用があるため多量使用する
ことは食品として問題がある。 発明が解決しようとする課題 本発明は、上述したようなあんの甘味度低減上
の問題点に鑑みなされたものであつて、砂糖の一
部を置換することによりあん本来の風味、色及び
その他の物性を損なうことなく、あんの甘味度を
適度に低減し得る甘味低減剤を提供することを課
題とする。 本発明者らは、澱粉にα−アミラーゼを作用さ
せて得られる糖化液をゲル濾過剤に接触させて分
離することにより得られる分枝デキストリンが
甘味を殆んど有しない、還元力が非常に低いの
で加熱による着色が非常に少ない等の特性を有す
ることに加えて、従来の澱粉糖溶液の粘度に比べ
て粘度も可成り低い特性を有するため、あんに可
成りの量を使用してもあんの物性に与える影響が
少なく、むしろその使用によりあんのテクスチヤ
ー、艶及び保水性等に良好な結果をもたらすこと
を見出し、本発明をなすに至つた。 以下本発明を詳しく説明する。 発明の構成 本発明の特徴は、澱粉にα−アミラーゼを作用
させて得られる糖化液をゲル型濾過剤に接触させ
て分離して得られる分枝デキストリンをあんの甘
味度を低減するための添加剤として利用すること
にある。 課題を解決するための手段 本発明で用いる分枝デキストリンは、上述のよ
うに澱粉にα−アミラーゼを作用させて得られる
糖化液から分離される、澱粉中の分枝構造を含有
する高分子デキストリンであつて、甘味はほとん
どない。 次に、上記分枝デキストリンの製造方法につい
て説明する(詳細は特願昭60−46661号の明細書
参照)。 原料としての澱粉は、コーンスターチ、ばれい
しよ澱粉、タピオカ澱粉、甘藷澱粉、サゴ澱粉等
の一般の澱粉糖(ブドウ糖)の製造に用いられる
もの、及びそれらのα化澱粉、さらにはもち種澱
粉など広範囲のものが使用し得る。 これらの原料澱粉にα−アミラーゼを作用させ
て分解して糖化液を調製するが、この場合、DE
(デキストローズ当量の略であつて分解率を表す)
10〜35になるように分解するのが好ましい。この
α−アミラーゼによる分解で主として高分子の分
枝デキストリン類と低分子の直鎖オリゴ糖類が生
成するので、得られた糖化液から分枝デキストリ
ンを分離、採取する。 この分離には溶剤沈澱法、限外濾過法等の適用
が可能であるが、工業的にはゲル型濾過剤に糖化
液を接触させて該糖化液中の分枝デキストリン類
と直鎖オリゴ糖類を選択分離するのが有利であ
る。 ここで用いるゲル型濾過剤としては、架橋度4
〜8、粒径40〜80メツシユのポリスチレンを母体
としたイオン交換樹脂を用いるのが便利であり、
塩型で使用する。すなわち、上記イオン交換樹脂
を充填した固定層に糖化液を上昇又は下降的に通
液し、次いで水等で置換する手法等によりイオン
交換樹脂に接触させると、糖化液中の分枝デキス
トリン類と直鎖オリゴ糖の流れに差が生じて流出
液の初流に分枝デキストリン類が検出され、その
後に直鎖オリゴ糖の区分が得られる。 なお、糖化液より分枝デキストリン類と直鎖オ
リゴ糖の分離を工業的に行うには、単一カラムの
固定床を用いて回分式で行うこともできるが、イ
オン交換樹脂を充填したカラムを多段に連結した
疑似移動床方式による連続通液が実際上有利であ
る。また、疑似移動床は4〜6段とし、各段には
糖化液及び水の注入口と分枝デキストリンと直鎖
オリゴ糖の排出口を設け、全段にわたつて液移動
を行う循環経路が設けられているものを使用す
る。 上述のごとくして糖化液から分離、採取した分
枝デキストリンは、常法により精製及び濃縮して
液状の製品とするか、または噴霧乾燥して粉末状
の製品とする。一方、直鎖オリゴ糖も同様に液状
または粉末化して別の用途に供する。 このようにして得られる分枝デキストリンは、
従来の澱粉分解物にはみられない下記のごとき特
性を有する。 DE: 分枝デキストリンのDEは、それを分離する前
の糖化液のDE及び分離比率により異なるが、通
常15以下である。しかし、甘味がほとんどなく、
かつメイラード反応による褐変を生じない製品を
望む場合にはDE10以下のものが好ましい。 甘味度: DEが8の分枝デキストリンの糖組成(乾物基
準)を例示すると下記のとおりであつて、甘味は
ほとんど感じられない。 グルコース 1.0%以下 マルトース 2.0%以下 マルトトリオース 2.0%以下 分枝デキストリン類 95.0%以上 耐熱性: グルコースやマルトース等の低分子還元糖の含
有量が上記のとおり非常に少ないので、加熱処理
時のメイラード反応による褐変が非常に低い。 粘度: 澱粉を酸または酵素で加水分解して得られる澱
粉糖の粘度は、DEと反比例し、DEが低いほど粘
度は急激に高くなる。一方甘味度はDEに比例し
て低いので、甘味度が極力低い澱粉糖を得ようと
するとDEを可及的に低くしなければならない。
しかし、澱粉糖のDEを低くすると、上述のとお
り粘度が急激に高くなつて、その製造過程におけ
る濾過作業が困難となり、また非常に老化し易い
ので白濁を起し、透明な製品が得られなくなる。 これに対し、分枝デキストリンの粘度は、上述
した従来の澱粉糖とは実質的に異なることがわか
つた。すなわち、コーンスターチをα−アミラー
ゼで分解して得たDE23及び35の各糖化液より分
離比率を変えてDE3〜20の分枝デキストリンを分
離し、これらの粘度を測定して粘度(cp)とDE
との相関を図示すると、添付図に示したごとく、
分枝デキストリンの粘度は通常の澱粉糖の粘度よ
り低く、特にDEが低い程その差が顕著となる。 この現象は、澱粉を加水分解して直接DE10と
したものと、DE20〜23程度に加水分解し、得ら
れた澱粉加水分解物から低分子のオリゴ糖を分
離、除去して得られたDE10の分枝デキストリン
とでは、加水分解の程度の進んだ後者の方が構成
デキストリンの分子量が小さいので、その結果、
DE値は同じであつても後者の方が低い粘度値を
示すものと考えられる。 上述のとおり、本発明で用いる分枝デキストリ
ンは、甘味がほとんどなく、粘度が低く、かつ加
熱により褐変を呈しないので、これをあんにおけ
る砂糖の使用量の一部に代えて用いても、あんの
風味、粘性及び色素を何ら損うこともないので、
あんの甘味低減剤として有利に使用できる。 本発明に係る分枝デキストリンからなる甘味低
減剤をあんに添加するには、生あんに通常の砂糖
使用量の15%程度を上記甘味低減剤で置換する
と、あんの甘味度が適度に低減される。 分枝デキストリンと、現在あんの甘味低減に主
として使用されているマルトースを、同じ甘味度
のレベルになるようにあんに添加した場合につい
て比較すると、分枝デキストリンを添加したあん
では、風味、粘性、保形性、艶とも優れ、色も砂
糖のみを用いた通常のあんに比べて遜色がない。
これに対し、マルトースを添加したあんでは加熱
により変色がみられ、風味の点でもマルトース特
有の味が感じられる。 なお、分枝デキストリンの使用量を砂糖の30%
程度に増加させると、あんの甘味が不足するのみ
ならず、食感もやや重く感じられるようになるの
で、15%前後用いるのが適当である。 以下に実施例を示して、本発明及びその効果を
さらに具体的に説明する。 実施例 1 分枝デキストリンの調製: 水分13.5%のコーンスターチを水に懸濁して
20°ボーメとなし、PH6.2に調整後、対澱粉0.1%の
α−アミラーゼ(商品ターマミル ノボインダス
トリー社製)を添加して105℃に10分間加熱処理
して得た澱粉液化液を65℃に冷却し、更にα−ア
ミラーゼを0.1%添加して4時間保持して糖化を
進めた。反応停止後のDEは22.7であつた。 得られた糖化液について活性炭及びイオン交換
樹脂による通常の脱色精製を行い40%の濃度にな
るまで濃縮した。 該糖化液の糖組成は、グルコース2%、マルト
ース5%、マルトトリオース15%、マルトテトラ
オース6%、マルトペンタオース12%、マルトヘ
キサオース20%、分枝デキストリン40%であつ
た。 次いで、上記糖化液を、直径と高さの比が1:
2の1容カラム4基から構成された疑似移動床
方式の装置の各カラムにゲル型強酸性カチオン交
換樹脂を充填して成る装置に下記手順で通液し
て、分枝デキストリンを分離、採取した。 今仮に液の流れの方向に向かつて各カラムに番
号を付し、No.1,No.2,No.3,No.4,とした場合
No.1のカラムに40%分枝デキストリンを含む40%
濃度の糖化原液100ml、No.3のカラムに水150mlを
正確に10分間にわたつて同時に通液し、その間No.
2とNo.4のカラムからは糖化原液の成分比に従つ
て流量制御比を4:6として糖液の排出を行つ
た。分枝デキストリン液についてはNo.2から排出
され、直鎖オリゴ糖液についてはNo.4のカラムか
ら排出された。 ついで、正確に30分間にわたつて循環経路によ
つて630mlの液移動を行い、各カラム内の分離パ
ターンを1ステツプ前進させた後、前回と同様に
液の出入を1ステツプ前進した各カラムの位置で
操作し、引き続き循環操作を行うなどの繰り返し
を連続して行つた。 通液温度および用水温度は60℃に保ち、分別集
液については、それぞれを精製し、濃縮してシラ
ツプとなし、又一部は噴霧乾燥した。 分析の結果、分画分枝デキストリンの糖組成は
分枝デキストリン89%、マルトヘキサオース3
%、マルトペンタオース2%、マルトテトラオー
ス1%、マルトトリオース2%、マルトース2%
であつた。 一方、直鎖オリゴ糖の糖組成は、グルコース3
%、マルトース7%、マルトトリオース25%、マ
ルトテトラオース10%、マルトペンタオース20
%、マルトヘキサオース33%、分枝デキストリン
2%、であつた。 あんに対する甘味低減効果: 上述のごとくして得られた分枝デキストリンを
生あん(市販こしあん)を用いて、下記表1に示
す各配合により出来上り約600gの並練りあん
(水分約39%)をそれぞれ調製してそれらの品質
を官能検査により判定した。結果は下記に示すと
おりである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a sweetness reducing agent for bean paste that reduces the sweetness of bean paste and improves the color and gloss of bean paste. BACKGROUND ART An (red bean paste) is an indispensable ingredient for Japanese sweets, and in recent years has been widely used in foods such as ice cream. However, due to recent changes in consumer tastes and health concerns, there has been a general shift away from sweet tastes.
