JPH0580240A - Structure for fixing distributed refractive index type lens - Google Patents

Structure for fixing distributed refractive index type lens

Info

Publication number
JPH0580240A
JPH0580240A JP3245462A JP24546291A JPH0580240A JP H0580240 A JPH0580240 A JP H0580240A JP 3245462 A JP3245462 A JP 3245462A JP 24546291 A JP24546291 A JP 24546291A JP H0580240 A JPH0580240 A JP H0580240A
Authority
JP
Japan
Prior art keywords
low melting
thermal expansion
cylindrical body
refractive index
melting glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3245462A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Takagi
伸欣 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3245462A priority Critical patent/JPH0580240A/en
Publication of JPH0580240A publication Critical patent/JPH0580240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Lens Barrels (AREA)

Abstract

PURPOSE:To provide the structure for fixing the distributed refractive index type lens which is free from peeling, cracking, etc., at the sealing boundary between a cylindrical body and low melting glass by constituting the cylindrical body of an Fe-Ni alloy and setting the coefft. of thermal expansion thereof slightly higher than the value of the low melting glass. CONSTITUTION:The distributed refractive index type lens 1 which is not metallized on its flank and the cylindrical body 2 for a semiconductor package made of the Fe-Ni alloy subjected to Ni plating in order to prevent the oxidation and deformation of the lens are hermetically sealed and fixed by the low melting glass 3. The coeffts. of thermal expansion of, for example, the respective parts are specified to 100X10<-7>/ deg.C for the distributed refractive index type lens 1, 97X10<-7>/ deg.C for the cylindrical body 2 for the semiconductor package and 70X10<-7>/ deg.C for the low melting glass 3. The material of the cylindrical body 2 for the semiconductor package is formed of the Fe-Ni alloy and the coefft. of thermal expansion thereof is set at the values approximate to the coefft. of thermal expansion of the distributed refractive index type lens 1 and the low melting glass 3 and is set slightly higher than the coefft. of thermal expansion of the low melting glass 3. Then, just slight stresses are applied at the sealing boundary of the respective materials at the time of ordinary temp. and a temp. change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザモジュール
等の光学系に用いられる屈折率分布型レンズの固定構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixed structure of a gradient index lens used in an optical system such as a semiconductor laser module.

【0002】[0002]

【従来技術及びその課題】金属の円筒体内に屈折率分布
型レンズを低融点ガラスによって気密封止した構造は実
公昭56−53571号により知られている。
2. Description of the Related Art A structure in which a gradient index lens is hermetically sealed with a low melting point glass in a metal cylinder is known from Japanese Utility Model Publication No. 56-53571.

【0003】また、特開平2−281201号には熱膨
張係数120×10-7/℃の屈折率分布型レンズを熱膨
張係数170×10-7/℃のステンレス鋼製の円筒体に
熱膨張係数110×10-7/℃(80〜130×10-7
/℃の範囲で可)の低融点ガラスで固定した構造とした
ことにより、レンズと低融点ガラスの熱膨張係数の差を
わずかなものとして両者の封着界面に作用する応力を大
幅に低減できることが記載されている。
Further, in JP-A-2-281201, a gradient index lens having a thermal expansion coefficient of 120 × 10 −7 / ° C. is thermally expanded into a stainless steel cylindrical body having a thermal expansion coefficient of 170 × 10 −7 / ° C. Coefficient 110 × 10 -7 / ° C (80-130 × 10 -7
The structure is such that the lens and the low melting point glass have a small difference in the coefficient of thermal expansion, and the stress acting on the sealing interface between the lens and the glass can be greatly reduced. Is listed.

【0004】しかしながら、上記従来技術によると円筒
体と低融点ガラスとは熱膨張係数の差が大きいために温
度上昇時に円筒体がレンズ、低融点ガラスよりも膨張が
大きく、したがって円筒体と低融点ガラスとの封着界面
に引っ張り応力が作用して剥離、クラック等を生じてい
た。
However, according to the above-mentioned prior art, since the difference in the coefficient of thermal expansion between the cylindrical body and the low melting point glass is large, the cylindrical body expands more than the lens and the low melting point glass when the temperature rises, and therefore the cylindrical body and the low melting point glass. A tensile stress acted on the sealing interface with the glass, causing peeling, cracks, and the like.

