JPH0580864A - Furnace temperature combustion control method - Google Patents

Furnace temperature combustion control method

Info

Publication number
JPH0580864A
JPH0580864A JP24174991A JP24174991A JPH0580864A JP H0580864 A JPH0580864 A JP H0580864A JP 24174991 A JP24174991 A JP 24174991A JP 24174991 A JP24174991 A JP 24174991A JP H0580864 A JPH0580864 A JP H0580864A
Authority
JP
Japan
Prior art keywords
flow rate
furnace
combustion
furnace temperature
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24174991A
Other languages
Japanese (ja)
Inventor
Juichi Maruyama
山 壽 一 丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24174991A priority Critical patent/JPH0580864A/en
Publication of JPH0580864A publication Critical patent/JPH0580864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Flow Control (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To provide a furnace temperature combustion control method that can always keep the furnace temperature in a proper range even if a low load combustion state like the temporary stop of the furnace operation is caused when a continuous processing line is stopped. CONSTITUTION:A temperature controller 2 decides the combustion request value based on the deviation obtained between the measured temperature of a furnace 13 built in a continuous processing line and the target temperature of the furnace 13. A combustion controller 3 decides a target fuel flow rate and a target air flow rate to apply them to a fuel flow rate controller 4 and an air flow rate controller 8 respectively and controls the supply amounts of the fuel and the air. When the continuous processing line is stopped, the changeover switches 6 and 10 are operated in a low load combustion state like the temporary stop of the furnace operation. Thus the target fuel and air flow rates decided by the controller 3 are neglected and the combustion request value decided by the controller 2 is applied to the controller 4 as the target fuel flow rate. Then the target air flow rate of a flow rate setter 23 that is extremely larger than the level of a normal operation mode is applied to the controller 8. In such a way, the supply amounts of both fuel and air can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、連続処理ラインに組
込まれた炉の炉温測定値と炉温目標値との偏差に応じて
燃焼要求量を決定すると共に、所定の燃焼制御手法によ
って燃焼要求量に対応する燃料流量目標値及び空気流量
目標値を決定して燃料及び空気の供給量を制御する炉温
燃焼制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention determines the required combustion amount according to the deviation between the measured furnace temperature value and the desired furnace temperature value of a furnace incorporated in a continuous processing line, and burns it by a predetermined combustion control method. The present invention relates to a furnace temperature combustion control method for determining a fuel flow rate target value and an air flow rate target value corresponding to a required amount and controlling the supply amounts of fuel and air.

【0002】[0002]

【従来の技術】図3は従来の炉温燃焼制御方法を採用し
た制御系であり、連続焼鈍炉13内の材料14をバーナー12
で加熱するとき、炉温を目標値に制御するものである。
この場合、連続焼鈍炉13の温度を温度測定器1で測定
し、その出力信号を温度コントローラ2に与える。温度
コントローラ2は炉温測定値と炉温目標値とを比較し、
周知の比例、積分演算等により温度偏差を補正する燃焼
要求量を演算して燃焼制御手段3に加える。燃焼制御手
段3は、例えば、比率法、シングルクロスリミット法、
ダブルクロスリミット法等の燃焼制御手法によって燃料
流量目標値及び空気流量目標値を決定し、燃料流量目標
値を燃料流量コントローラ4に加え、空気流量目標値を
空気流量コントローラ8に加える。また、実際の燃料流
量が燃料流量測定器5で測定され、空気流量が空気流量
測定器9で測定される。
2. Description of the Related Art FIG. 3 shows a control system adopting a conventional furnace temperature combustion control method, in which a material 14 in a continuous annealing furnace 13 is burner 12
When heating with, the furnace temperature is controlled to a target value.
In this case, the temperature of the continuous annealing furnace 13 is measured by the temperature measuring device 1 and its output signal is given to the temperature controller 2. The temperature controller 2 compares the measured furnace temperature value with the target furnace temperature value,
The required combustion amount for correcting the temperature deviation is calculated by a well-known proportional or integral calculation, etc., and is added to the combustion control means 3. The combustion control means 3 is, for example, a ratio method, a single cross limit method,
The fuel flow rate target value and the air flow rate target value are determined by a combustion control method such as the double cross limit method, the fuel flow rate target value is added to the fuel flow rate controller 4, and the air flow rate target value is added to the air flow rate controller 8. Further, the actual fuel flow rate is measured by the fuel flow rate measuring device 5, and the air flow rate is measured by the air flow rate measuring device 9.