There is an increasing preference for sweets with reduced sweetness. Under these circumstances, measures have been taken in the bean paste making industry to reduce the sweetness level as much as possible. Conventionally, attempts have been made to reduce the sweetness of bean paste by using maltose, starch syrup, high-saccharified reduced starch syrup (high-pressure hydrogen-reduced starch syrup), and the like as sweetness reducing agents. However, these sweetness reducing agents have a sweetness level of about 40 to 50 when the sweetness level of sugar is 100, so in order to reduce the sweetness of bean paste, a considerable amount must be added to the bean paste. As a result, the quality of the bean paste is compromised. That is, when the above carbohydrates are used as sweetness reducing agents,
Since they have nearly half the sweetness of sugar, a considerable portion of the amount of sugar used in the bean paste is replaced by the sweetness reducing agents, and the drawbacks due to the sweetness reducing agents arise. For example, when maltose is used as a sweetness reducing agent, in order to reduce the sweetness of bean paste by 15%, approximately 30% of the sugar used must be replaced with maltose, which results in a poor flavor of the bean paste. Also, since maltose is a reducing sugar, it has the disadvantage that the color of the bean paste deteriorates due to browning due to heating. Such drawbacks are also seen when starch syrup is used. In addition, since high-saccharification reduced starch syrup is non-reducing, it does not change color when heated, but it has a sweetness level similar to that of maltose, so it is necessary to add a large amount to reduce the sweetness of red bean paste. Because starch syrup has a laxative effect, it is problematic as a food if used in large quantities. Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems in reducing the sweetness of bean paste. An object of the present invention is to provide a sweetness reducing agent capable of appropriately reducing the sweetness of bean paste without impairing its physical properties. The present inventors have discovered that the branched dextrin obtained by contacting a gel filtration agent to separate the saccharified solution obtained by the action of α-amylase on starch has almost no sweetness and has very high reducing power. In addition to having characteristics such as very little coloring due to heating, the viscosity is also considerably lower than that of conventional starch sugar solutions, so even if a considerable amount is used in bean paste. The present inventors have discovered that it has little effect on the physical properties of the bean paste, and rather that its use brings about good results in the texture, gloss, water retention, etc. of the bean paste, leading to the present invention. The present invention will be explained in detail below. Structure of the Invention The present invention is characterized by the addition of branched dextrin obtained by contacting and separating a saccharified liquid obtained by allowing α-amylase to act on starch to reduce the sweetness of the bean paste. The purpose is to use it as a medicine. Means for Solving the Problems The branched dextrin used in the present invention is a polymer dextrin containing a branched structure in starch, which is separated from the saccharified solution obtained by acting α-amylase on starch as described above. However, there is almost no sweetness. Next, a method for producing the above-mentioned branched dextrin will be explained (see the specification of Japanese Patent Application No. 46661/1988 for details). Starches used as raw materials include a wide range of materials, including corn starch, potato starch, tapioca starch, sweet potato starch, sago starch, etc., which are used in the production of general starch sugars (glucose), their pregelatinized starches, and even glutinous seed starch. can be used. These raw starches are decomposed by the action of α-amylase to prepare a saccharified solution, but in this case, DE
(Abbreviation for dextrose equivalent and represents decomposition rate)
