JPH0580191A - Air operated valve - Google Patents

Air operated valve

Info

Publication number
JPH0580191A
JPH0580191A JP3239895A JP23989591A JPH0580191A JP H0580191 A JPH0580191 A JP H0580191A JP 3239895 A JP3239895 A JP 3239895A JP 23989591 A JP23989591 A JP 23989591A JP H0580191 A JPH0580191 A JP H0580191A
Authority
JP
Japan
Prior art keywords
air
containment vessel
reactor containment
valve
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3239895A
Other languages
Japanese (ja)
Other versions
JP2502224B2 (en
Inventor
Shingo Oda
伸吾 織田
Satoshi Miura
聡志 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3239895A priority Critical patent/JP2502224B2/en
Publication of JPH0580191A publication Critical patent/JPH0580191A/en
Application granted granted Critical
Publication of JP2502224B2 publication Critical patent/JP2502224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide an always stabilized operating characteristic free of being influenced by the back pressure due to pressure rise in a nuclear reactor vessel. CONSTITUTION:A drive air changeover circuit 5 is installed in a vessel 2 of a boiling water type nuclear reactor, wherein the supply side is conected with an externally provided air supply source via a drive air supply line while the exhaust side is left open to inside the reactor vessel 2. An air operating valve 3 is provided, which is driven by this changeover circuit 5 and an air cylinder 4 in connection therewith, wherein an air exhaust line 17 is furnished whose one end is connected with the exhaust side of the drive air changeover circuit 5 and other end is left open to outside the reactor vessel 2. The air exhaust line 17 is fitted with a changeover means to change over the exhaust air from the changeover circuit 5 in accordance with the internal pressure of the vessel 2 either to outside the vessel 2 upon passing through the air exhaust line 17 or into the vessel 2 upon diverging from the line 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉の原子
炉格納容器内に設置される空気作動弁に係り、とくに原
子路格納容器内に圧力の影響を受けることなく安定した
作動特性を得るのに好適な空気作動弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air operated valve installed in a reactor containment vessel of a boiling water reactor, and particularly to stable operation characteristics without being affected by pressure in the reactor containment vessel. And an air actuated valve suitable for obtaining

【0002】[0002]

【従来の技術】従来の沸騰水型原子炉の原子炉格納容器
内に設置される空気作動弁は、たとえば第8図に示すよ
うに、弁3を駆動させる空気シリンダ4により弁を開閉
させている。この空気シリンダ4を駆動させる空気源は
原子炉格納容器2外から駆動用供給ライン12により供
給されており、アキュムレータ6を介し駆動空気切替回
路5をへて空気シリンダ4へ接続されている。また、空
気シリンダ4からの空気の排出にも、同様に駆動空気切
替回路5を介し原子炉格納容器2内に排出されている。
駆動空気切替回路5は電磁弁等で構成されており、原子
路格納容器2外の作動信号14により作動し、弁の開閉
を制御している。
2. Description of the Related Art An air-operated valve installed in a reactor containment vessel of a conventional boiling water nuclear reactor is, for example, as shown in FIG. There is. An air source for driving the air cylinder 4 is supplied from the outside of the reactor containment vessel 2 by a drive supply line 12, and is connected to the air cylinder 4 via a drive air switching circuit 5 via an accumulator 6. Further, when the air is discharged from the air cylinder 4, it is similarly discharged into the reactor containment vessel 2 via the drive air switching circuit 5.
The drive air switching circuit 5 is composed of an electromagnetic valve or the like, and is operated by an operation signal 14 outside the atomic path storage container 2 to control opening / closing of the valve.

【0003】しかるに上記従来技術では、原子炉格納容
器2内の圧力が駆動切換回路5の背圧として作用するた
め、従来技術の原子炉格納容器2の内圧が過大に上回る
条件に対しては、駆動空気回路5が作動遅れまたは作動
不良を発生し、空気作動弁3の動的機能が達成できない
可能性があった。この点についてさらに詳述するとつぎ
のとおりである。
However, in the above-mentioned conventional technique, the pressure in the reactor containment vessel 2 acts as the back pressure of the drive switching circuit 5, so that the condition in which the internal pressure of the reactor containment vessel 2 in the conventional technique exceeds excessively is: There is a possibility that the driving air circuit 5 may be delayed in operation or may malfunction, and the dynamic function of the air operated valve 3 may not be achieved. This point will be described in more detail below.

【0004】今原子炉格納容器内に設置される工学的安
全上重要な空気作動弁として主蒸気隔離弁(以下MSI
Vと略す)および主蒸気逃がし安全弁(以下SRVと略
す)を用いた場合の動作はつぎのとおりである。
The main steam isolation valve (hereinafter referred to as MSI) is installed in the reactor containment vessel as an air operated valve which is important for engineering safety.
The operation when using a V) and a main steam relief safety valve (hereinafter abbreviated as SRV) is as follows.

【0005】図15は沸騰水型原子炉の炉心冷却・除熱
システムの概略図であるが、同図には原子炉格納容器2
内にMSIV20とSRV21が示されている。また、
図10はMSIVの駆動空気切換回路を示し、図13は
SRVの機能作動状態を示し、図14は自動減圧系機能
作動状態を示す。上記図10に示すMSIV20の駆動
空気切換回路は2個の常時励磁のメインコントロール用
電磁弁24、25により開になっており、2個のメイン
コントロール用電磁弁24、25が無励磁になることに
より第1切換弁26、第3切換弁29および第切換弁3
0が作動し、空気シリンダ4の上部に駆動空気を供給
し、空気シリンダ4の下部の空気を原子炉格納容器内に
排出することにより上記MSIV20を急閉作動させ
る。一方図13に示すSRVの駆動空気回路は、該SR
V21の機能が要求される場合であり、SRV21の機
能用電磁弁35が励磁し、駆動空気を空気シリンダ4の
下部に供給する。同時に、空気シリンダ4上部の空気は
原子炉格納容器内に排出され、SRV21は開となり、
原子炉を減圧する。上記自動減圧系(以下ADSと略
す)の機能が要求される場合は図14に示すように、A
DS機能用電磁弁37が励磁し同様に空気シリンダ4が
作動する。
FIG. 15 is a schematic diagram of a core cooling and heat removal system for a boiling water reactor. In FIG. 15, the reactor containment vessel 2 is shown.
MSIV20 and SRV21 are shown in the figure. Also,
10 shows the MSIV drive air switching circuit, FIG. 13 shows the SRV functional operating state, and FIG. 14 shows the automatic depressurizing system functional operating state. The drive air switching circuit of the MSIV 20 shown in FIG. 10 is opened by the two main excitation solenoid valves 24 and 25 which are always excited, and the two main control solenoid valves 24 and 25 are not excited. Accordingly, the first switching valve 26, the third switching valve 29, and the third switching valve 3
0 operates, the driving air is supplied to the upper part of the air cylinder 4, and the air at the lower part of the air cylinder 4 is discharged into the reactor containment vessel, whereby the MSIV 20 is rapidly closed. On the other hand, the SRV drive air circuit shown in FIG.
This is the case where the function of V21 is required, and the solenoid valve 35 for function of SRV21 is excited to supply drive air to the lower portion of the air cylinder 4. At the same time, the air above the air cylinder 4 is discharged into the reactor containment vessel, and the SRV 21 opens,
Depressurize the reactor. When the function of the above automatic depressurization system (hereinafter abbreviated as ADS) is required, as shown in FIG.
The solenoid valve 37 for the DS function is excited and the air cylinder 4 operates in the same manner.