【0003】燃料流量コントローラ4は燃焼制御手段3
の燃料流量目標値と燃料流量測定器5で測定された燃料
流量測定値との偏差が零になるように燃料流量調節弁7
の開度を調節する。同様に、空気流量コントローラ8は
燃焼制御手段3の空気流量目標値と空気流量測定器9で
測定された空気流量測定値との偏差が零になるように空
気流量調節弁11の開度を調節する。
The fuel flow rate controller 4 is a combustion control means 3
Of the fuel flow rate control valve 7 so that the deviation between the fuel flow rate target value and the fuel flow rate measurement value measured by the fuel flow rate measuring device 5 becomes zero.
Adjust the opening of. Similarly, the air flow rate controller 8 adjusts the opening degree of the air flow rate control valve 11 so that the deviation between the air flow rate target value of the combustion control means 3 and the air flow rate measurement value measured by the air flow rate measuring device 9 becomes zero. To do.

【0004】一方、この制御系において、連続処理ライ
ンの停止時には材料14の持込み熱量が急増する。これに
対して燃料を減少させるように制御するが、その制御遅
れによって炉温は上昇する。かかる炉温上昇を防ぐた
め、ラインの停止時には燃料流量調節弁7の信号入力経
路に設けられた切替スイッチ6を切替えると共に、空気
流量調節弁11の信号入力経路に設けられた切替スイッチ
10を切替えて、すなわち、燃料流量コントローラ4の演
算結果を無視して、開度設定器21で設定された最小の調
節弁開度Aに従って燃料流量調節弁7を調節すると同時
に、開度設定器22で設定された最小の調節弁開度Bに従
って空気流量調節弁11を調節する。
On the other hand, in this control system, the amount of heat carried into the material 14 increases rapidly when the continuous processing line is stopped. On the other hand, the fuel is controlled to be reduced, but the reactor temperature rises due to the delay in the control. In order to prevent the furnace temperature from rising, when the line is stopped, the changeover switch 6 provided in the signal input path of the fuel flow rate adjusting valve 7 is changed over, and the changeover switch provided in the signal input path of the air flow rate adjusting valve 11 is changed.
10 is switched, that is, the calculation result of the fuel flow rate controller 4 is ignored, and the fuel flow rate control valve 7 is adjusted according to the minimum control valve opening degree A set by the opening degree setting device 21, and at the same time, the opening degree setting device is set. The air flow rate control valve 11 is adjusted according to the minimum control valve opening B set at 22.

【0005】図4(a) はライン停止時の炉温目標値S
V、炉温測定値PV及び燃料流量調節弁7に対する燃焼
要求量(操作量)MVの変化を示し、図4(b) は同じく
ライン停止時の燃料及び空気の流量の変化を示してい
る。この図から明らかなように、ライン停止の直後に炉
温測定値PVは一時的に炉温目標値SVを超えるが、燃
料流量調節弁7が最小の開度Aに、空気流量調節弁11が
最小の開度Bにそれぞれ調節されるため、炉温測定値P
Vは炉温目標値SVよりも大幅に下がる。なお、このラ
イン停止中、実際には使用されないけれども、温度コン
トローラ2は炉温測定値PVと炉温目標値SVとの偏差
を補正するような燃焼要求量MVを出力する。
FIG. 4A shows the furnace temperature target value S when the line is stopped.
V, the measured value of the furnace temperature PV, and the change in the required combustion amount (manipulated amount) MV for the fuel flow rate control valve 7 are shown. FIG. 4B shows the change in the flow rate of fuel and air when the line is stopped. As is apparent from this figure, the furnace temperature measurement value PV temporarily exceeds the furnace temperature target value SV immediately after the line is stopped, but the fuel flow rate control valve 7 is set to the minimum opening A and the air flow rate control valve 11 is set. Since it is adjusted to the minimum opening B, the measured furnace temperature P
V is significantly lower than the furnace temperature target value SV. While the line is stopped, the temperature controller 2 outputs the required combustion amount MV that corrects the deviation between the measured furnace temperature PV and the desired furnace temperature SV, although it is not actually used.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の炉温制
御方法にあっては、ライン停止時に燃焼要求量を無視
し、すなわち、炉温を無視して最低燃焼を確保すること
により設備の保護を図っていた。このため、設備を再稼
働する初期において必要な炉温が確保できないという問
題があった。また、ライン停止に限らず、一時的な炉休
止時等の低負荷燃焼領域で同様の制御が行われるため、
やはり再稼働の初期に必要な炉温が確保できないという
問題があった。
In the above-mentioned conventional furnace temperature control method, the required combustion amount is ignored when the line is stopped, that is, the furnace temperature is ignored and the minimum combustion is ensured to protect the equipment. I was trying. Therefore, there was a problem that the required furnace temperature could not be secured in the initial stage of restarting the equipment. Further, not only the line stop but also similar control is performed in the low load combustion region such as temporary furnace shutdown,
After all, there was a problem that the required furnace temperature could not be secured in the initial stage of restarting.