It is preferable to decompose it so that it becomes 10-35. This decomposition by α-amylase mainly produces high-molecular branched dextrins and low-molecular linear oligosaccharides, so the branched dextrins are separated and collected from the resulting saccharified liquid. Solvent precipitation, ultrafiltration, etc. can be applied to this separation, but industrially, the saccharified solution is brought into contact with a gel-type filter agent to separate the branched dextrins and linear oligosaccharides in the saccharified solution. It is advantageous to selectively separate the The gel type filter agent used here has a crosslinking degree of 4.
~8. It is convenient to use an ion exchange resin based on polystyrene with a particle size of 40 to 80 mesh,
Use in salt form. That is, when a saccharified solution is passed upwardly or downwardly through a fixed bed filled with the ion-exchange resin and then brought into contact with the ion-exchange resin by replacing the solution with water, etc., the branched dextrins in the saccharified solution and Differences in the flow of linear oligosaccharides occur and branched dextrins are detected in the initial stream of the effluent, followed by a fraction of linear oligosaccharides. To industrially separate branched dextrins and linear oligosaccharides from a saccharified solution, it can be carried out batchwise using a fixed bed in a single column; Continuous flow using a pseudo moving bed system connected in multiple stages is actually advantageous. In addition, the simulated moving bed has 4 to 6 stages, and each stage has an inlet for saccharified liquid and water, and an outlet for branched dextrin and linear oligosaccharide, and a circulation path is provided to move the liquid across all stages. Use what is provided. The branched dextrin separated and collected from the saccharified liquid as described above is purified and concentrated by conventional methods to obtain a liquid product, or spray-dried to obtain a powder product. On the other hand, linear oligosaccharides are similarly liquefied or powdered and used for other purposes. The branched dextrin obtained in this way is
It has the following properties not found in conventional starch decomposition products. DE: The DE of branched dextrin varies depending on the DE of the saccharified solution before it is separated and the separation ratio, but is usually 15 or less. However, there is almost no sweetness,
In addition, if a product that does not cause browning due to the Maillard reaction is desired, one with a DE of 10 or less is preferable. Sweetness level: An example of the sugar composition (dry matter basis) of a branched dextrin with a DE of 8 is as follows, and the sweetness is hardly felt. Glucose: 1.0% or less Maltose: 2.0% or less Maltotriose: 2.0% or less Branched dextrins: 95.0% or more Heat resistance: As the content of low-molecular-weight reducing sugars such as glucose and maltose is extremely low as mentioned above, Maillard during heat treatment Very low browning due to reaction. Viscosity: The viscosity of starch sugar obtained by hydrolyzing starch with acid or enzymes is inversely proportional to DE, and the lower the DE, the sharper the viscosity becomes. On the other hand, the sweetness level is low in proportion to the DE, so in order to obtain starch sugar with the lowest sweetness level, the DE must be made as low as possible.
However, when the DE of starch sugar is lowered, as mentioned above, the viscosity increases rapidly, making filtration work difficult during the manufacturing process, and it also ages very easily, resulting in cloudiness and making it impossible to obtain a transparent product. . In contrast, the viscosity of branched dextrins was found to be substantially different from the conventional starch sugars mentioned above. That is, branched dextrins with DE3 to DE20 are separated from the DE23 and DE35 saccharified solutions obtained by decomposing corn starch with α-amylase at different separation ratios, and their viscosities are measured to determine the viscosity (cp) and DE.
As shown in the attached figure, the correlation between
The viscosity of branched dextrin is lower than that of normal starch sugar, and the difference becomes particularly pronounced as the DE decreases. This phenomenon occurs when starch is hydrolyzed directly to DE10, and when starch is hydrolyzed to about DE20-23, low-molecular oligosaccharides are separated and removed from the resulting starch hydrolyzate. When compared to branched dextrins, the molecular weight of the constituent dextrins is smaller in the latter, which has a higher degree of hydrolysis, and as a result,
It is thought that even if the DE value is the same, the latter shows a lower viscosity value. As mentioned above, the branched dextrin used in the present invention has almost no sweetness, low viscosity, and does not brown when heated, so even if it is used in place of a portion of the sugar used in the bean paste, the It does not impair the flavor, viscosity or pigment of