【0006】そのため、MSIV20およびSRV21
の駆動空気回路は原子炉格納容器2の内圧を背圧として
受けるので、原子炉格納容器2の圧力上昇にともない、
MSIV20、SRV21は動的作動不良を発生する。
そこでMSIV20,SRV21が原子炉格納容器2内
の圧力が高条件で動的作動要求に対応するため、従来実
施している炉心冷却と保熱システムを考慮した方法はつ
ぎのとおりである。
Therefore, MSIV20 and SRV21
Since the driving air circuit of receives the internal pressure of the reactor containment vessel 2 as a back pressure, as the pressure of the reactor containment vessel 2 increases,
MSIV20 and SRV21 generate | occur | produce a dynamic malfunction.
Therefore, since the MSIV 20 and the SRV 21 respond to the dynamic operation request under the condition that the pressure inside the reactor containment vessel 2 is high, a method that takes into consideration the conventional core cooling and heat retention system is as follows.

【0007】原子炉は、常用の炉心冷却・除熱サイクル
としてタービン系を有しており、図15に示す如く原子
炉より発生した蒸気はタービン38に導かれ仕事をし、
復水器39にて循環水ポンプ40からの海水で除熱され
冷却水となり、復水ポンプ41、低圧給水加熱器42、
給水ポンプ43、高圧給水加熱器44を介し、原子炉へ
給水されるシステムである。ただし、この常用系は原子
炉隔離信号によりMSIV20が閉となるため原子炉よ
り隔離される。この場合、炉心冷却としては図15に示
す原子炉隔離時冷却系(以下RCICと略す。)が作動
し、原子炉蒸気により駆動するRCICタービン45に
よりRCICポンプ46が駆動し、復水貯蔵タンク47
(以下CSTと略す。)水、又はサプレッションプール
9(以下S/Pと略す。)水を原子炉圧力容器1へ注入
し、RCICタービン排気はS/P9へ導かれている。
また、原子炉圧力を減圧するためSRV21の逃がし弁
機能が作動する。逃がし弁機能は、設定された原子炉圧
力に到達するとSRV21を開作動させる機能で、SR
V排気管はS/P9へ導かれており原子炉蒸気を凝縮さ
せる。
The nuclear reactor has a turbine system as a routine core cooling / heat removal cycle. As shown in FIG. 15, steam generated from the nuclear reactor is guided to a turbine 38 to perform work.
The condenser 39 removes heat from seawater from the circulating water pump 40 to form cooling water, and the condensate pump 41, the low-pressure feed water heater 42,
It is a system for supplying water to a nuclear reactor via a water supply pump 43 and a high-pressure water heater 44. However, this normal system is isolated from the reactor because the MSIV 20 is closed by the reactor isolation signal. In this case, as the core cooling, the reactor isolation cooling system (hereinafter abbreviated as RCIC) shown in FIG. 15 operates, the RCIC turbine 45 driven by the reactor steam drives the RCIC pump 46, and the condensate storage tank 47.
Water (hereinafter abbreviated as CST) or suppression pool 9 (hereinafter abbreviated as S / P) water is injected into the reactor pressure vessel 1, and the RCIC turbine exhaust is guided to the S / P 9.
Further, the relief valve function of the SRV 21 operates to reduce the reactor pressure. The relief valve function is a function that opens the SRV 21 when the set reactor pressure is reached.
The V exhaust pipe is led to S / P 9 and condenses the reactor steam.

【0008】以上より、原子炉隔離時には原子炉の冷却
後、崩壊熱は徐々にSRV21によりS/P9へ移行す
る。この場合、残留熱除去系(以下RHRと略す。)の
S/P冷却モードにより、S/P水の崩壊熱を残留熱除
去ポンプ48により残留熱除去熱交換器49を介し冷却
する。残留熱除熱交換器49は、残留熱除去中間冷却ポ
ンプ50により冷却され、崩壊熱は残留熱除却海水熱交
換器51を介し海水へ導かれる。残留熱除去海水熱交換
器51への海水は、残留熱除却海水ポンプ52により供
給される。そして、このRHRシステムはA系、B系2
系統で構成されている。
From the above, after the reactor is cooled at the time of reactor isolation, the decay heat gradually shifts to S / P9 by SRV21. In this case, the decay heat of the S / P water is cooled by the residual heat removal pump 48 via the residual heat removal heat exchanger 49 by the S / P cooling mode of the residual heat removal system (hereinafter abbreviated as RHR). The residual heat removal heat exchanger 49 is cooled by the residual heat removal intermediate cooling pump 50, and the decay heat is guided to seawater through the residual heat removal seawater heat exchanger 51. Seawater to the residual heat removal seawater heat exchanger 51 is supplied by the residual heat removal seawater pump 52. And this RHR system is A system, B system 2
It is composed of a system.

【0009】なお、この種の装置として関連するものに
は、たとえば特開昭59−46596号公報および特開
昭58−117496号公報が挙げられる。
Examples of devices related to this type include, for example, JP-A-59-46596 and JP-A-58-117496.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術は、炉心
冷却・除熱システムにおいても、原子炉格納容器では、
RHRによる崩壊熱除去の機能を要求される時点を超え
ると、S/P9水の温度が上昇し、図15に示す原子炉
格納容器(ウエットウェル)7の圧力が上昇し、真空破
壊弁8が作動し原子炉格納容器(ドライウェル)13の
圧力が同様に上昇するため、従来装置の原子炉格納容器
内の空気作動弁は排圧の影響を受けるので、動的な作動
が困難となる。この場合、この条件下におけるMSIV
20、SRV21の動的作動要求としては、原子炉隔離
解除後であればMSIV20を開作動させ、タービン系
を崩壊熱除去の機能で使用すること、またSRV21の
逃がし弁機能及びADS機能によりS/P9へ崩壊熱を
移行することが困難となる。図16に仮想的に崩壊熱除
去の作動を遅らした条件での原子炉格納器内圧力の時間
変化と、MSIV、SRVの動的作動不良の関係を示
す。MSIVの場合は、T1 からT2 間では原子炉格納
容器内圧の影響で作動時間が遅れ、T2 以降では原子炉
格納容器内圧が弁駆動空気圧以上となるため作動不良を
発生する。SRVでは、T2以降では逃がし弁機能用の
駆動空気圧力に原子炉格納器内圧が到達するため逃がし
弁機能が作動不良となる。同様に、T3 以降ではADS
機能が作動不良となる。そのため、圧力上昇条件下の原
子炉格納容器内に従来の装置であるMSIV,SRVを
設置した場合、原子炉隔離時等において原子炉格納容器
内の圧力が上昇すれば、空気作動弁の背圧として影響
し、その状態で動的作動要求のあるシステムの空気作動
弁であれば動的作動不良となり、空気作動弁の関連シス
テムも同様に機能を達成できない可能性があった。
SUMMARY OF THE INVENTION The above-mentioned prior art is also related to the core cooling / heat removal system in the reactor containment vessel.
When the function of removing decay heat by RHR is exceeded, the temperature of the S / P9 water rises, the pressure of the reactor containment vessel (wet well) 7 shown in FIG. 15 rises, and the vacuum break valve 8 Since the pressure of the reactor containment vessel (dry well) 13 is similarly activated and rises, the air actuated valve in the reactor containment vessel of the conventional apparatus is affected by the exhaust pressure, which makes dynamic operation difficult. In this case, the MSIV under this condition
20, SRV21 dynamic operation request is to open MSIV20 after reactor isolation is released and use turbine system for decay heat removal function, and SRV21 relief valve function and ADS function for S / S It becomes difficult to transfer the decay heat to P9. FIG. 16 shows the relationship between the temporal change in the pressure inside the reactor containment and the dynamic malfunction of MSIV and SRV under the condition that the decay heat removal operation is virtually delayed. In the case of MSIV, the operating time is delayed between T 1 and T 2 due to the influence of the internal pressure of the reactor containment vessel, and after T 2 the internal pressure of the reactor containment vessel becomes equal to or higher than the valve drive air pressure, causing malfunction. In SRV, the internal pressure of the reactor containment reaches the drive air pressure for the relief valve function after T 2 , so that the relief valve function fails. Similarly, after T 3 , ADS
The function is malfunctioning. Therefore, if MSIV and SRV, which are conventional devices, are installed in the reactor containment vessel under the pressure increase condition, if the pressure in the reactor containment vessel rises at the time of reactor isolation, etc., the back pressure of the air operated valve will increase. As a result, if the air-operated valve of a system that requires a dynamic operation is in that state, the dynamic operation may be defective, and the related system of the air-operated valve may not be able to achieve the same function.