【0005】本発明は上記課題を解決するために、円筒
体と低融点ガラスの封着界面に剥離、クラック等の生じ
ない屈折率分布型レンズの固定構造の提供を目的とす
る。
In order to solve the above-mentioned problems, it is an object of the present invention to provide a fixed structure of a gradient index lens in which peeling and cracks do not occur at the sealing interface between the cylindrical body and the low melting point glass.

【0006】[0006]

【課題を解決するための手段】本発明は、屈折率分布型
レンズ(1)が熱膨張係数差の小さな低融点ガラス
(3)で円筒体(2)内に気密封止された屈折率分布型
レンズの固定構造であって、前記円筒体をFe−Ni合
金で構成し、その熱膨張係数を前記低融点ガラスの値よ
りもわずかに大きくしたことを特徴とする屈折率分布型
レンズの固定構造である。
According to the present invention, a gradient index lens (1) is hermetically sealed in a cylindrical body (2) with a low melting point glass (3) having a small difference in thermal expansion coefficient. A fixed structure of a gradient lens, wherein the cylindrical body is made of an Fe-Ni alloy, and a coefficient of thermal expansion of the cylindrical body is slightly larger than that of the low melting point glass. It is a structure.

【0007】[0007]

【作用】円筒体の材質をFe−Ni合金としたことによ
り低融点ガラスとの熱膨張係数差を小さくできるので温
度変化時において封着界面に作用する応力を小さくで
き、さらにFe−Ni合金製の円筒体の熱膨張係数を低
融点ガラスの熱膨張係数よりわずかに大きくしたことに
よって、常温時には円筒体と低融点ガラスとの封着界面
に軽く圧縮応力が作用している状態にあるので、温度上
昇時にも引っ張り応力とはならず剥離、クラック、歪み
の発生することがない。
By using a Fe-Ni alloy as the material of the cylindrical body, the difference in the coefficient of thermal expansion with the low-melting glass can be reduced, so that the stress acting on the sealing interface when the temperature changes can be reduced. By slightly increasing the coefficient of thermal expansion of the cylindrical body of the glass of the low melting point glass, the compressive stress is lightly acting on the sealing interface between the cylindrical body and the low melting point glass at room temperature, It does not become a tensile stress even when the temperature rises, and peeling, cracking, and distortion do not occur.

【0008】[0008]

【実施例】以下図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の第一実施例を示す屈折率分
布型レンズの固定構造の断面図で、側面のメタライズさ
れていない屈折率分布型レンズ1と酸化、変色防止のた
めにNiメッキを施されたFe−Ni合金製の半導体パ
ッケージ用キャップ2とを低融点ガラス3にて気密封止
固定したものである。
FIG. 1 is a sectional view of a fixed structure of a gradient index lens according to the first embodiment of the present invention. The gradient index lens 1 is not metallized on the side surface and is plated with Ni to prevent oxidation and discoloration. The semiconductor package cap 2 made of Fe-Ni alloy subjected to the above is hermetically sealed and fixed by the low melting point glass 3.

【0010】図1の各部材の熱膨張係数は屈折率分布型
レンズ1が100×10-7/℃、半導体パッケージ用キ
ャップ2が97×10-7/℃、低融点ガラス4が70×
10 -7/℃である。
The thermal expansion coefficient of each member in FIG. 1 is of a refractive index distribution type.
Lens 1 is 100 × 10-7/ ° C, semiconductor package key
Cap 2 is 97 × 10-7/ ° C, low melting point glass 4 is 70 ×
10 -7/ ° C.

【0011】このように、半導体パッケージ用キャップ
2の材質をFe−Ni合金として熱膨張係数を屈折率分
布型レンズ1と低融点ガラス3に近いものとしたので、
温度変化時の半導体パッケージ用キャップ2と低融点ガ
ラス3との封着界面及び低融点ガラス3と屈折率分布型
レンズ1との封着界面にはわずかに応力がかかるのみで
ある。
As described above, since the semiconductor package cap 2 is made of Fe-Ni alloy and has a thermal expansion coefficient close to that of the gradient index lens 1 and the low melting point glass 3,
A slight stress is applied to the sealing interface between the semiconductor package cap 2 and the low melting point glass 3 and the sealing interface between the low melting point glass 3 and the gradient index lens 1 when the temperature changes.

【0012】さらに、半導体パッケージ用キャップ2の
熱膨張係数を低融点ガラス3よりわずかに大きくしたの
で、常温で半導体パッケージ用キャップ2が低融点ガラ
ス3を軽く圧縮している状態にある。したがって、25
0℃までの急加熱や熱サイクル試験での温度上昇時でも
両者の封着界面には引っ張り応力が作用せず剥離、クラ
ック等が生じることなく気密を保持できる。
Further, since the coefficient of thermal expansion of the semiconductor package cap 2 is made slightly larger than that of the low melting point glass 3, the semiconductor package cap 2 is in a state of lightly compressing the low melting point glass 3 at room temperature. Therefore, 25
Even when rapid heating to 0 ° C. or temperature rise in the heat cycle test, tensile stress does not act on the sealing interface between the two and airtightness can be maintained without peeling or cracking.

【0013】なお、急加熱試験や熱サイクル試験の結
果、Fe−Ni合金製の半導体パッケージ用キャップ2
の熱膨張係数が80〜100×10-7/℃、低融点ガラ
ス3の熱膨張係数が60〜79×10-7/℃の範囲にあ
り、かつその熱膨張係数差が20〜40×10-7/℃で
あれば上記と同様に半導体パッケージ用キャップ2と低
融点ガラス3との封着界面に剥離、クラック等の生じる
ことを防止するのに優れた効果を有していることが確認
された。
As a result of the rapid heating test and the heat cycle test, the Fe-Ni alloy semiconductor package cap 2 is used.
Has a coefficient of thermal expansion of 80 to 100 × 10 −7 / ° C., the low-melting glass 3 has a coefficient of thermal expansion of 60 to 79 × 10 −7 / ° C., and the difference in coefficient of thermal expansion is 20 to 40 × 10. If it is -7 / ° C, it is confirmed that it has an excellent effect of preventing peeling and cracks from occurring at the sealing interface between the semiconductor package cap 2 and the low melting point glass 3 as described above. Was done.

【0014】一方、熱膨張係数70×10-7/℃の低融
点ガラス3と熱膨張係数100×10-7/℃の屈折率分
布型レンズ1との封着界面には、常温でわずかに引っ張
り応力が作用するがその気密性は良い。これは上記のよ
うに低融点ガラス3が半導体パッケージ用キャップ2か
ら軽く圧縮されているのでその圧縮力が低融点ガラス3
とレンズ1との封着界面に働いて適度なバランスを保っ
ているためと考えられる。さらに急加熱や熱サイクル試
験においては温度上昇時に低融点ガラス3に圧縮方向の
力が軽く加わって剥離、クラック等が生じることなく気
密を保持できた。
On the other hand, the sealing interface between the low melting point glass 3 having a thermal expansion coefficient of 70 × 10 −7 / ° C. and the gradient index lens 1 having a thermal expansion coefficient of 100 × 10 −7 / ° C. is slightly at room temperature. Tensile stress acts, but its airtightness is good. This is because the low melting point glass 3 is lightly compressed from the semiconductor package cap 2 as described above, so that the compressive force is low.
It is considered that this works because it acts on the sealing interface between the lens 1 and the lens 1 to maintain an appropriate balance. Further, in the rapid heating and heat cycle tests, the low melting glass 3 was lightly applied with a force in the compression direction at the time of temperature rise, and the airtightness could be maintained without peeling, cracking or the like.