【0007】この発明は上記の問題点を解決するために
なされたもので、連続処理ラインの停止時、一時的な炉
休止時等の低負荷燃焼状態になったとしても、常時、炉
温を適正な範囲に保持することのできる炉温燃焼制御方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and the furnace temperature is constantly maintained even if the low-load combustion state occurs, such as when the continuous processing line is stopped or when the furnace is temporarily stopped. It is an object of the present invention to provide a furnace temperature combustion control method that can be maintained within an appropriate range.

【0008】[0008]

【課題を解決するための手段】本発明は、連続処理ライ
ンに組込まれた炉の炉温測定値と炉温目標値との偏差に
応じて燃焼要求量を決定すると共に、所定の燃焼制御手
法によって前記燃焼要求量に対応する燃料流量目標値及
び空気流量目標値を決定して燃料及び空気の供給量を制
御する炉温燃焼制御方法において、連続処理ラインの停
止時、及び一時的な炉休止時等の低負荷燃焼領域で、前
記燃焼制御手法で決定された燃料流量目標値及び空気流
量目標値を無視し、前記燃焼要求量を燃料流量目標値と
して燃料の供給量を制御すると共に、通常運転時よりも
格段に大きい空気流量目標値に従って空気の供給量を制
御することを特徴としている。
According to the present invention, a required combustion amount is determined according to a deviation between a measured value of a furnace temperature of a furnace incorporated in a continuous processing line and a target value of the furnace temperature, and a predetermined combustion control method is used. In a furnace temperature combustion control method for determining a fuel flow rate target value and an air flow rate target value corresponding to the combustion request amount by controlling the fuel and air supply amounts, a continuous process line is stopped and a temporary furnace shutdown is performed. In a low-load combustion region such as time, the fuel flow rate target value and the air flow rate target value determined by the combustion control method are ignored, and the fuel supply amount is controlled with the required combustion amount as the fuel flow rate target value, and The feature is that the air supply amount is controlled according to the air flow rate target value which is significantly larger than that during operation.

【0009】好ましくは、通常運転時よりも格段に大き
い空気流量目標値として、供給可能な最大量に対応する
値を用いる。
Preferably, a value corresponding to the maximum supplyable amount is used as the air flow rate target value which is significantly larger than that during normal operation.

【0010】[0010]

【作用】この発明においては、低負荷燃焼領域で多量の
空気を供給して炉を冷却すると共に、燃焼負荷の変更分
を燃料流量の変更によって対処しているため、炉温を適
正な範囲に保持でき、これによって、設備を再稼働する
初期において必要な炉温が確保できないという従来方法
の問題点が解決される。
In the present invention, since the furnace is cooled by supplying a large amount of air in the low load combustion region, and the change in the combustion load is dealt with by changing the fuel flow rate, the furnace temperature is kept in an appropriate range. It can be retained, which solves the problem of the conventional method that the required furnace temperature cannot be secured in the initial stage of restarting the equipment.

【0011】この場合、低負荷燃焼領域での空気流量
は、多ければ多いほど良く、そのために空気流量目標値
として、供給可能な最大量に対応する値を用いることに
より大きな効果が得られる。
In this case, the larger the air flow rate in the low load combustion region, the better. Therefore, a large effect can be obtained by using a value corresponding to the maximum supplyable amount as the air flow rate target value.