It can be advantageously used as a sweetness reducing agent for bean paste. To add the sweetness reducing agent made of branched dextrin according to the present invention to bean paste, replacing about 15% of the amount of sugar normally used in raw bean paste with the sweetness reducing agent described above will moderately reduce the sweetness of bean paste. Ru. When branched dextrin and maltose, which is currently mainly used to reduce the sweetness of bean paste, are added to bean paste to achieve the same level of sweetness, it is found that in bean paste with branched dextrin added, the flavor, viscosity, It has excellent shape retention and gloss, and its color is comparable to that of regular bean paste made only with sugar.
On the other hand, maltose-added bean paste changes color when heated and has a flavor characteristic of maltose. Please note that the amount of branched dextrin used is 30% of that of sugar.
If the amount is increased to a certain degree, not only will the sweetness of the bean paste become insufficient, but the texture will also feel a little heavy, so it is appropriate to use around 15%. EXAMPLES The present invention and its effects will be explained in more detail with reference to Examples below. Example 1 Preparation of branched dextrin: Cornstarch with a water content of 13.5% was suspended in water.
After adjusting the pH to 6.2 and adding 0.1% α-amylase to starch (Termamyl, manufactured by Novo Industries), the starch liquefied liquid was heated to 105°C for 10 minutes and heated to 65°C. 0.1% of α-amylase was added and maintained for 4 hours to advance saccharification. DE after reaction termination was 22.7. The obtained saccharified liquid was subjected to conventional decolorization and purification using activated carbon and ion exchange resin, and concentrated to a concentration of 40%. The sugar composition of the saccharified solution was 2% glucose, 5% maltose, 15% maltotriose, 6% maltotetraose, 12% maltopentaose, 20% maltohexaose, and 40% branched dextrin. Next, the above-mentioned saccharified liquid was mixed with a diameter to height ratio of 1:
The branched dextrins are separated and collected by passing the liquid through the simulated moving bed system consisting of four 1-volume columns in Section 2, in which each column is filled with a gel-type strongly acidic cation exchange resin, according to the following procedure. did. Now, if we number each column in the direction of liquid flow and call it No. 1, No. 2, No. 3, No. 4, etc.
40% containing 40% branched dextrin in No. 1 column
100 ml of the concentrated saccharification stock solution and 150 ml of water were simultaneously passed through the No. 3 column for exactly 10 minutes.
Sugar solution was discharged from columns No. 2 and No. 4 at a flow rate control ratio of 4:6 according to the component ratio of the saccharification stock solution. The branched dextrin solution was discharged from the No. 2 column, and the linear oligosaccharide solution was discharged from the No. 4 column. Next, 630 ml of liquid was transferred through the circulation path for exactly 30 minutes to advance the separation pattern in each column by one step, and then the liquid inflow and outflow of each column was moved forward by one step in the same way as before. Repeated operations were performed continuously, such as operating at a certain position and then performing a circular operation. The liquid passing temperature and the water temperature were maintained at 60°C, and each of the separated liquids was purified and concentrated to form syrup, and a portion was spray-dried. As a result of the analysis, the sugar composition of the fractionated branched dextrin was 89% branched dextrin and 3% maltohexaose.
%, maltopentaose 2%, maltotetraose 1%, maltotriose 2%, maltose 2%
It was hot. On the other hand, the sugar composition of linear oligosaccharides is glucose 3
%, maltose 7%, maltotriose 25%, maltotetraose 10%, maltopentaose 20
%, maltohexaose 33%, and branched dextrin 2%. Sweetness reduction effect on bean paste: Using the branched dextrin obtained as described above and fresh bean paste (commercially available strained bean paste), make approximately 600g of average kneaded bean paste (water content approximately 39%) according to each formulation shown in Table 1 below. Each was prepared and their quality was judged by sensory test. The results are shown below.