【0011】本発明の目的は、原子炉格納容器内の圧力
上昇による背圧の影響を受けることなく常に安定した作
動特性を可能とする空気作動弁を提供することにある。
An object of the present invention is to provide an air actuated valve which can always have stable operation characteristics without being affected by back pressure due to a pressure increase in the reactor containment vessel.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は、沸騰水型原子炉の原子炉格納容器内に
設置し、供給側を駆動空気供給ラインを介して外部に設
置した空気供給源に接続するとともに、排出側を上記原
子炉格納容器内に開口する駆動空気切換回路と該駆動空
気切換回路に接続する空気シリンダによって駆動される
空気作動弁において、前記駆動空気切換回路の排出側に
一端部が接続し、他端部が前記原子炉格納容器外に開口
する空気排出ラインを設けたものである。
In order to achieve the above object, a first invention is to install in a reactor containment vessel of a boiling water reactor, and to install the supply side outside through a drive air supply line. A drive air switching circuit which is connected to the above air supply source and whose discharge side is opened into the reactor containment vessel and an air operated valve which is driven by an air cylinder connected to the drive air switching circuit. An air discharge line is provided, one end of which is connected to the discharge side and the other end of which is open to the outside of the reactor containment vessel.

【0013】また、上記目的を達成するために、第2の
発明は、沸騰水型原子炉の原子炉格納容器内に設置し、
供給側を駆動空気供給ラインを介して外部に設置した空
気供給源に接続するとともに、排出側を上記原子炉格納
容器内に開口する駆動空気切換回路と該駆動空気切換回
路に接続する空気シリンダによって駆動される空気作動
弁において、前記駆動空気切換回路の排出側に一端部が
接続し、他端部が前記原子炉格納容器外に開口する空気
排出ラインを設け、かつ上記空気排出ラインに、上記原
子炉格納容器内の圧力に応じて、上記駆動空気切換回路
からの排出空気を上記空気排出ラインを通って上記原子
炉格納容器外に排出するかもしくは上記排出ラインより
分岐して上記原子炉格納容器内に排出するかを切換える
切換手段を設けたものである。
In order to achieve the above object, the second invention is to install the reactor in a reactor containment vessel of a boiling water reactor.
The supply side is connected to an air supply source installed outside through a drive air supply line, and the discharge side is opened by a drive air switching circuit opening into the reactor containment vessel and an air cylinder connected to the drive air switching circuit. In the driven air actuated valve, one end is connected to the discharge side of the drive air switching circuit, and the other end is provided with an air discharge line opening to the outside of the reactor containment vessel, and the air discharge line includes Depending on the pressure in the reactor containment vessel, the exhaust air from the drive air switching circuit is discharged to the outside of the reactor containment vessel through the air discharge line or is branched from the discharge line to contain the reactor. A switching means for switching whether to discharge into the container is provided.

【0014】また、第3の発明の、前記切換手段は、前
記空気排出ラインの前記原子炉格納容器内に設置した三
方弁と、上記原子炉格納容器外に設置した止め弁を設
け、かつ上記三方弁には、先端部を上記原子炉格納容器
内に開口する検出路に圧力計とインターロックを設ける
とともに、該三方弁の一方端部には先端部を上記原子炉
格納容器内に開口する空気排出路に空気排出絞り弁を設
け、かつ上記止め弁には先端部を上記検出路に接続する
検出バイパス路を設けたものである。
Further, the switching means of the third invention is provided with a three-way valve installed inside the reactor containment vessel of the air discharge line and a stop valve installed outside the reactor containment vessel, and The three-way valve is provided with a pressure gauge and an interlock in a detection path whose tip opens into the reactor containment vessel, and one end of the three-way valve has a tip open into the reactor containment vessel. An air exhaust throttle valve is provided in the air exhaust passage, and a detection bypass passage is connected to the stop valve at its tip end to the detection passage.

【0015】また第4の発明の前記空気排出路は、逃し
弁を設けたものである。
The air discharge passage of the fourth invention is provided with a relief valve.

【0016】[0016]

【作用】第1の発明によれば、空気作動弁を駆動する駆
動空気切換回路の排出側に一端部が接続し、他端部が原
子炉格納容器外に開口する空気排出ラインを設けたの
で、空気作動弁は、上記原子炉格納容器内の圧力に影響
されることなく常に安定した作動特性で作動することが
できる。また原子炉格納容器内の圧力が上昇条件下で動
的作業が要求されるMSIV,SRVについては、動的
作動の要求を満足することができ、MSIV,SRVの
関連システムについても機能を維持することができる。
According to the first aspect of the invention, one end is connected to the discharge side of the drive air switching circuit that drives the air actuated valve, and the other end is provided with an air discharge line that opens outside the reactor containment vessel. The air operated valve can always operate with stable operation characteristics without being affected by the pressure in the reactor containment vessel. Further, for MSIVs and SRVs that require dynamic work under conditions where the pressure inside the reactor containment vessel rises, the requirements for dynamic operation can be satisfied, and the functions of the related systems of MSIVs and SRVs are maintained. be able to.

【0017】第2の発明によれば、空気排出ラインに原
子炉格納容器内の圧力に応じて駆動空気切換回路からの
排出空気を上記空気排出ラインを通って上記原子炉格納
容器外に排出するかもしくは上記空気排出ラインより分
岐して上記原子炉格納容器内に排出するかを切換える切
換手段を設けたので、空気作動弁の定期試験時には駆動
空気源の窒素を原子炉格納容器内に排出することができ
る。
According to the second invention, the exhaust air from the drive air switching circuit is discharged to the outside of the reactor containment vessel through the air discharge line according to the pressure inside the reactor containment vessel. Alternatively, since switching means is provided for switching between discharging from the air discharge line and discharging into the reactor containment vessel, nitrogen of the drive air source is discharged into the reactor containment vessel during a periodic test of the air operated valve. be able to.

