JPH058054B2 - - Google Patents

Info

Publication number
JPH058054B2
JPH058054B2 JP60222468A JP22246885A JPH058054B2 JP H058054 B2 JPH058054 B2 JP H058054B2 JP 60222468 A JP60222468 A JP 60222468A JP 22246885 A JP22246885 A JP 22246885A JP H058054 B2 JPH058054 B2 JP H058054B2
Authority
JP
Japan
Prior art keywords
moo
catalyst
tetramethyltin
sio
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60222468A
Other languages
Japanese (ja)
Other versions
JPS6283043A (en
Inventor
Kenichi Tanaka
Katsumi Tanaka
Kyohide Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP60222468A priority Critical patent/JPS6283043A/en
Publication of JPS6283043A publication Critical patent/JPS6283043A/en
Publication of JPH058054B2 publication Critical patent/JPH058054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 この発明は、メタセシス反応用触媒に関し、更
に詳しくはオレフインのメタセシス反応に使用さ
れる触媒に関する。 ロ 従来技術 1964年にバンクス(Banks)及びベイリー
(Bailey)がアルミナ担体に担持した酸化モリブ
デン又はモリブデンヘキサカルボニルを触媒に用
いてオレフインのメタセシス(Metathesis)反
応に成功して以来、この反応が工業的な展開を見
るまでに検討され、発展してきている。 モリブデン化合物触媒に限定しても、上記の酸
化物系(三酸化モリブデン、及びその担持物、モ
リブデン酸コバルト等のオキシ酸塩又は複合酸化
物)、カルボニル化合物系の他に、ハロゲン化物、
硫化物、更には、種々の有機モリブデン錯体がメ
タセシス反応の活性を有するものと各種の特許明
細書、文献等において報告されている。 しかしながら、従来提案されているこの種のモ
リブデン化合物触媒は、メタセシス反応以外の反
応、例えば異性化反応が起るため、構造保持選択
性(以下、単に選択性と称する。)が充分ではな
く、また、選択性の高いものはメタセシス反応に
対する活性が低いため、高活性でかつ高選択性を
示す触媒が望まれている。 ハ 発明の目的 本発明は、上記の事情に鑑みてなされたもので
あつて、高活性でかつ高選択性を有するオレフイ
ンのメタセシス反応用触媒を提供することを目的
としている。 ニ 発明の構成 本発明は、γ−Al2O3又はSiO2を担体とし、こ
の担体に担持され、テトラメチル錫によつて活性
化されたMoO3及びMoO3−x(但し、0.1<x<
0.7)で表わされる酸化モリブデンのいずれか一
方又は双方によつて構成されている、メタセシス
反応用触媒に係る。 ホ 実施例 以下、本発明の実施例について説明する。 γ−Al2O3及びSiO2の所定量をモルブデン酸ア
ンモニウム水溶液中に浸漬した後、蒸発固化さ
せ、空気中で焼成して酸化させ、約6重量%の
MoO3を担持したMoO3/γ−Al2O3及びMoO3
SiO2触媒とした。 また、上記の方法で得られたMoO3を担持した
各触媒を500℃にて一酸化炭素は水素によつて還
元した後、200℃でN2O+H2ガスによつて調整
酸化して種々の還元度のMoO3−x/γ−Al2O3
及びMoO3−x/SiO2触媒とした。 上記の如くして得られたγ−Al2O3又はSiO2
体にMoO3又はMoO3−x(この例ではxが約0.6)
を担持した触媒について、室温で30分間1Torrの
テトラメチル錫(Sn(CH34)蒸気を含む60Torr
のヘリウムガスに曝した後、30分間排気する処理
により、これら触媒のテトラメチル錫による活性
化処理を施した。 比較のために、テトラメチル錫による活性化処
理を施さず、その他は上記と同様にして作製した
触媒、並びにβ−TiO2を担体とし、その他は上
記と同様(テトラメチル錫による活性化処理を施
したもの及びこの処理を施さぬものの双方)にし
て作成した触媒を用意した。 これらの触媒を使用して〔2H0〕−プロペン及
び〔2H6〕−プロペンの1:1混合物(25Torr)
でメタセシス反応をさせ、エチレン生成量(1モ
リブデン原子について1秒間当たりの生成分子
数)で表されるターンオーバー数(絶対活性)及
び生成する2−ブテンのシス異性体とトランス異
性体との比(平衡定数は0.3である。)を測定し
た。 その結果の一例を下記表に示す。
B. Industrial Application Field The present invention relates to a catalyst for metathesis reaction, and more particularly to a catalyst used for metathesis reaction of olefin. B. Prior art Since Banks and Bailey succeeded in the metathesis reaction of olefins using molybdenum oxide or molybdenum hexacarbonyl supported on an alumina support as a catalyst in 1964, this reaction has become industrially popular. It has been considered and developed to the point where it has been fully developed. Even if it is limited to molybdenum compound catalysts, in addition to the above-mentioned oxides (molybdenum trioxide and its supports, oxyacid salts or composite oxides such as cobalt molybdate), carbonyl compounds, halides,
It has been reported in various patent specifications, literature, etc. that sulfides and furthermore, various organic molybdenum complexes have metathesis reaction activity. However, this kind of molybdenum compound catalysts that have been proposed so far do not have sufficient structure retention selectivity (hereinafter simply referred to as selectivity) because reactions other than metathesis reactions, such as isomerization reactions, occur. Since catalysts with high selectivity have low activity for metathesis reactions, catalysts with high activity and high selectivity are desired. C. Purpose of the Invention The present invention was made in view of the above circumstances, and an object of the present invention is to provide a catalyst for metathesis reaction of olefins having high activity and high selectivity. D. Structure of the Invention The present invention uses γ-Al 2 O 3 or SiO 2 as a carrier, and MoO 3 and MoO 3 −x supported on this carrier and activated by tetramethyltin (where 0.1<x <
The present invention relates to a metathesis reaction catalyst composed of one or both of molybdenum oxides represented by 0.7). E. Examples Examples of the present invention will be described below. A predetermined amount of γ-Al 2 O 3 and SiO 2 is immersed in an aqueous ammonium molybdate solution, evaporated and solidified, and oxidized by firing in air to form a solution of about 6% by weight.
MoO 3 supporting MoO 3 / γ-Al 2 O 3 and MoO 3 /
It was used as a SiO 2 catalyst. In addition, each catalyst supporting MoO 3 obtained by the above method was heated to 500°C to reduce carbon monoxide with hydrogen, and then adjusted to oxidation with N 2 O + H 2 gas at 200°C to produce various Degree of reduction MoO 3 −x/γ-Al 2 O 3
and MoO 3 -x/SiO 2 catalyst. MoO 3 or MoO 3 -x (in this example, x is about 0.6) is added to the γ-Al 2 O 3 or SiO 2 support obtained as described above.
For the supported catalyst, 60 Torr containing 1 Torr of tetramethyltin (Sn( CH3 ) 4 ) vapor for 30 min at room temperature.
These catalysts were activated with tetramethyltin by exposing them to helium gas and then evacuating for 30 minutes. For comparison, we used a catalyst prepared in the same manner as above without activation treatment with tetramethyltin, and a catalyst prepared with β-TiO 2 as a carrier, but in the same manner as above (without activation treatment with tetramethyltin). Catalysts prepared both with and without this treatment were prepared. Using these catalysts, a 1:1 mixture of [2H 0 ]-propene and [2H 6 ]-propene (25 Torr)
The turnover number (absolute activity) expressed as the amount of ethylene produced (the number of molecules produced per second per molybdenum atom) and the ratio of the cis and trans isomers of the 2-butene produced (The equilibrium constant is 0.3). An example of the results is shown in the table below.