【表】 判定結果: 甘味度 A>B=C>D 艶 D>C>B=A 色 A>C=D>B 風味 A=C>D=B 上記判定のための官能検査は、8人から成るパ
ネルにより各試料について行い、その平均をもつ
て判定結果を示した。 上記結果にみられるように、分枝デキストリン
を用いた試料(C及びD)があんの甘味低減効果
が最も高く、かつ艶も最も良好である。また、色
及び風味の点でも砂糖のみを用いた試料(A)と
比べて大差がない。これに対しマルトースを用い
た試料(B)では分枝デキストリンを15%添加し
たものと同程度の甘味低減効果を示すものの、艶
及び色が劣化する。 次に、上記各試料A乃至D(練りあん)を密封
容器に入れて110℃で30分間それぞれ蒸気加熱し
た。一方、加熱前の各試料40gと加熱後の各試料
40gに純水40mlをそれぞれ加え、遠心分離後の上
澄濾液をPH7.0に調整した後、10mmのセルを用い
て420mμと720mμの吸光度をJAS法に従つてそれ
ぞれ測定して420の数値より720の数値を差引いた
値を着色度とした。その結果は表2に示すとおり
である。
[Table] Judgment results: Sweetness A>B=C>D Gloss D>C>B=A Color A>C=D>B Flavor A=C>D=B The sensory test for the above judgment was conducted on 8 people. Each sample was evaluated using a panel consisting of the following, and the average was used to show the determination results. As seen in the above results, the samples using branched dextrin (C and D) had the highest effect of reducing the sweetness of red bean paste and had the best gloss. In addition, there is no significant difference in color and flavor compared to sample (A) using only sugar. On the other hand, sample (B) using maltose exhibits a sweetness reduction effect comparable to that of the sample containing 15% branched dextrin, but the luster and color deteriorate. Next, each of the above samples A to D (kneaded bean paste) was placed in a sealed container and heated with steam at 110° C. for 30 minutes. On the other hand, 40g of each sample before heating and each sample after heating.
Add 40 ml of pure water to 40 g, adjust the supernatant filtrate after centrifugation to pH 7.0, and then measure the absorbance at 420 mμ and 720 mμ using a 10 mm cell according to the JAS method. The value obtained by subtracting the value of 720 was defined as the degree of coloration. The results are shown in Table 2.