【0018】また第3の発明によれば切換手段は、前記
空気排出ラインの前記原子炉格納容器内に設置した三方
弁と、上記原子炉格納容器外に設置した止め弁を設け、
かつ上記三方弁には、先端部を上記原子炉格納容器内に
開口する検出通路に圧力計とインターロックを設けると
ともに、該三方弁の一方端部には先端部を上記原子炉格
納容器内に開口する空気排出路に空気排出絞り弁を設
け、かつ上記止め弁には先端部を上記検出路に接続する
検出バイパス路を設けたので、原子炉格納容器内に圧力
に応じて三方弁が切換えられ、駆動空気切換回路の排出
側から排出空気を原子炉格納容器外もしくは内に排出す
ることができ、かつ空気排出絞り弁によって原子炉格納
容器内に排出される作動抵抗を原子炉格納容器外に排出
されるときと等しくすることができる。
According to the third invention, the switching means is provided with a three-way valve installed inside the reactor containment vessel of the air discharge line and a stop valve installed outside the reactor containment vessel.
Further, the three-way valve is provided with a pressure gauge and an interlock in a detection passage having a tip opening into the reactor containment vessel, and a tip part is provided at one end of the three-way valve into the reactor containment vessel. An air discharge throttle valve was provided in the open air discharge path, and a detection bypass path was connected to the stop valve to connect the tip to the detection path.Therefore, a three-way valve was switched in the reactor containment vessel according to the pressure. The exhaust air can be discharged to the outside or inside of the reactor containment vessel from the discharge side of the drive air switching circuit, and the operating resistance discharged to the inside of the reactor containment vessel by the air discharge throttle valve Can be equal to when discharged to.

【0019】また、第4の発明によれば、空気排出路に
逃がし弁を設けたので、空気排出絞り弁の開け忘れを防
止することができる。
According to the fourth aspect of the invention, since the relief valve is provided in the air discharge passage, it is possible to prevent forgetting to open the air discharge throttle valve.

【0020】[0020]

【実施例】以下、本発明の一実施例を示す図1乃至図1
2について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
2 will be described.

【0021】図1に示すように、原子炉格納容器2内の
空気作動弁3は駆動空気切換回路5の原子炉格納容器2
内への駆動空気原子炉建屋内の排出出口から原子炉格納
容器2外への大気開放状態へと導く排気ライン17に設
置している。
As shown in FIG. 1, the air actuated valve 3 in the reactor containment vessel 2 is a drive air switching circuit 5 of the reactor containment vessel 2.
It is installed in the exhaust line 17 that leads from the discharge outlet inside the drive air inside the reactor building to the atmosphere open to the outside of the reactor containment vessel 2.

【0022】また、排気ライン17は原子炉格納容器2
を貫通した下流に止め弁16を設置している。
The exhaust line 17 is connected to the reactor containment vessel 2
A stop valve 16 is installed downstream of the valve.

【0023】さらに、原子炉格納容器2が通常状態では
駆動空気が窒素ガスであるため、原子炉格納容器2内に
排出し、原子炉格納容器2の圧力が上昇した場合、原子
炉格納容器の圧力計11からの圧力信号にてインタロッ
ク59を介して排出ライン17を、原子炉格納容器2外
へ切り替える。そのために、排出ライン17の原子炉格
納容器2内側は三方弁15を設置する。
Further, when the reactor containment vessel 2 is in a normal state, the driving air is nitrogen gas. Therefore, when the reactor containment vessel 2 is discharged into the reactor containment vessel 2 and the pressure of the reactor containment vessel 2 increases, The discharge line 17 is switched to the outside of the reactor containment vessel 2 via the interlock 59 by the pressure signal from the pressure gauge 11. Therefore, a three-way valve 15 is installed inside the reactor containment vessel 2 of the discharge line 17.

【0024】そして、排気ライン17の接続が原子炉格
納容器2内または外であっても空気作動弁3の作動特性
を等しくするため、排気絞り弁18を設置している。排
気ライン17の設置については、作動抵抗を少なくする
ため、極力短いラインとし、空気作動弁3の空気シリン
ダ4の容量に合わせライン口径を選定する。また、排気
絞り弁18の閉め忘れによる作動不良を防止する目的
で、逃がし弁19を設置したものである。
An exhaust throttle valve 18 is provided in order to equalize the operating characteristics of the air operated valve 3 even if the exhaust line 17 is connected inside or outside the reactor containment vessel 2. The exhaust line 17 is installed as short as possible in order to reduce the operating resistance, and the line diameter is selected according to the capacity of the air cylinder 4 of the air operated valve 3. A relief valve 19 is provided for the purpose of preventing malfunction due to forgetting to close the exhaust throttle valve 18.

【0025】つぎに図2〜図12に示す実施例は、本発
明をMSIVに適用したものである。MSIVの閉動作
時には、駆動空気切換回路の急速閉回路とテスト閉(9
0%閉)回路を有している。MSIVの駆動空気切換回
路の急速弁閉状態を図10に示す。同図に示すように、
急速閉回路は、メインコントロール用電磁弁(1)24
及び(2)25を無励磁にすることにより、作動供給空
気源よりの窒素ガスが遮断され、空気切換弁(1)26
及び空気切換弁(4)30へ供給した窒素ガスも排出さ
れる。そのため、空気切換弁(1)26が切り換えられ
空気シリンダ4下部の窒素ガスは排出される。同様に、
空気切換弁(4)30が切り換えられ空気シリンダ4上
部に窒素ガスがアキュムレータ6より供給される。ま
た、空気切換弁(4)30が切り換えられると空気切換
弁(3)29が切り換わり、空気シリンダ4下部への窒
素ガスの供給を遮断し、逆に空気シリンダ4下部の窒素
ガスを排出する。つぎにテスト閉状態を示す。テスト閉
回路は、テストコントロール用電磁弁23を励磁させる
ことにより、空気切換弁(2)27が切り換わり空気シ
リンダ4下部の窒素ガスはニードル弁(1)32を通り
排気される。ニードル弁(1)32により絞られるた
め、微速閉作動となる。
Next, the embodiment shown in FIGS. 2 to 12 is one in which the present invention is applied to MSIV. During the closing operation of the MSIV, the quick closing circuit of the drive air switching circuit and the test closing (9
0% closed) circuit. FIG. 10 shows a quick valve closed state of the drive air switching circuit of the MSIV. As shown in the figure,
The quick closing circuit is the solenoid valve (1) 24 for main control.
And (2) 25 are de-energized, the nitrogen gas from the working supply air source is shut off, and the air switching valve (1) 26
Also, the nitrogen gas supplied to the air switching valve (4) 30 is discharged. Therefore, the air switching valve (1) 26 is switched and the nitrogen gas under the air cylinder 4 is discharged. Similarly,
The air switching valve (4) 30 is switched and nitrogen gas is supplied from the accumulator 6 to the upper portion of the air cylinder 4. Further, when the air switching valve (4) 30 is switched, the air switching valve (3) 29 is switched to cut off the supply of nitrogen gas to the lower portion of the air cylinder 4, and conversely discharge the nitrogen gas at the lower portion of the air cylinder 4. .. Next, the test closed state is shown. In the test closed circuit, by exciting the test control solenoid valve 23, the air switching valve (2) 27 is switched and nitrogen gas under the air cylinder 4 is exhausted through the needle valve (1) 32. Since it is throttled by the needle valve (1) 32, it operates at a slow speed.