【0012】[0012]

【実施例】以下、本発明を図面に示す一実施例によって
詳細に説明する。図1はこの発明を実施する制御系のブ
ロック図である。図中、図3と同一の要素には同一の符
号を付してその説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to an embodiment shown in the drawings. FIG. 1 is a block diagram of a control system for implementing the present invention. In the figure, the same elements as those of FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

【0013】ここでは、ライン停止時に、温度コントロ
ーラ2の出力が燃料流量コントローラ4に直接加えられ
るように、温度コントローラ2の出力端を切替スイッチ
6の切替え端子に接続する一方、供給可能な最大の空気
流量に対応する値Cが設定された流量設定器23の出力端
を切替スイッチ10の切替端子に接続している。
Here, the output end of the temperature controller 2 is connected to the changeover terminal of the changeover switch 6 so that the output of the temperature controller 2 is directly applied to the fuel flow rate controller 4 when the line is stopped, while the maximum supplyable amount is supplied. The output terminal of the flow rate setting device 23 in which the value C corresponding to the air flow rate is set is connected to the switching terminal of the changeover switch 10.

【0014】従って、ライン停止時には、燃焼制御手段
3の出力が無視され、その代わりに、温度コントローラ
2の燃焼要求量が燃料流量コントローラ4に加えられ、
また、流量設定器23の設定値Cが空気流量コントローラ
8に加えられる。
Therefore, when the line is stopped, the output of the combustion control means 3 is ignored, and instead, the combustion request amount of the temperature controller 2 is added to the fuel flow rate controller 4,
Further, the set value C of the flow rate setter 23 is added to the air flow rate controller 8.

【0015】この場合、燃焼要求量が燃料流量目標値と
なって燃料流量は急に絞り込まれ、これと同時に多量の
空気が供給されてそれが炉の冷却に寄与するため、材料
14の持込み熱量が急増したとしても炉の温度上昇が押さ
えられる。その後、多量の空気を供給し続けながら炉温
目標値SVと炉温測定値PVとの差が零になるような燃
料流量が制御されるため、ライン停止期間中も、炉温は
ほぼ炉温目標値SVに保持される。
In this case, the required combustion amount becomes the fuel flow rate target value and the fuel flow rate is suddenly narrowed down. At the same time, a large amount of air is supplied, which contributes to the cooling of the furnace.
Even if the amount of heat brought in by 14 suddenly increases, the temperature rise in the furnace can be suppressed. After that, since the fuel flow rate is controlled so that the difference between the furnace temperature target value SV and the furnace temperature measurement value PV becomes zero while continuing to supply a large amount of air, the furnace temperature is almost the furnace temperature even during the line stop period. The target value SV is maintained.

【0016】図2(a) はライン停止時の炉温目標値S
V、炉温測定値PV及び燃料流量調節弁7に対する燃焼
要求量MVとの関係を示し、図2(b)は同じくライン停
止時の燃料及び空気の流量を示している。この図から明
らかなように、ライン停止の直後に炉温測定値PVは一
時的に目標値SVを超えるが、多量の空気が供給される
ため測定値PVはすぐに目標値SVに戻され、これに合
わせて、燃料流量調節弁7が燃焼要求量によって絞り込
まれ、その後は多量の空気を供給しながら、測定値を目
標値に一致させるように燃料流量が制御される。
FIG. 2A shows the furnace temperature target value S when the line is stopped.
V, the furnace temperature measured value PV, and the required combustion amount MV for the fuel flow rate control valve 7 are shown in FIG. 2B, which shows the flow rates of fuel and air when the line is stopped. As is clear from this figure, the furnace temperature measured value PV temporarily exceeds the target value SV immediately after the line is stopped, but since a large amount of air is supplied, the measured value PV is immediately returned to the target value SV, In accordance with this, the fuel flow rate control valve 7 is narrowed down by the required combustion amount, and thereafter, the fuel flow rate is controlled so that the measured value matches the target value while supplying a large amount of air.

【0017】この結果、ライン停止中の炉温がどうなる
か判らず、しかも、再稼働時の初期において必要な炉温
が確保できないという従来方法の欠点が解消され、ライ
ン停止があっても常時炉温を適正の範囲に保持すること
ができる。
As a result, it is not known what the furnace temperature will be when the line is stopped, and the disadvantage of the conventional method that the necessary furnace temperature cannot be secured in the initial stage of restarting is solved. The temperature can be maintained within an appropriate range.