【表】 上記の表より、テトラメチル錫(Sn(CH34
処理を施した各触媒は、同処理を施さない触媒に
較べていずれの場合もメタセシス反応の活性が顕
著に増加している。特に担体にγ−Al2O3を使用
した場合は高活性を示し、担体にβ−TiO2を使
用した場合に比して活性はMoO3担持で10倍以
上、MoO3−x担持で20倍以上になる。また、
SiO2担体触媒はβ−TiO2担体触媒と同等以上の
活性を示している。 なお、テトラメチル錫による活性化処理を施し
たMoO3/γ−Al2O3触媒の活性と同様の処理を
施したMoO3−x/γ−Al2O3触媒の活性とを比
較すると、後者は前者に較べてメタセシス反応の
ターンオーバー数で約10倍高い。また、テトラメ
チル錫処理したMoO3/SiO2とMoO3−x/SiO2
の活性の比較でも、部分的に還元した触媒の方が
高活性を示している。 更に特筆すべきことは、テトラメチル錫処理に
より活性化した触媒は、同処理を施さない触媒に
較べてシス異性体とトランス異性体との比は実質
的に変化していない。このことは、テトラメチル
錫による活性化処理は、オレフインのメタセシス
反応を著しく活性化させるにも拘わらず、オレフ
インの異性化反応を活性化させることがなく、従
つて、オレフインのメタセシス反応に於ける高い
選択性が保持されることを示している。 上記の例では、各MoO3−x担持触媒に於ける
xを約0.6としているが、xは0.1<x<0.7の範囲
内で活性化効果が顕著に認められる。即ち、上記
の例はγ−Al2O3及びSiO2にMoO3又はMoO3
x(x=0.6)を担持し、テトラメチル錫で活性化
した触媒の例であるが、酸化モリブデンの還元度
を上記xを0.1〜0.7の範囲内とする任意の還元度
としても、上記の例と同様の活性化効果が奏せら
れる。 なお、担体としては、上記のγ−Al2O3、SiO2
以外にもZrO2やSnO2等が使用可能である。 ヘ 発明の効果 以上説明したように、本発明に基づく触媒は、
MoO3及び/又はMoO3−x(但し、0.1<x<0.7)
をγ−Al2O3又はSiO2に担持させ、更にテトラメ
チル錫によつて活性化しているので、オレフイン
のメタセシス反応用触媒として使用する場合に、
高活性でかつ高選択性を示し、産業上の利用価値
は大である。
[Table] From the table above, tetramethyltin (Sn(CH 3 ) 4 )
The metathesis reaction activity of each of the treated catalysts was significantly increased compared to the untreated catalyst. In particular, when γ-Al 2 O 3 is used as a carrier, high activity is shown. Compared to when β-TiO 2 is used as a carrier, the activity is more than 10 times when MoO 3 is supported, and 20 times when MoO 3 −x is supported. It will more than double. Also,
The SiO 2 carrier catalyst shows an activity equal to or higher than that of the β-TiO 2 carrier catalyst. In addition, when comparing the activity of MoO 3 / γ-Al 2 O 3 catalyst subjected to activation treatment with tetramethyltin and the activity of MoO 3 -x / γ-Al 2 O 3 catalyst subjected to similar treatment, The latter has a metathesis reaction turnover rate about 10 times higher than the former. In addition, tetramethyltin-treated MoO 3 /SiO 2 and MoO 3 -x/SiO 2
Comparing the activities of , the partially reduced catalyst shows higher activity. It is also noteworthy that the ratio of cis to trans isomers in the catalyst activated by the tetramethyltin treatment is not substantially changed compared to the catalyst without the same treatment. This means that although the activation treatment with tetramethyltin significantly activates the metathesis reaction of olefin, it does not activate the isomerization reaction of olefin, and therefore, the activation treatment with tetramethyltin does not activate the isomerization reaction of olefin. This shows that high selectivity is maintained. In the above example, x in each MoO 3 -x supported catalyst is set to approximately 0.6, but a significant activation effect is observed when x falls within the range of 0.1<x<0.7. That is, in the above example, γ-Al 2 O 3 and SiO 2 are combined with MoO 3 or MoO 3
This is an example of a catalyst supporting x (x = 0.6) and activated with tetramethyltin, but even if the reduction degree of molybdenum oxide is set to an arbitrary reduction degree where x is within the range of 0.1 to 0.7, the above The same activation effect as in the example can be achieved. In addition, as a carrier, the above-mentioned γ-Al 2 O 3 and SiO 2
In addition, ZrO 2 , SnO 2 , etc. can also be used. F. Effects of the Invention As explained above, the catalyst based on the present invention has the following effects:
MoO 3 and/or MoO 3 −x (0.1<x<0.7)
is supported on γ-Al 2 O 3 or SiO 2 and further activated with tetramethyltin, so when used as a catalyst for olefin metathesis reaction,
It exhibits high activity and high selectivity, and has great industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] 1 γ−Al2O3又はSiO2を担体とし、この担体に
担持され、テトラメチル錫によつて活性化された
MoO3及びMoO3−x(但し、0.1<x<0.7)で表
わされる酸化モリブデンのいずれか一方又は双方
によつて構成されている、メタセシス反応用触
媒。
1 γ-Al 2 O 3 or SiO 2 as a carrier, supported on this carrier and activated by tetramethyltin
A metathesis reaction catalyst comprising either or both of MoO 3 and MoO 3 −x (0.1<x<0.7).
JP60222468A 1985-10-04 1985-10-04 Catalyst for metathesis Granted JPS6283043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222468A JPS6283043A (en) 1985-10-04 1985-10-04 Catalyst for metathesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222468A JPS6283043A (en) 1985-10-04 1985-10-04 Catalyst for metathesis

Publications (2)

Publication Number Publication Date
JPS6283043A JPS6283043A (en) 1987-04-16
JPH058054B2 true JPH058054B2 (en) 1993-02-01

Family

ID=16782889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222468A Granted JPS6283043A (en) 1985-10-04 1985-10-04 Catalyst for metathesis

Country Status (1)

Country Link
JP (1) JPS6283043A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8726925D0 (en) * 1987-11-18 1987-12-23 Shell Int Research Catalyst systems
US5114899A (en) * 1990-08-27 1992-05-19 Shell Oil Company Olefin disproportionation catalyst and process
US5098876A (en) * 1990-08-27 1992-03-24 Shell Oil Company Olefin disproportionation catalyst and process
CN102872921B (en) * 2011-07-12 2014-10-15 中国石油化工股份有限公司 Method for activating olefin disproportionation catalyst
CN107233892B (en) * 2017-06-12 2019-09-24 山西大学 For low-temperature catalyzed decomposition N2The composite oxide catalysts of O and its preparation
CN111704167A (en) * 2020-06-28 2020-09-25 山东大学 MoO regulated and controlled by one-dimensional plasma resonance absorption3-xNanobelt material and application thereof

Also Published As

Publication number Publication date
JPS6283043A (en) 1987-04-16

Similar Documents

Publication Publication Date Title
US2773844A (en) Method for making supported silver catalysts
US2331292A (en) Catalysts and the preparation thereof
US5449852A (en) Process for the metathesis of olefins with an improved rhenium catalyst
GB1500167A (en) Process for the preparation of vinyl acetate
US20140309470A1 (en) PREPARATION METHOD OF PLATINUM/TIN/ALUMINA CATALYST FOR DIRECT DEHYDROGENATION OF n-BUTANE AND METHOD FOR PRODUCING C4 OLEFINS USING SAID CATALYST
JPH0242032A (en) Production of methacrylic acid and/or methacrolein
KR840001439A (en) Method for preparing silver catalyst for ethylene oxide production
US2463228A (en) Silver surface catalysts and process of producing same
JPH058054B2 (en)
EP0221615B1 (en) Process for preparing a silver catalyst and use of same
JPH0679177A (en) Catalyst and process for synthesizing ammonia
JP6426711B2 (en) Method for producing unsaturated hydrocarbon
US2379697A (en) Production of diolefins
KR900000116A (en) Catalyst for oxidation of ethylene to ethylene oxide, preparation method thereof and oxidation method using this catalyst
JPH08141399A (en) Ammonia synthesizing catalyst and preparation thereof
JPH0371175B2 (en)
CA1055519A (en) Manufacture of butenediol diacetates
US3350323A (en) Catalyst production
US3065057A (en) Method of preparing cyanogen
JPS611630A (en) Production of lower alcohol
JP3485622B2 (en) Ammonia synthesis catalyst and ammonia synthesis method
US1936995A (en) Production of nitrogenous condensation products from acetylene and ammonia
JPS5946229B2 (en) Method for producing ethylene oxide
JP6988642B2 (en) Isomerization method of allyl compound
JPS6113695B2 (en)