【0026】そして、MSIVの弁開状態を第9図に示
す。開作動時には、メインコントロール用電磁弁(1)
24又は(2)25が励磁することにより空気切換弁
(1)26及び空気切換弁(4)30へ窒素ガスが供給
される。空気切換弁(4)30が切り換えられ空気シリ
ンダ4上部の窒素ガスはニードル弁(2)33を通り排
気される。ニードル弁(2)33により絞られるため、
開作動時間が制御される。また、空気切換弁(1)26
が切り換えられ空気シリンダ4下部の排出ラインは遮断
され、空気切換弁(4)30が切り換えられたことによ
り空気切換弁(5)29が切り換わり、アキュムレータ
6より窒素ガスが空気シリンダ4下部へ供給されたMS
IVは開作動する。
The open state of the MSIV valve is shown in FIG. Solenoid valve for main control (1) when opening
When 24 or (2) 25 is excited, nitrogen gas is supplied to the air switching valve (1) 26 and the air switching valve (4) 30. The air switching valve (4) 30 is switched and the nitrogen gas above the air cylinder 4 is exhausted through the needle valve (2) 33. Since it is throttled by the needle valve (2) 33,
The opening operation time is controlled. In addition, the air switching valve (1) 26
Is switched to shut off the discharge line below the air cylinder 4, and the air switching valve (4) 30 is switched to switch the air switching valve (5) 29, and nitrogen gas is supplied from the accumulator 6 to the lower portion of the air cylinder 4. MS
The IV opens.

【0027】以上の駆動空気切換回路のうちテスト閉
(90%閉)回路を除き原子炉格納容器圧力上昇時に作
動を要求されるため、及びに示すごとく原子炉格納容器
内に空気切換回路より窒素ガスを排出する出口には、排
気ライン17を設置する。第2図は閉作動時、第3図は
開作動時を示す。この排気ライン17は、原子炉格納容
器2内に三方弁53、54を2個原子炉格納容器2外に
止め弁55、56を2個、並列に設置し、排気ライン1
7は原子炉格納容器2外へ原子炉建屋内に開放される。
三方弁53、54は、第7図に示すごとく、原子炉格納
容器2の圧力計11より圧力高信号を受けた場合のみ原
子炉格納容器2外へ接続され、それ以外は原子炉格納容
器2内へ排出ラインとなる。止め弁55、56は、原子
炉格納容器2の圧力計11より原子炉格納容器圧力高信
号を受けた場合のみ開となり、原子炉建屋内に開放す
る。この原子炉格納容器2の圧力高信号による三方弁5
3、54と止め弁55、56のインタロックを図17に
示す、この制御は図17に示すように、スイッチ60を
通常入に設定し、原子炉格納容器2内の圧力高にて停止
して三方弁53、54、止め弁55、56が無励磁とな
り、原子炉格納容器2内もしくは容器外へと排出とな
る。また運転員がスイッチ60を切とすれば、強制的に
排気ライン17を原子炉格納容器2の外方に接続でき、
三方弁53、54、止め弁55、56の作動もテストで
きる。そして、三方弁53、54は、通常時には原子炉
格納容器2内の排気ライン17に接続されており、この
原子炉格納容器2内の排気ラインは、原子炉格納容器2
外への排気ラインと作動抵抗を等しくする目的で排気絞
り弁18を設置する。そして、排気絞り弁18の開け忘
れを防止する目的で、逃がし弁19を設置する。次に、
三方弁53、54及び止め弁55、56の電源について
は、工学的安全施設に関連するので三方弁53と54、
止め弁55と56のうち、三方弁53と止め弁55につ
いては非常用区分I、三方弁54と止め弁56について
は非常用区分IIより受電する。
Of the drive air switching circuits described above, except for the test closed (90% closed) circuit, operation is required when the reactor containment vessel pressure rises. An exhaust line 17 is installed at the outlet for discharging gas. 2 shows the closing operation, and FIG. 3 shows the opening operation. In this exhaust line 17, two three-way valves 53 and 54 are installed inside the reactor containment vessel 2 and two stop valves 55 and 56 are installed outside the reactor containment vessel 2 in parallel.
7 is opened to the outside of the PCV 2 and inside the reactor building.
As shown in FIG. 7, the three-way valves 53 and 54 are connected to the outside of the reactor containment vessel 2 only when a high pressure signal is received from the pressure gauge 11 of the reactor containment vessel 2, and otherwise the reactor containment vessel 2 is connected. It becomes an inward discharge line. The stop valves 55 and 56 are opened only when a high pressure signal of the reactor containment vessel is received from the pressure gauge 11 of the reactor containment vessel 2, and are opened in the reactor building. Three-way valve 5 based on the high pressure signal in the PCV 2
17, the interlocks of the stop valves 55 and 56 are shown in FIG. 17. This control is performed by setting the switch 60 to the normal ON state as shown in FIG. 17 and stopping at the high pressure in the reactor containment vessel 2. As a result, the three-way valves 53, 54 and the stop valves 55, 56 are de-energized and discharged into or out of the reactor containment vessel 2. If the operator turns off the switch 60, the exhaust line 17 can be forcibly connected to the outside of the reactor containment vessel 2,
The operation of the three-way valves 53, 54 and stop valves 55, 56 can also be tested. The three-way valves 53, 54 are normally connected to the exhaust line 17 in the reactor containment vessel 2, and the exhaust line in this reactor containment vessel 2 is
An exhaust throttle valve 18 is installed for the purpose of making the operating resistance equal to that of the exhaust line to the outside. A relief valve 19 is provided for the purpose of preventing the exhaust throttle valve 18 from being left open. next,
Regarding the power sources of the three-way valves 53, 54 and the stop valves 55, 56, the three-way valves 53 and 54, because they are related to engineering safety facilities,
Of the stop valves 55 and 56, the three-way valve 53 and the stop valve 55 receive power from the emergency section I, and the three-way valve 54 and the stop valve 56 receive power from the emergency section II.

【0028】また、MSIVの閉鎖時間はオイルシリン
ダ22のニードル弁(3)34にて、閉鎖時間を調整で
きるため、排気ライン17を接続後には排気ライン17
の作動抵抗により閉鎖時間が長くなるため、ニードル弁
(3)34を調整し適切な閉鎖時間に設定する。
Since the closing time of the MSIV can be adjusted by the needle valve (3) 34 of the oil cylinder 22, the exhaust line 17 can be adjusted after the exhaust line 17 is connected.
Since the closing time becomes longer due to the operation resistance of (3), the needle valve (3) 34 is adjusted and set to an appropriate closing time.

【0029】したがって、上記の場合には、通常時、排
気ライン17は図7に示すごとく、三方弁53、54に
より原子炉格納容器内に駆動用の窒素ガスを排出する。
Therefore, in the above case, the exhaust line 17 normally discharges the driving nitrogen gas into the reactor containment vessel by the three-way valves 53 and 54 as shown in FIG.