【表】 表2にみられるように、分枝デキストリンを用
いた試料(C及びD)では、砂糖のみを用いた試
料(通常のあん)の色と同様であるが、マルトー
スを用いた試料は可成り変色する。 更に、上記各試料(練りあん)をそれぞれ遠心
分離し、その前後の重量差から離水率を算出し
た。結果は表3に示すとおりである。
[Table] As shown in Table 2, the color of the samples using branched dextrin (C and D) is similar to that of the sample using only sugar (regular bean paste), but the color of the sample using maltose is Significant discoloration. Furthermore, each sample (kneaded bean paste) was centrifuged, and the water separation rate was calculated from the difference in weight before and after centrifugation. The results are shown in Table 3.

【表】 表3にみられるとおり、分枝デキストリンを用
いた試料では離水率が低減しており、したがつ
て、保水性が良好であることがわかつた。 実施例 2 あんの甘味低減剤として、分枝デキストリン、
高糖化還元水飴及び水飴(マルトース含量70%)
をそれぞれ用い、表4に示す配合によりあんを製
造し、砂糖のみを用いて製造した通常のあんと官
能検査により比較を行つた。結果は下記の示すと
おりである。
[Table] As shown in Table 3, the water separation rate was reduced in the sample using branched dextrin, and therefore, it was found that the water retention property was good. Example 2 Branched dextrin as a sweetness reducing agent for bean paste,
High sugar reduced starch syrup and starch syrup (maltose content 70%)
Using each of these, bean paste was produced according to the formulations shown in Table 4, and compared with a normal bean paste produced using only sugar through a sensory test. The results are shown below.