【0018】なお、上述した例では、ライン停止につい
て説明したが、ラインスピードが規定値以下になった場
合、加熱炉が一時休止した場合、あるいは、負荷が規定
以下になった場合等、全ての低負荷燃焼時に切替スイッ
チ6,10を切替操作することによって同様な制御ができ
る。
In the above example, the line stop is explained, but in the case where the line speed becomes less than the specified value, the heating furnace is temporarily stopped, or the load becomes less than the specified value, all of the The same control can be performed by switching the selector switches 6 and 10 during low load combustion.

【0019】また、上述した例ではライン停止時に空気
流量をステップ状に固定値まで変化させたが、ランプ状
に固定値まで変化させることにより、さらに、応答性の
よい制御ができる。
Further, in the above-mentioned example, the air flow rate is changed stepwise to a fixed value when the line is stopped. However, by changing the airflow rate to a fixed value in a ramp shape, control with better responsiveness can be performed.

【0020】[0020]

【発明の効果】以上の説明によって明らかなようにこの
発明によれば、低負荷燃焼領域で多量の空気を供給して
炉を冷却し、併せて、燃焼要求量によって燃料流量の制
御を継続するので、炉温を適正な範囲に保持でき、設備
を再稼働する初期においても必要な炉温を確保すること
ができる。
As is apparent from the above description, according to the present invention, a large amount of air is supplied in the low load combustion region to cool the furnace, and at the same time, control of the fuel flow rate is continued according to the required combustion amount. Therefore, the furnace temperature can be maintained in an appropriate range, and the necessary furnace temperature can be secured even in the initial stage of restarting the equipment.

【0021】また、低負荷燃焼領域での空気流量を、供
給可能な最大量とすることにより、炉温上昇を確実に防
ぎ、目標値に保持しやすくなるという大きな効果が得ら
れる。
Further, by setting the air flow rate in the low load combustion region to the maximum supplyable amount, it is possible to surely prevent the furnace temperature from rising and easily maintain the target value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の系統図。FIG. 1 is a systematic diagram of an apparatus for carrying out the present invention.

【図2】本発明を実施する装置の動作を説明するための
タイムチャート。
FIG. 2 is a time chart for explaining the operation of the device for carrying out the present invention.

【図3】従来の燃焼炉温制御装置の系統図。FIG. 3 is a system diagram of a conventional combustion furnace temperature control device.

【図4】従来の燃焼炉温制御装置の動作を説明するため
のタイムチャート。
FIG. 4 is a time chart for explaining the operation of a conventional combustion furnace temperature control device.

【符号の説明】[Explanation of symbols]

1 温度測定器 2 温度コントローラ 3 燃焼制御手段 4 燃料流量コントローラ 5 燃料流量測定器 6 切替スイッチ 7 燃料流量調節弁 8 空気流量コントローラ 9 空気流量測定器 10 切替スイッチ 11 空気流量調節弁 12 バーナー 13 連続焼鈍炉 23 流量設定器 DESCRIPTION OF SYMBOLS 1 Temperature measuring device 2 Temperature controller 3 Combustion control means 4 Fuel flow rate controller 5 Fuel flow rate measuring device 6 Changeover switch 7 Fuel flow rate adjusting valve 8 Air flow rate controller 9 Air flow rate measuring device 10 Changeover switch 11 Air flow rate adjusting valve 12 Burner 13 Continuous annealing Furnace 23 Flow rate setting device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】連続処理ラインに組込まれた炉の炉温測定
値と炉温目標値との偏差に応じて燃焼要求量を決定する
と共に、所定の燃焼制御手法によって前記燃焼要求量に
対応する燃料流量目標値及び空気流量目標値を決定して
燃料及び空気の供給量を制御する炉温燃焼制御方法にお
いて、 連続処理ラインの停止時、及び一時的な炉休止時等の低
負荷燃焼領域で、前記燃焼制御手法で決定された燃料流
量目標値及び空気流量目標値を無視し、前記燃焼要求量
を燃料流量目標値として燃料の供給量を制御すると共
に、通常運転時よりも格段に大きい空気流量目標値に従
って空気の供給量を制御することを特徴とする炉温燃焼
制御方法。
1. A combustion demand amount is determined according to a deviation between a measured furnace temperature value and a target furnace temperature value of a furnace incorporated in a continuous processing line, and the required combustion amount is handled by a predetermined combustion control method. In the furnace temperature combustion control method that determines the target value of fuel flow rate and the target value of air flow rate and controls the supply amount of fuel and air, in the low load combustion region such as when the continuous processing line is stopped or when the furnace is temporarily stopped. , The fuel flow rate target value and the air flow rate target value determined by the combustion control method are ignored, the fuel supply amount is controlled with the combustion request amount as the fuel flow rate target value, and the air volume is significantly larger than that during normal operation. A furnace temperature combustion control method comprising controlling an air supply amount according to a flow rate target value.
【請求項2】通常運転時よりも格段に大きい空気流量目
標値として、供給可能な最大量に対応する固定値を用い
ることを特徴とする請求項1に記載の炉温燃焼制御方
法。
2. The furnace temperature combustion control method according to claim 1, wherein a fixed value corresponding to the maximum supplyable amount is used as the air flow rate target value which is significantly larger than that during normal operation.
JP24174991A 1991-09-20 1991-09-20 Furnace temperature combustion control method Pending JPH0580864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24174991A JPH0580864A (en) 1991-09-20 1991-09-20 Furnace temperature combustion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24174991A JPH0580864A (en) 1991-09-20 1991-09-20 Furnace temperature combustion control method