【0030】つぎに他の実施例を示す図13および図1
4について説明する。本実施例は本発明をSRVに適用
した場合を示す。SRVの開作動時には駆動切換回路は
逃がし弁機能用とADS機能用を持っている。逃がし弁
機能用としてSRVが作動する場合は、図13に示すご
とく、逃がし弁機能用電磁弁35が励磁し駆動用の窒素
ガスがアキュムレータ6より空気シリンダ4の下部へ供
給され、空気シリンダ4上部の窒素ガスは原子炉格納容
器内に排出される。つぎに、ADS機能用としてSRV
が作動する場合は、図14に示すごとく、ADS機能用
電磁弁(1)36またはADS機能用電磁弁(2)37
を励磁し駆動用の窒素ガスがアキュムレータ6より空気
シリンダ4の下部へ供給され、空気シリンダ4上部の窒
素ガスは原子炉格納容器内に排出される。
Next, FIG. 13 and FIG. 1 showing another embodiment.
4 will be described. This embodiment shows a case where the present invention is applied to SRV. The drive switching circuit has a relief valve function and an ADS function when the SRV is opened. When the SRV operates for the relief valve function, as shown in FIG. 13, the relief valve function solenoid valve 35 is excited to supply the driving nitrogen gas from the accumulator 6 to the lower portion of the air cylinder 4 and the upper portion of the air cylinder 4. Nitrogen gas is discharged into the reactor containment vessel. Next, SRV for ADS function
14 operates, as shown in FIG. 14, the ADS function solenoid valve (1) 36 or the ADS function solenoid valve (2) 37.
The driving nitrogen gas is supplied from the accumulator 6 to the lower part of the air cylinder 4, and the nitrogen gas above the air cylinder 4 is discharged into the reactor containment vessel.

【0031】SRVの閉作動時には、駆動切換回路は図
12に示すごとく、逃がし弁機能用電磁弁35、ADS
機能用電磁弁(1)36及びADS機能用電磁弁(2)
37は無励磁となり、空気シリンダ4下部の窒素ガスは
原子炉格納容器内へ排出され、空気シリンダ4はバネ5
7の力によりピストン58を下部へ移動させる。
When the SRV is closed, the drive switching circuit, as shown in FIG. 12, includes the relief valve function solenoid valve 35 and the ADS.
Solenoid valve for function (1) 36 and solenoid valve for ADS function (2)
37 is non-excited, the nitrogen gas under the air cylinder 4 is discharged into the reactor containment vessel, and the air cylinder 4 is replaced by the spring 5
The force of 7 moves the piston 58 downward.

【0032】以上の駆動空気切換回路において図4〜図
6に示すように、原子炉格納容器への排出口並びに空気
シリンダ4上部出口に排気ライン17を設定する。図4
は逃がし弁機能説明図、図5はADS機能作動時、およ
び図6は閉作動時を示す。この排気ライン17は、原子
炉格納容器2内に三方弁53、54を2個、原子炉格納
容器2外に止め弁55、56を2個、並列に設置し、排
気ライン17は原子炉格納容器2外の原子炉建屋内に開
放される。この三方弁53、54と止め弁55、56
は、実施例1のMSIVと同様の構成、機能を有する。
In the above drive air switching circuit, as shown in FIGS. 4 to 6, an exhaust line 17 is set at the exhaust port to the reactor containment vessel and the upper outlet of the air cylinder 4. Figure 4
Shows the relief valve function, FIG. 5 shows the ADS function operating, and FIG. 6 shows the closing operating. This exhaust line 17 is provided with two three-way valves 53, 54 inside the reactor containment vessel 2 and two stop valves 55, 56 outside the reactor containment vessel 2 in parallel. It is opened inside the reactor building outside the container 2. These three-way valves 53, 54 and stop valves 55, 56
Has the same configuration and function as the MSIV of the first embodiment.

【0033】この実施例2によれば、通常時には排気ラ
イン17は第7図に示すごとく、三方弁53、54によ
り原子炉格納容器内に駆動用の窒素ガスを排出する。つ
ぎに、原子炉格納容器の圧力が上昇した時点で図7に示
すごとく圧力計11より原子炉格納容器圧力高信号が発
生し、SRVの排気ライン17は原子炉格納容器外に切
り替えられるため、原子炉格納容器内圧による排圧は除
外される。よって、SRVは通常時の作動特性を有し原
子炉格納容器圧力高条件下で通常時と同等の機能を有す
る効果が期待できる。
According to the second embodiment, the exhaust line 17 normally discharges the driving nitrogen gas into the reactor containment vessel by the three-way valves 53 and 54 as shown in FIG. Next, when the pressure of the reactor containment vessel rises, a pressure gauge 11 high pressure signal is generated from the pressure gauge 11 as shown in FIG. 7, and the SRV exhaust line 17 is switched to the outside of the reactor containment vessel. Exhaust pressure due to reactor internal pressure is excluded. Therefore, it is expected that the SRV has the operating characteristics under normal conditions and has the function equivalent to that under normal conditions under the high reactor containment vessel pressure conditions.

【0034】[0034]

【発明の効果】第1の発明によれば、空気作動弁を駆動
する駆動空気切換回路の排出側に一端部が接続し、他端
部が原子炉格納容器外に開口する空気排出ラインを設け
たので、空気作動弁は、上記原子炉格納容器内の圧力に
影響されることなく常に安定した作動特性で作動するこ
とができる。また原子炉格納容器内の圧力が上昇条件下
で動的作業が要求されるMSIV、SRVについては、
動的作動の要求を満足することができ、MSIV、SR
Vの関連システムについても機能を維持することができ
る。
According to the first aspect of the invention, an air discharge line is provided, one end of which is connected to the discharge side of the drive air switching circuit that drives the air actuated valve, and the other end of which is open to the outside of the reactor containment vessel. Therefore, the air operated valve can always operate with stable operation characteristics without being affected by the pressure in the reactor containment vessel. Regarding MSIV and SRV, which require dynamic work under the condition that the pressure inside the PCV rises,
Can meet the requirements of dynamic operation, MSIV, SR
The function can be maintained for the V related system.

【0035】第2の発明によれば、空気排出ラインに原
子炉格納容器内の圧力に応じて駆動空気切換回路からの
排出空気を上記空気排出ラインを通って上記原子炉格納
容器外に排出するか、もしくは上記空気排出ラインより
分岐して上記原子路格納容器内に排出するかを切換える
切換手段を設けたので、空気作動弁の定期試験時には駆
動空気源の窒素を原子路格納容器内に排出することがで
きる。
According to the second aspect of the invention, the exhaust air from the drive air switching circuit is discharged to the outside of the reactor containment vessel through the air discharge line in accordance with the pressure inside the reactor containment vessel. Since a switching means is provided for switching between discharging from the air discharge line and discharging into the atomic path containment vessel, nitrogen of the driving air source is discharged into the atomic path containment vessel during a periodic test of the air operated valve. can do.