【表】 判定結果: 甘味度 E>G=H>F 艶 F>G>H>E 色 E=F=G>H 上記のとおり、官能検査の結果では分枝デキス
トリンを用いた試料(F)が最も甘味が少なく、
艶も最良であり、色及び風味は砂糖のみを用いた
通常のあん(E)に比べて遜色がなかつた。
[Table] Judgment results: Sweetness E>G=H>F Gloss F>G>H>E Color E=F=G>H As mentioned above, the sensory test results indicate that the sample using branched dextrin (F) is the least sweet,
The gloss was also the best, and the color and flavor were comparable to regular bean paste (E) using only sugar.

【図面の簡単な説明】[Brief explanation of drawings]

添付図は、澱粉をα−アミラーゼで糖化した澱
粉糖(A)、上記糖化をDE23にして得られた糖化
液より分離した分枝デキストリン(B)及び糖化
をDE35にして得られた糖化液より分離した分枝
デキストリン(C)の各50W/W%溶液の30℃に
おける粘度とそれらのDEとの関係を示したもの
である。
The attached diagram shows starch sugar obtained by saccharifying starch with α-amylase (A), branched dextrin (B) separated from the saccharified liquid obtained by performing the above saccharification at DE23, and from the saccharified liquid obtained by saccharifying at DE35. This figure shows the relationship between the viscosity at 30° C. of each 50 W/W % solution of separated branched dextrin (C) and their DE.

Claims (1)

【特許請求の範囲】 1 澱粉にα−アミラーゼを作用させて得られる
分枝デキストリンと直鎖オリゴ糖を含む糖化液か
ら分離して得られる分枝デキストリンから成るあ
んの甘味低減剤。 2 糖化液をゲル濾過剤を接触させて分枝デキス
トリンを分離する特許請求の範囲第1項記載の甘
味低減剤。 3 糖化液は澱粉をDE10〜35に分解したもので
ある特許請求の範囲第1項記載の甘味低減剤。
[Scope of Claims] 1. An agent for reducing the sweetness of bean paste, which comprises a branched dextrin obtained by allowing α-amylase to act on starch and a branched dextrin obtained by separating it from a saccharification solution containing a linear oligosaccharide. 2. The sweetness reducing agent according to claim 1, wherein the branched dextrin is separated by contacting the saccharified liquid with a gel filtration agent. 3. The sweetness reducing agent according to claim 1, wherein the saccharified liquid is obtained by decomposing starch into DE10-35.
JP61081817A 1986-04-09 1986-04-09 Sweetness reducing agent for bean jam Granted JPS62236446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081817A JPS62236446A (en) 1986-04-09 1986-04-09 Sweetness reducing agent for bean jam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081817A JPS62236446A (en) 1986-04-09 1986-04-09 Sweetness reducing agent for bean jam

Publications (2)

Publication Number Publication Date
JPS62236446A JPS62236446A (en) 1987-10-16
JPH0582180B2 true JPH0582180B2 (en) 1993-11-17

Family

ID=13757045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081817A Granted JPS62236446A (en) 1986-04-09 1986-04-09 Sweetness reducing agent for bean jam

Country Status (1)

Country Link
JP (1) JPS62236446A (en)

Also Published As

Publication number Publication date
JPS62236446A (en) 1987-10-16

Similar Documents

Publication Publication Date Title
JP4071909B2 (en) Branched maltodextrin and method for producing the same
US5424418A (en) Low-calorie soluble glucose polymer and process for preparing this polymer
JP3490106B2 (en) Preparation of arbitrarily hydrogenated indigestible polysaccharides
FI110115B (en) Compositions containing hydrogenated saccharides which cause less tooth decay, process for their preparation and use of this composition
EP1811863B1 (en) Process for the production of maltodextrins
FI110116B (en) Hydrogenated starch hydrolyzate causing less tooth decay, process for its preparation and use of this hydrolyzate
CN105543311B (en) A kind of processing method of resistant dextrin
KR102224100B1 (en) Method for producing indigestible dextrin
US11326194B2 (en) Method for producing dietary fiber
JPS5937074B2 (en) Manufacturing method of alcohol-containing powder
US4840807A (en) Branched dextrin production and compositions containing same
Blanchard et al. Starch hydrolysates
CN110862461B (en) Preparation method of resistant dextrin
JPH0154040B2 (en)
US3756919A (en) Process for the production of nonhazing starch conversion syrups
AU7924398A (en) Acariogenic polysaccharides and method for making same
JPH0582180B2 (en)
JPS6030695A (en) Production of nonfermentable sugar containing highly hygroscopic isomaltose as main component
US5194094A (en) Fractionating starch hydrolysates
JPH0331294A (en) New oligosaccharide and production thereof
KR102547599B1 (en) Hydrogenated Glucose Polymer Composition Containing Dietary Fiber
Radeloff et al. Starch hydrolysis—nutritive syrups and powders
JPH10215893A (en) Production of dextrin
JP2001086946A (en) New composition containing nondigestible polysaccharide and method for producing the same
KR20220097356A (en) Dextrin with improved turbidity and Method for producing thereof