【0015】なお、気密度はHeリークディテクタによ
る測定で1×10-8atm・cc/sec以下であっ
た。
The airtightness was 1 × 10 -8 atm · cc / sec or less as measured by a He leak detector.

【0016】さらに、屈折率分布型レンズ1は軟化点温
度が470℃の条件のもとで、封着時のNiメッキの変
色を無くすために低融点ガラス3は封着温度430℃以
下、軟化点300℃以上、封着時間10分以下の条件を
満足するものとした。この場合、低融点ガラス3の軟化
点温度が高いので封着後の作業温度範囲が広くなった。
Further, in the gradient index lens 1, the low melting point glass 3 is softened at a sealing temperature of 430 ° C. or less under the condition that the softening point temperature is 470 ° C. in order to eliminate the discoloration of the Ni plating at the time of sealing. The condition is that the point is 300 ° C. or higher and the sealing time is 10 minutes or less. In this case, since the softening point temperature of the low melting point glass 3 was high, the working temperature range after sealing was widened.

【0017】図2は本発明の第二実施例を示す屈折率分
布型レンズの固定構造の断面図で、図1と同一部材には
同一符号を付した。
FIG. 2 is a sectional view of a fixed structure of a gradient index lens according to the second embodiment of the present invention. The same members as those in FIG. 1 are designated by the same reference numerals.

【0018】これは屈折率分布型レンズ1の位置決めを
容易にした例で、Fe−Ni合金製の半導体パッケージ
用キャップ2のレンズ固定位置の内径を屈折率分布型レ
ンズ1の径よりも数μmほどわずかに大きくして位置決
めを容易にし、低融点ガラス3をレンズ固定位置の肉厚
によってできた段部にレンズを封着した構造としたもの
で、各部材の熱膨張係数を上記と同様とすることで封着
界面に剥離、クラック等が生じない。
This is an example of facilitating the positioning of the gradient index lens 1. The inner diameter of the lens fixing position of the semiconductor package cap 2 made of Fe--Ni alloy is several μm larger than the diameter of the gradient index lens 1. The low-melting-point glass 3 has a structure in which the lens is sealed to the step portion formed by the thickness of the lens fixing position to make the positioning easy, and the thermal expansion coefficient of each member is the same as the above. By doing so, peeling and cracks do not occur at the sealing interface.

【0019】なお、上記第一実施例、第二実施例で示し
た屈折率分布型レンズの固定構造の熱サイクル試験を−
40℃〜+85℃、1000サイクルの条件で行ったと
ころ、試験後においても、Heリークディテクタによる
測定は1×10-8atm・cc/sec以下であり、レ
ンズの損失変動も測定誤差を含んで0.1dB以下と非
常に小さく、温度変化に強いことが確かめられた。
The thermal cycle test of the fixed structure of the gradient index lens shown in the first and second embodiments was conducted.
When performed under the conditions of 40 ° C. to + 85 ° C. and 1000 cycles, the measurement by the He leak detector was 1 × 10 −8 atm · cc / sec or less even after the test, and the lens loss variation also included the measurement error. It was confirmed to be extremely small at 0.1 dB or less and resistant to temperature changes.

【0020】[0020]

【効果】以上の説明の通り本発明の構成によれば、円筒
体と低融点ガラス、屈折率分布型レンズとの熱膨張係数
差を十分に小さくでき、しかも円筒体の熱膨張係数は低
融点ガラスよりわずかに大きいので温度変化時に封着界
面に作用する応力が小さく、急激な温度上昇時でも円筒
体と低融点ガラスとの封着界面に引っ張り応力が作用し
ないので剥離、クラック等が生じない。
As described above, according to the configuration of the present invention, the difference in the coefficient of thermal expansion between the cylindrical body, the low melting point glass, and the gradient index lens can be made sufficiently small, and the thermal expansion coefficient of the cylindrical body has a low melting point. Since it is slightly larger than glass, the stress acting on the sealing interface when the temperature changes is small, and even if the temperature rises rapidly, tensile stress does not act on the sealing interface between the cylindrical body and the low-melting glass, so no peeling or cracking occurs. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す屈折率分布型レンズ
の固定構造の断面図である。
FIG. 1 is a sectional view of a fixed structure of a gradient index lens according to a first embodiment of the present invention.

【図2】本発明の第二実施例を示す屈折率分布型レンズ
の固定構造の断面図である。
FIG. 2 is a sectional view of a fixed structure of a gradient index lens according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 屈折率分布型レンズ 2 半導体パッケージ用キャップ(円筒体) 3 低融点ガラス 1 gradient index lens 2 semiconductor package cap (cylindrical body) 3 low melting point glass

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】屈折率分布型レンズが熱膨張係数差の小さ
な低融点ガラスで円筒体内に気密封止された屈折率分布
型レンズの固定構造において、前記円筒体をFe−Ni
合金で構成し、その熱膨張係数を前記低融点ガラスの値
よりわずかに大きくしたことを特徴とする屈折率分布型
レンズの固定構造。
1. A fixed structure of a gradient index lens, wherein the gradient index lens is hermetically sealed in a cylindrical body with a low melting point glass having a small difference in thermal expansion coefficient.
A fixed structure of a gradient index lens, which is made of an alloy and has a coefficient of thermal expansion slightly larger than that of the low melting point glass.
JP3245462A 1991-09-25 1991-09-25 Structure for fixing distributed refractive index type lens Pending JPH0580240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245462A JPH0580240A (en) 1991-09-25 1991-09-25 Structure for fixing distributed refractive index type lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245462A JPH0580240A (en) 1991-09-25 1991-09-25 Structure for fixing distributed refractive index type lens

Publications (1)

Publication Number Publication Date
JPH0580240A true JPH0580240A (en) 1993-04-02

Family

ID=17134025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245462A Pending JPH0580240A (en) 1991-09-25 1991-09-25 Structure for fixing distributed refractive index type lens

Country Status (1)

Country Link
JP (1) JPH0580240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201988A (en) * 2021-04-12 2022-10-18 阿尔卑斯阿尔派株式会社 Lens with lens cone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115201988A (en) * 2021-04-12 2022-10-18 阿尔卑斯阿尔派株式会社 Lens with lens cone
CN115201988B (en) * 2021-04-12 2024-04-26 阿尔卑斯阿尔派株式会社 Lens with lens barrel

Similar Documents

Publication Publication Date Title
US4612647A (en) High performance laser and method of making same
JP5536896B2 (en) Sensor device
US3930823A (en) High temperature transducers and housing including fabrication methods
US4166384A (en) Semiconductor transducer
US4666251A (en) Large aperture, very high temperature, hermetically sealed optical windows
US4726507A (en) Cryogenic glass-to-metal seal
US2915153A (en) Salt crystal-to-glass seal
JPH0580240A (en) Structure for fixing distributed refractive index type lens
US3953920A (en) Method of making a transducer
US3805377A (en) Method of making a transducer
JPH08146276A (en) Holder with lens
JPS6053477B2 (en) gas laser
JPH0269630A (en) Semiconductor pressure sensor
US2966592A (en) Vacuum-tight windows
JPH11135084A (en) Battery sealing aluminum lid
KR930002280B1 (en) Semiconductor circuit device contact system
JP3159060B2 (en) Semiconductor chip bonding structure and bonding method
JPS6138601B2 (en)
GB2189341A (en) Gas lasers
JP3208326B2 (en) Semiconductor device package and method of manufacturing the same
JPS63110670A (en) Electrostatic junction and semiconductor pressure sensor
JP2001107193A (en) Iron-nickel series alloy member and sealed glass parts
JPH0342644B2 (en)
JPS5913472B2 (en) Ceramic sintered body with glass window and manufacturing method thereof
JPS5831854B2 (en) Pressure measuring device and manufacturing method