【0036】また第3の発明によれば切換手段は、前記
空気排出ラインの前記原子炉格納容器内に設置した三方
弁と、上記原子炉格納容器外に設置した止め弁を設け、
かつ上記三方弁には、先端部を上記原子炉格納容器内に
開口する検出通路に圧力計とインターロックを設けると
ともに、該三方弁の一方端部には先端部を上記原子炉格
納容器内に開口する空気排出路に空気排出絞り弁を設
け、かつ上記止め弁には先端部を上記検出路に接続する
検出バイパス路を設けたので、原子炉格納容器内に圧力
に応じて三方弁が切換えられ、駆動空気切換回路の排出
側から排出空気を原子炉格納容器外もしくは内に排出す
ることができ、かつ空気排出絞り弁によって原子炉格納
容器内に排出される作動抵抗を原子炉格納容器外に排出
されるときと等しくすることができる。
According to the third invention, the switching means is provided with a three-way valve installed inside the reactor containment vessel of the air discharge line, and a stop valve installed outside the reactor containment vessel.
Further, the three-way valve is provided with a pressure gauge and an interlock in a detection passage having a tip opening into the reactor containment vessel, and a tip part is provided at one end of the three-way valve into the reactor containment vessel. An air discharge throttle valve was provided in the open air discharge passage, and a detection bypass passage was connected to the stop valve to connect the tip to the detection passage.Therefore, a three-way valve was switched in the reactor containment vessel according to the pressure. The exhaust air can be discharged to the outside or inside of the reactor containment vessel from the discharge side of the drive air switching circuit, and the operating resistance discharged to the inside of the reactor containment vessel by the air discharge throttle valve Can be equal to when discharged to.

【0037】また、第4の発明によれば、空気排出路に
逃がし弁を設けたので、空気排出絞り弁の開け忘れを防
止することができる。
Further, according to the fourth aspect of the invention, since the relief valve is provided in the air discharge passage, it is possible to prevent forgetting to open the air discharge throttle valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による原子炉格納容器内の空気作動弁を
示す説明図
FIG. 1 is an explanatory view showing an air operated valve in a reactor containment vessel according to the present invention.

【図2】本発明の一実施例であるMSIVの閉作動時の
駆動空気切換回路図
FIG. 2 is a drive air switching circuit diagram at the time of closing operation of the MSIV which is an embodiment of the present invention.

【図3】図2に示すMSIVの開作動時の駆動空気切換
回路図
FIG. 3 is a drive air switching circuit diagram when the MSIV shown in FIG. 2 is opened.

【図4】本発明の他の一実施例であるSRVの逃がし弁
機能における開作動時の駆動空気切換回路図
FIG. 4 is a drive air switching circuit diagram at the time of opening operation in the relief valve function of SRV which is another embodiment of the present invention.

【図5】図4に示すSRVのADS機能における開作動
時の駆動空気切換回路図
FIG. 5 is a drive air switching circuit diagram at the time of opening operation in the ADS function of the SRV shown in FIG.

【図6】図4に示すSRVの閉作動時の駆動空気切換回
路図
FIG. 6 is a drive air switching circuit diagram when the SRV shown in FIG. 4 is closed.

【図7】三方弁および止め弁の作動説明図FIG. 7 is an operation explanatory diagram of a three-way valve and a stop valve.

【図8】従来例による原子炉格納容器内の空気作動弁を
示す説明図
FIG. 8 is an explanatory view showing an air operated valve in a reactor containment vessel according to a conventional example.

【図9】従来例のMSIVの開作動時の駆動空気切換回
路図
FIG. 9 is a drive air switching circuit diagram when the MSIV of the conventional example is opened.

【図10】従来例のMSIVの閉作動時の駆動空気切換
回路図
FIG. 10 is a drive air switching circuit diagram at the time of closing operation of a conventional MSIV.

【図11】従来例のMSIVのテスト閉時の駆動空気切
換回路図
FIG. 11 is a drive air switching circuit diagram when the test of the conventional MSIV is closed.

【図12】従来例のSRVの閉作動時の空気切換回路図FIG. 12 is an air switching circuit diagram when the SRV of the conventional example is closed.

【図13】従来例のSRVの逃がし弁機能における開作
動時の空気切換回路図
FIG. 13 is an air switching circuit diagram at the time of opening operation in the SRV relief valve function of the conventional example.

【図14】従来例のSRVのADS機能における開作動
時の空気切換回路図
FIG. 14 is an air switching circuit diagram at the time of opening operation in the ADS function of the SRV of the conventional example.

【図15】沸騰水型原子力発電所の炉心冷却・除熱シス
テムの概略図
FIG. 15 is a schematic diagram of a core cooling / heat removal system of a boiling water nuclear power plant.

【図16】仮想的な崩壊熱除去機能作動遅延時の原子炉
格納容器圧力曲線図
FIG. 16 is a pressure curve diagram of the containment vessel when the hypothetical decay heat removal function operation is delayed.

【図17】排気ライン制御インタロックを示すブロック
FIG. 17 is a block diagram showing an exhaust line control interlock.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…原子炉格納容器、3…空気作
動弁、4…空気シリンダ、5…駆動空気切換回路、15
…三方弁、16…止め弁、17…排気ライン、59…イ
ンタロック。
DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Reactor containment vessel, 3 ... Air operated valve, 4 ... Air cylinder, 5 ... Driving air switching circuit, 15
... 3-way valve, 16 ... Stop valve, 17 ... Exhaust line, 59 ... Interlock.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 沸騰水型原子炉の原子炉格納容器内に設
置し、供給側を駆動空気供給ラインを介して外部に設置
した空気供給源に接続するとともに、排出側を上記原子
炉格納容器内に開口する駆動空気切換回路と、該駆動空
気切換回路に接続する空気シリンダによって駆動される
空気作動弁において、前記駆動空気切換回路の排出側に
一端部が接続し、他端部が前記原子炉格納容器外に開口
する空気排出ラインを設けたことを特徴とする空気作動
弁。
1. A reactor installed in a boiling water reactor reactor containment vessel, the supply side is connected via a drive air supply line to an air supply source installed outside, and the discharge side is the reactor containment vessel. In a drive air switching circuit opening inside and an air operated valve driven by an air cylinder connected to the drive air switching circuit, one end is connected to the discharge side of the drive air switching circuit and the other end is the atom. An air actuated valve, which is provided with an air discharge line that opens outside the furnace containment vessel.
【請求項2】 沸騰水型原子炉の原子炉格納容器内に設
置し、供給側を駆動空気供給ラインを介して外部に設置
した空気供給源に接続するとともに、排出側を上記原子
炉格納容器内に開口する駆動空気切換回路と、該駆動空
気切換回路に接続する空気シリンダによって駆動される
空気作動弁において、前記駆動空気切換回路の排出側に
一端部が接続し、他端部が前記原子炉格納容器外に開口
する空気排出ラインを設け、かつ上記空気排出ライン
に、上記原子炉格納容器内の圧力に応じて上記駆動空気
切換回路からの排出空気を上記空気排出ラインを通って
上記原子炉格納容器外に排出するかもしくは上記排出ラ
インより分岐して上記原子炉格納容器内に排出するかを
切換える切換手段を設けたことを特徴とする空気作動
弁。
2. The reactor is installed in a reactor containment vessel of a boiling water reactor, the supply side is connected via a drive air supply line to an air supply source installed outside, and the discharge side is the reactor containment vessel. In a drive air switching circuit opening inside and an air operated valve driven by an air cylinder connected to the drive air switching circuit, one end is connected to the discharge side of the drive air switching circuit and the other end is the atom. An air discharge line opening to the outside of the reactor containment vessel is provided, and the discharge air from the drive air switching circuit is supplied to the air discharge line through the air discharge line according to the pressure in the reactor containment vessel. An air actuated valve provided with switching means for switching between discharging to the outside of the reactor containment vessel or branching from the discharge line and discharging to the inside of the reactor containment vessel.
【請求項3】 前記切換手段は、前記空気排出ラインの
前記原子炉格納容器内に設置した三方弁と、上記原子炉
格納容器外に設置した止め弁を設け、かつ上記三方弁に
は、先端部を上記原子炉格納容器内に開口する検出路に
圧力計とインターロックを設けるとともに、該三方弁の
一方端部には先端部を上記原子炉格納容器内に開口する
空気排出路に空気排出絞り弁を設け、かつ上記止め弁に
は先端部を上記検出路に接続する検出バイパス路を設け
たことを特徴とする請求項2記載の空気作動弁。
3. The switching means is provided with a three-way valve installed inside the reactor containment vessel of the air discharge line and a stop valve installed outside the reactor containment vessel, and the three-way valve has a tip end. Part is provided with a pressure gauge and an interlock in a detection path opening into the reactor containment vessel, and a tip end of one end of the three-way valve is discharged into an air discharge path opening into the reactor containment vessel. The air actuated valve according to claim 2, wherein a throttle valve is provided, and the stop valve is provided with a detection bypass passage that connects a tip end portion to the detection passage.
【請求項4】 前記空気排出路は逃がし弁を設けたこと
を特徴とする請求項3記載の空気作動弁。
4. The air actuated valve according to claim 3, wherein the air discharge passage is provided with a relief valve.
JP3239895A 1991-09-19 1991-09-19 Air operated valve Expired - Lifetime JP2502224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3239895A JP2502224B2 (en) 1991-09-19 1991-09-19 Air operated valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3239895A JP2502224B2 (en) 1991-09-19 1991-09-19 Air operated valve