Publications (1)

Publication Number Publication Date
JPH0580864A true JPH0580864A (en) 1993-04-02

Family

ID=17078969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24174991A Pending JPH0580864A (en) 1991-09-20 1991-09-20 Furnace temperature combustion control method

Country Status (1)

Country Link
JP (1) JPH0580864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249820A (en) * 2001-02-21 2002-09-06 Nippon Steel Corp Method for controlling furnace temperature in heating furnace
JP2003028415A (en) * 2001-07-13 2003-01-29 Kawasaki Steel Corp Method for controlling combustion of combustion furnace
JP2003186543A (en) * 2001-11-23 2003-07-04 Siemens Ag Position adjustment method for operation valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249820A (en) * 2001-02-21 2002-09-06 Nippon Steel Corp Method for controlling furnace temperature in heating furnace
JP4533545B2 (en) * 2001-02-21 2010-09-01 新日鉄エンジニアリング株式会社 Heating furnace temperature control method
JP2003028415A (en) * 2001-07-13 2003-01-29 Kawasaki Steel Corp Method for controlling combustion of combustion furnace
JP4655424B2 (en) * 2001-07-13 2011-03-23 Jfeスチール株式会社 Combustion furnace combustion control method
JP2003186543A (en) * 2001-11-23 2003-07-04 Siemens Ag Position adjustment method for operation valve

Similar Documents

Publication Publication Date Title
EP1000389B1 (en) Adaptive cascade control algorithm
EP4394092A1 (en) Semiconductor heat treatment device and method for controlling pressure in process chamber thereof
JPH0580864A (en) Furnace temperature combustion control method
KR100361246B1 (en) Method for controlling equalized back pressure of blast furnace hot stove
JPS6270904A (en) Temperature control method
JP3187991B2 (en) Furnace atmosphere control device
US5102331A (en) Radiant wall oven with temperature control
US5044938A (en) Method of controlling temperature of a joining area between two different strip materials in a continuous strip processing line
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JP3809483B2 (en) Method for controlling semiconductor manufacturing apparatus
JPH09256073A (en) Method for controlling temperature of continuous annealing furnace
JPH05248631A (en) Method for controlling furnace temperature
JPH04257697A (en) Automatic temperature control device
JPH04314835A (en) Melt temperature controlling device for aluminum melting furnace
JPH1183005A (en) Furnace temperature/combustion controller
JP4655424B2 (en) Combustion furnace combustion control method
JP4533545B2 (en) Heating furnace temperature control method
JPH05240422A (en) Combustion air flow rate controller
JPH03145122A (en) Temperature controller for heat treatment of semiconductor
JPH10300170A (en) Air conditioner
JPH05340531A (en) Control device for hot water supply apparatus
JPH05187629A (en) Controlling method of furnace temperature
JPH04294402A (en) Pid control device
JPH10325540A (en) Furnace temperature and combustion control method of heating furnace
JPH05324011A (en) Pid controller