Publications (2)

Publication Number Publication Date
JPH0580191A true JPH0580191A (en) 1993-04-02
JP2502224B2 JP2502224B2 (en) 1996-05-29

Family

ID=17051458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3239895A Expired - Lifetime JP2502224B2 (en) 1991-09-19 1991-09-19 Air operated valve

Country Status (1)

Country Link
JP (1) JP2502224B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621281A (en) * 1994-08-03 1997-04-15 International Business Machines Corporation Discharge lamp lighting device
US6982886B2 (en) 2002-12-25 2006-01-03 Rohm Co., Ltd Dc-ac converter parallel operation system and controller ic therefor
WO2008156086A1 (en) * 2007-06-18 2008-12-24 Kabushiki Kaisha Toshiba Drive system for safety valve
JP2013140079A (en) * 2012-01-05 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Reactor isolation cooler
JP2014153257A (en) * 2013-02-12 2014-08-25 Toshiba Corp Reactor pressure vessel pressure reduction facility and main steam release safety valve driving unit
JP2014173723A (en) * 2013-09-18 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Remote control device, and remote control device of nuclear power plant
JP2015087232A (en) * 2013-10-30 2015-05-07 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and nuclear power plant air or nitrogen supply apparatus
EP2869307A3 (en) * 2013-10-30 2015-06-24 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
JP2015117721A (en) * 2013-12-17 2015-06-25 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and air or nitrogen supply apparatus of nuclear power plant
EP2775180A3 (en) * 2013-03-06 2017-12-20 Hitachi-GE Nuclear Energy, Ltd. Alternative air supply and exhaust port for air-operated valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821166B2 (en) 2010-04-09 2014-09-02 Frontier Vision Co., Ltd. Artificial lens for cataract surgery practice

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621281A (en) * 1994-08-03 1997-04-15 International Business Machines Corporation Discharge lamp lighting device
US6982886B2 (en) 2002-12-25 2006-01-03 Rohm Co., Ltd Dc-ac converter parallel operation system and controller ic therefor
US7233509B2 (en) 2002-12-25 2007-06-19 Rohm Co., Ltd. Parallel operating system of DC-AC converters and controller IC therefor
US7471528B2 (en) 2002-12-25 2008-12-30 Rohm Co., Ltd. Parallel operating system of DC-AC converters and controller IC therefor
WO2008156086A1 (en) * 2007-06-18 2008-12-24 Kabushiki Kaisha Toshiba Drive system for safety valve
JP4768855B2 (en) * 2007-06-18 2011-09-07 株式会社東芝 Safety valve drive system
JP2013140079A (en) * 2012-01-05 2013-07-18 Hitachi-Ge Nuclear Energy Ltd Reactor isolation cooler
JP2014153257A (en) * 2013-02-12 2014-08-25 Toshiba Corp Reactor pressure vessel pressure reduction facility and main steam release safety valve driving unit
EP2775180A3 (en) * 2013-03-06 2017-12-20 Hitachi-GE Nuclear Energy, Ltd. Alternative air supply and exhaust port for air-operated valve
JP2014173723A (en) * 2013-09-18 2014-09-22 Hitachi-Ge Nuclear Energy Ltd Remote control device, and remote control device of nuclear power plant
JP2015087232A (en) * 2013-10-30 2015-05-07 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and nuclear power plant air or nitrogen supply apparatus
EP2869307A3 (en) * 2013-10-30 2015-06-24 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
US9916908B2 (en) 2013-10-30 2018-03-13 Hitachi-Ge Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
JP2015117721A (en) * 2013-12-17 2015-06-25 日立Geニュークリア・エナジー株式会社 Gas supply apparatus and air or nitrogen supply apparatus of nuclear power plant

Also Published As

Publication number Publication date
JP2502224B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JP2502224B2 (en) Air operated valve
JP3341511B2 (en) Stem-free test equipment for main steam stop valve
CN100473805C (en) Electric generating set small side road system and control method thereof
CN109000027B (en) Control method and control device for hydraulic control butterfly valve
JP2001289989A (en) Steam turbine controller for nuclear power plant
CN112302735B (en) Steam turbine main valve auxiliary system and control method thereof
JPS62247286A (en) Air feeder for operating scram valve
JP3836537B2 (en) Turbine accessory control device for nuclear power plant
CN114576239A (en) Online test method for PCV valve control loop
JPH0222360B2 (en)
JPH0385492A (en) Hydraulic system for control rod driving
JPH0634782A (en) Dynamic water pressure device for driving control rod
JPS6244637B2 (en)
JPH034874B2 (en)
JPS61169796A (en) Supply device for coolant of boiling water type reactor
JPH0358680B2 (en)
JP2000314302A (en) Actuation tester for steam valve
JPS6154925B2 (en)
JPS63171394A (en) Residual heat removal device
JPH03597B2 (en)
JPH0129962B2 (en)
JPH01208623A (en) Device for automatic drain purge for steam heater
JPS62247103A (en) Valve close operation test control device of bleed air check valve
JPH0399296A (en) Device for preventing malfunction of control rod driving mechanism
JPH0145599B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees