JPH0580091A - Measuring method of frequency characteristic - Google Patents

Measuring method of frequency characteristic

Info

Publication number
JPH0580091A
JPH0580091A JP3245491A JP24549191A JPH0580091A JP H0580091 A JPH0580091 A JP H0580091A JP 3245491 A JP3245491 A JP 3245491A JP 24549191 A JP24549191 A JP 24549191A JP H0580091 A JPH0580091 A JP H0580091A
Authority
JP
Japan
Prior art keywords
frequency
sampling
input
waveform
frequency characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3245491A
Other languages
Japanese (ja)
Inventor
Toshiaki Ueno
俊明 上野
Fumio Ikeuchi
史夫 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3245491A priority Critical patent/JPH0580091A/en
Publication of JPH0580091A publication Critical patent/JPH0580091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To obtain a measuring method of a frequency characteristic of an electronic circuit, in particular, the measuring method of the frequency characteristic being suitable for high-speed and highly precise measurement of the frequency characteristic of an electronic circuit network in a high-frequency area. CONSTITUTION:A prescribed offset frequency is given between a repetition frequency of a pulse for sampling an input/output pulse waveform of a circuit network 9 to be measured and a frequency being an integral multiple of a sampling frequency. After the sampled waveform is subjected to A/D conversion, measurement of a frequency characteristic in a wide band is executed by FFT. Accordingly, high-speed and highly precise measurement of the frequency characteristic of an electronic circuit network in a wide band is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子回路の周波数特性の
測定法に係り、特に、高周波領域における電子回路網の
高速かつ高精度の周波数特性の測定に好適な周波数特性
の測定法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring frequency characteristics of an electronic circuit, and more particularly to a method of measuring frequency characteristics suitable for high speed and highly accurate measurement of frequency characteristics of an electronic circuit network in a high frequency region.

【0002】[0002]

【従来の技術】従来からの電子回路網の特性評価のなか
で、特に、重要となる周波数特性の測定法は、一般に、
電子回路の入力周波数を順次掃引した際の出力信号の応
答特性から周波数特性を測定する方法がある。しかし、
この種の正弦波を掃引して測定する方法では掃引に要す
る時間が長くて高速測定ができない。これに対して周波
数特性を高速、かつ、簡易に測定する方法として、入力
波形に高調波を含んだ入力波形を使用し、測定対象のイ
ンパルスまたはインデシアル応答あるいは、ランダム雑
音による応答から周波数特性を求める方法がある。例え
ば、ランダム雑音応答による周波数特性測定法について
は、森下、小畑著「信号処理」計測自動制御学会、P.
203〜P.206、昭和57年7月に記載されてい
る。
2. Description of the Related Art In the conventional evaluation of characteristics of electronic circuits, particularly important frequency characteristic measuring methods are
There is a method of measuring the frequency characteristic from the response characteristic of the output signal when the input frequency of the electronic circuit is sequentially swept. But,
In the method of sweeping and measuring a sine wave of this kind, the sweeping time is long and high-speed measurement cannot be performed. On the other hand, as a method to measure frequency characteristics quickly and easily, use an input waveform that contains harmonics in the input waveform and obtain the frequency characteristic from the impulse or indecial response of the measurement target or the response due to random noise. There is a way. For example, regarding the frequency characteristic measurement method based on random noise response, Morishita and Obata “Signal Processing” Society of Instrument and Control Engineers, P.
203-P. 206, July 1982.

【0003】図4は従来のランダム雑音応答による周波
数特性の測定法を例示する測定システムの構成図であ
る。図4において、1は広帯域雑音発生器、2は帯域制
限フィルタ、3は測定対象、4はFFTアナライザであ
る。図5(a)、(b)は図4のランダム雑音と周波数
特性である。図4の広帯域雑音発生器1は図5(a)の
ような平坦な周波数スペクトラム特性のランダム雑音を
発生し、このランダム雑音が帯域制限フィルタ2を通し
て測定対象3に入力し、測定対象3の入力と出力がFF
Tアナライザ4に入力する。帯域制限フィルタ2は高速
フーリエ変換(FFT)によって周波数領域解析を行う
FFTアナライザ4のサンプリング周波数の半分以下に
雑音成分の帯域幅を制限し、これによりナイキスト周波
数以上の雑音成分が入力された際に発生する折り返し誤
差を低減する。FFTアナライザ4は同時にの測定対象
3の入力信号と出力信号の二系統のFFT解析が可能で
あり、これにより測定対象3の入力雑音と出力雑音のク
ロススペクトラムを求めて、図5(b)のような測定対
象3の振幅および位相の周波数特性が推定される。
FIG. 4 is a block diagram of a measuring system illustrating a conventional method of measuring frequency characteristics by random noise response. In FIG. 4, 1 is a wideband noise generator, 2 is a band limiting filter, 3 is a measurement target, and 4 is an FFT analyzer. 5A and 5B show the random noise and frequency characteristics of FIG. The broadband noise generator 1 of FIG. 4 generates random noise having a flat frequency spectrum characteristic as shown in FIG. 5A, and this random noise is input to the measurement target 3 through the band limiting filter 2 and input to the measurement target 3. And output is FF
Input to the T analyzer 4. The band limiting filter 2 limits the bandwidth of the noise component to less than half the sampling frequency of the FFT analyzer 4 that performs the frequency domain analysis by the fast Fourier transform (FFT), and when a noise component above the Nyquist frequency is input, The folding error that occurs is reduced. The FFT analyzer 4 is capable of FFT analysis of two systems of the input signal and the output signal of the measurement target 3 at the same time. By this, the cross spectrum of the input noise and the output noise of the measurement target 3 is obtained, and the FFT analysis of FIG. The amplitude and phase frequency characteristics of the measurement target 3 are estimated.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、測
定対象の入力信号としてFFTアナライザのサンプリン
グ周期に対して振幅および位相関係が全くランダムな雑
音を使用しているために、広帯域雑音発生器による広帯
域で平坦な雑音の発生が困難なほかランダム雑音の周波
数特性が平坦になるには長い時間がかかるなど測定時間
が増大する上、さらにはFFTアナライザが実時間でA
/D変換した入力データに対してFFT解析を行ってい
るために、数MHz以上の高周波における周波数特性の
計測が困難となるなどの問題があった。
In the above-mentioned prior art, since a noise whose amplitude and phase relationship are completely random with respect to the sampling period of the FFT analyzer is used as the input signal to be measured, the wide band noise generator is used. It is difficult to generate flat noise over a wide band, and it takes a long time to flatten the frequency characteristics of random noise, which increases the measurement time.
Since the FFT analysis is performed on the D / D-converted input data, there is a problem that it becomes difficult to measure the frequency characteristic at a high frequency of several MHz or more.

【0005】本発明の目的は、測定対象の入力信号波形
に起因した測定時間の増大をなくすほか、入出力信号波
形をA/D変換する際のA/D変換器の広帯域化の問題
点の解決を図り、高周波領域における電子回路網の高速
で、かつ、高精度の測定が可能な周波数特性測定法を提
供する。
An object of the present invention is to eliminate the problem of increasing the measurement time due to the input signal waveform to be measured and widening the band of the A / D converter when A / D converting the input / output signal waveform. The present invention provides a frequency characteristic measuring method capable of achieving high-speed and high-accuracy measurement of an electronic circuit network in a high frequency region by solving the problems.

【0006】[0006]

【課題を解決するための手段】上記目的は、繰り返し周
波数の高周波成分を含む繰り返しパルスを被測定回路網
に通し、その入出力パルス波形をサンプリングするさい
に前記繰り返しパルスの繰り返し周波数とサンプリング
周波数の整数倍の周波数との間に一定のビート周波数を
生じさせるべく設定された前記サンプリング周波数でサ
ンプリングし、そのサンプリングデータより前記入出力
パルス波形の周波数スペクトラムを演算することによ
り、前記被測定回路網の周波数特性を測定するようにし
た周波数特性測定法により達成される。
The above-described object is to pass a repetitive pulse containing a high-frequency component of the repetitive frequency through a circuit under test and sample the input / output pulse waveform thereof, thereby determining the repetitive frequency of the repetitive pulse and the sampling frequency. By sampling at the sampling frequency set to generate a constant beat frequency with an integer multiple frequency, and calculating the frequency spectrum of the input / output pulse waveform from the sampling data, the measured circuit This is achieved by a frequency characteristic measuring method adapted to measure the frequency characteristic.

【0007】[0007]

【作用】上記の周波数特性測定法では被測定回路網の入
出力パルス波形をサンプリングするさいに、パルスの繰
り返し周波数とサンプリング周波数の整数倍の周波数の
間に一定のオフセット周波数(ビート周波数)を与え、
入出力パルス波形と相似で低速なビート波形をサンプリ
ング波形として求めているので、超広帯域のA/D変換
が可能となることからFFT解析を行ったさいに生ずる
入出力周波数の全ての高調波成分の周波数を規定するこ
とが可能となり、周波数特性を測定するための必要最小
の周波数分解能が設定できるため、広帯域の周波数特性
測定が効率良く行える。
In the above frequency characteristic measuring method, a constant offset frequency (beat frequency) is applied between the pulse repetition frequency and an integer multiple of the sampling frequency when sampling the input / output pulse waveform of the circuit under test. ,
Since a low-speed beat waveform similar to the input / output pulse waveform is obtained as a sampling waveform, it is possible to perform A / D conversion in an ultra-wide band. Therefore, all harmonic components of the input / output frequency that occur when FFT analysis is performed. Since it is possible to specify the frequency and the minimum necessary frequency resolution for measuring the frequency characteristic can be set, it is possible to efficiently measure the frequency characteristic of the wide band.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1ないし図3に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】図1は本発明による周波数特性測定法の一
実施例を示す測定システムの構成図である。図1におい
て、5は基準周波数発振器、6、7は周波数シンセサイ
ザ、8はパルス発生器、9は被試験デバイス、10はサ
ンプリングヘッド、11はA/D変換器、12はメモ
リ、13は計算機、14はXYプロッタである。
FIG. 1 is a block diagram of a measuring system showing an embodiment of the frequency characteristic measuring method according to the present invention. In FIG. 1, 5 is a reference frequency oscillator, 6 and 7 are frequency synthesizers, 8 is a pulse generator, 9 is a device under test, 10 is a sampling head, 11 is an A / D converter, 12 is a memory, 13 is a calculator, 14 is an XY plotter.

【0010】図1の低位相雑音の周波数シンセサイザ6
はパルス発生器の発生パルスの繰り返し周波数f を規
定し、同じく周波数シンセサイザ7はサンプリング系統
に与えるサンプリング周波数f を規定する。これらの
二台の周波数シンセサイザ6、7の発生周波数f 、f
は同一の基準周波数発振器5から基準周波数f の信号
を与えて相互間の位相を同期し、発生周波数f 、f
の間の周波数関係を安定に維持する。パルス発生器8は
周波数シンセサイザ6の発生周波数f に同期した繰り
返し周波数f のパルスを発生するが、その発生パルス
波形はインパルスやステップパルス等の急峻な立ち上が
り時間特性をもつ波形となり、たとえば、ステップリカ
バリーダイオード(SRD)やトンネルダイオード(T
D)を使用したパルサでは立ち上がり時間が100ps
以下の超高速パルスの発生が可能であって、数GHz帯
の広い周波数範囲にわたる繰り返し周波数f の高調波
成分を発生できるので、数GHz帯の高周波領域におけ
る周波数特性測定に使用することができる。
The low phase noise frequency synthesizer 6 of FIG.
Defines the repetition frequency f 1 of the pulse generated by the pulse generator, and the frequency synthesizer 7 also defines the sampling frequency f 1 given to the sampling system. The generated frequencies f 1, f 2 of these two frequency synthesizers 6, 7
Are synchronized with each other by giving a signal of the reference frequency f from the same reference frequency oscillator 5 and generating frequencies f 1, f 2.
Maintain a stable frequency relationship between. The pulse generator 8 generates a pulse having a repetitive frequency f 1 synchronized with the generated frequency f 1 of the frequency synthesizer 6, and the generated pulse waveform has a waveform with a steep rise time characteristic such as an impulse or a step pulse. Diode (SRD) and tunnel diode (T
The riser time is 100 ps in the pulser using D)
The following ultra-high-speed pulse can be generated and the harmonic component of the repetition frequency f 2 over a wide frequency range of several GHz band can be generated, so that it can be used for frequency characteristic measurement in the high frequency region of several GHz band.

【0011】被試験デバイス9は線形特性をもつものを
対象とし、入力信号によって被試験デバイス9の内部で
生じた歪が測定誤差を生じさせないようにする。サンプ
リングヘッド10は入力信号波形を繰り返し周波数f
でサンプリングするが、この時の繰り返し周波数f と
サンプリング周波数f の間の周波数関係がもし整数倍で
あるとすると入力信号波形の特定位相点のみをサンプリ
ングすることになるから、繰り返し周波数f に対して
サンプリング周波数f の整数倍の周波数n・f が若
干のオフセット周波数△fをもつ複数位相点をサンプリ
ングするようにする。
The device under test 9 is intended to have a linear characteristic so that the distortion generated inside the device under test 9 by the input signal does not cause a measurement error. The sampling head 10 repeats the input signal waveform at a frequency f
However, if the frequency relationship between the repetition frequency f and the sampling frequency f at this time is an integral multiple, then only the specific phase point of the input signal waveform is sampled, so that the repetition frequency f is The frequency n · f, which is an integral multiple of the sampling frequency f 1, samples a plurality of phase points having a slight offset frequency Δf.

【0012】図2は図1のサンプリング動作の説明図で
ある。図2において、縦軸は信号の振幅を示し、横軸は
時間を示す。aはサンプリングヘッド入力波形、bはサ
ンプリングクロック、cはサンプリング波形である。図
2のパルス発生器8から発生した繰り返し周波数f の
パルスが直接または被試験デバイス9を通過してサンプ
リングヘッド10に入力されるが、このときのサンプリ
ングヘッド入力波形aは図示による説明を容易にするた
め三角波の場合を例示している。この入力波形aは周波
数シンセサイザ7から発生したサンプリング周波数f
のサンプリングクロックbでサンプリングする。この
時、入力波形aの繰り返し周波数f とサンプリング周
波数f の周波数関係は式(1)により設定される。
FIG. 2 is an explanatory diagram of the sampling operation of FIG. In FIG. 2, the vertical axis represents signal amplitude and the horizontal axis represents time. a is a sampling head input waveform, b is a sampling clock, and c is a sampling waveform. The pulse of the repetition frequency f 1 generated from the pulse generator 8 of FIG. 2 is input to the sampling head 10 directly or after passing through the device under test 9, and the sampling head input waveform a at this time can be easily explained by illustration. Therefore, the case of a triangular wave is illustrated. This input waveform a is the sampling frequency f generated from the frequency synthesizer 7.
The sampling clock b is used for sampling. At this time, the frequency relationship between the repetition frequency f of the input waveform a and the sampling frequency f is set by the equation (1).

【0013】[0013]

【数1】 f =n・f +△f
(1) ここでnは正整数、△fはオフセット周波数である、こ
こではn=2の場合を例示している。この時△f/n≦
f なる条件を満足するように△fを設定すると、図示
のように複数周期にわたる入力波形aを固有の位相をも
つサンプリング点でサンプリングしたサンプリング波形
cが得られ、このサンプリング波形cは入力波形aと相
似なビート波形であって、サンプリング波形cの繰り返
し周波数はビート周波数、すなわち、オフセット周波数
△fとなる。
[Formula 1] f = n · f + Δf
(1) Here, n is a positive integer and Δf is an offset frequency. Here, the case where n = 2 is illustrated. At this time, Δf / n ≦
When Δf is set so as to satisfy the condition of f, as shown in the figure, a sampling waveform c obtained by sampling the input waveform a over a plurality of cycles at sampling points having a unique phase is obtained, and this sampling waveform c is the input waveform a. The repetitive frequency of the sampling waveform c is a beat frequency, that is, an offset frequency Δf.

【0014】このサンプリングヘッド10の出力はA/
D変換器11によってA/D変換されるが、入力波形が
低速のサンプリング波形に変換されているため高精度の
A/D変換器11を使用することができる。このA/D
変換器11の出力データはメモリ12に記憶する。な
お、サンプリング系のサンプリングヘッド10、A/D
変換器11、メモリ12の動作はサンプリング周波数f
によって規定される。メモリ12に一時記憶したA/
D変換後のデータを計算機13でFFT解析を主体とし
たディジタル信号処理をして周波数特性を計測して、そ
の結果をXYプロッタ14に出力する。
The output of the sampling head 10 is A /
Although the A / D conversion is performed by the D converter 11, since the input waveform is converted into the low-speed sampling waveform, the high precision A / D converter 11 can be used. This A / D
The output data of the converter 11 is stored in the memory 12. In addition, the sampling head 10 of the sampling system, the A / D
The converter 11 and the memory 12 operate at the sampling frequency f
Stipulated by A / temporarily stored in the memory 12
The data after D conversion is subjected to digital signal processing mainly by FFT analysis by the computer 13 to measure frequency characteristics, and the result is output to the XY plotter 14.

【0015】図3(a)、(b)、(c)は、図1の周
波数特性測定法の説明図である。図3(a)〜(c)に
おいて、縦軸は信号の振幅を示し、横軸は周波数を示
し、図3(a)は、被試験デバイス入力パルス波形の周
波数スペクトラム、図3(b)は被試験デバイス出力パ
ルス波形の周波数スペクトラム、図3(c)は被試験デ
バイスの周波数特性である。まず、図1のスイッチSW
1を閉じてパルス発生器8の発生パルス波形を直接にサ
ンプリングヘッド10でサンプリングしたサンプリング
波形のデータを計算機13でFFT解析主体の信号処理
して図3(a)に示す入力波形の周波数スペクトラムを
求め、ついでスイッチSW1を開いて被試験デバイス9
を挿入したときの出力パルス波形をサンプリングヘッド
10でサンプリングしたサンプリング波形のデータを信
号処理して図3(b)に示す出力波形の周波数スペクト
ラムを求めた後、図3(a)と図3(b)の被試験デバ
イス挿入前後の周波数スペクトラムのクロススペクトラ
ムを算出して図3(c)に示す被試験デバイス9の振幅
の周波数特性が推定できる。
3 (a), 3 (b) and 3 (c) are explanatory views of the frequency characteristic measuring method of FIG. 3A to 3C, the vertical axis represents signal amplitude, the horizontal axis represents frequency, FIG. 3A is the frequency spectrum of the input pulse waveform of the device under test, and FIG. The frequency spectrum of the output pulse waveform of the device under test is shown in FIG. 3 (c). First, the switch SW of FIG.
1 is closed and the pulse waveform generated by the pulse generator 8 is directly sampled by the sampling head 10 and the data of the sampling waveform is subjected to signal processing mainly by the FFT analysis by the computer 13 to obtain the frequency spectrum of the input waveform shown in FIG. Then, switch SW1 is opened and the device under test 9
3A and FIG. 3A after obtaining the frequency spectrum of the output waveform shown in FIG. 3B by processing the data of the sampling waveform obtained by sampling the output pulse waveform when the The frequency spectrum of the amplitude of the device under test 9 shown in FIG. 3C can be estimated by calculating the cross spectrum of the frequency spectrum before and after the device under test insertion in b).

【0016】なおこの実施例では一系統のサンプリング
系を用いて測定しているが、被試験デバイスの入出力信
号を別々のサンプリング系を用いて測定することもでき
る。
In this embodiment, one system of sampling system is used for measurement, but the input / output signals of the device under test can be measured by using different sampling systems.

【0017】このように本実施例によれば、サンプリン
グ波形の精度がビート周波数の安定度のみによって決ま
るため、周波数シンセサイザ6、7に周波数安定度の高
いものを使用すればサンプリング系の直線性向上が可能
となるとともに、サンプリングヘッド10に広帯域特性
をもつものを使用することで、高精度での超高周波領域
での周波数特性測定が実現できる。
As described above, according to this embodiment, the accuracy of the sampling waveform is determined only by the stability of the beat frequency. Therefore, if the frequency synthesizers 6 and 7 having high frequency stability are used, the linearity of the sampling system is improved. In addition, by using the sampling head 10 having a wide band characteristic, it is possible to realize highly accurate frequency characteristic measurement in an ultra high frequency region.

【0018】[0018]

【発明の効果】本発明によれば、広帯域における電子回
路網の高速かつ高精度の周波数特性計測が可能となる。
According to the present invention, it is possible to measure frequency characteristics of an electronic circuit network in a wide band at high speed and with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による周波数特性計測法の一実施例を示
す測定システムのブロック図、
FIG. 1 is a block diagram of a measurement system showing an embodiment of a frequency characteristic measuring method according to the present invention,

【図2】図1のサンプリング動作の説明図、2 is an explanatory diagram of the sampling operation of FIG. 1,

【図3】図1の周波数特性測定法を説明する各入力周波
数スペクトラム、出力周波数スペクトラム、周波数特性
図、
FIG. 3 is an input frequency spectrum, an output frequency spectrum, and a frequency characteristic diagram for explaining the frequency characteristic measuring method of FIG.

【図4】従来の周波数特性測定法を例示する測定システ
ムの説明図、
FIG. 4 is an explanatory diagram of a measurement system illustrating a conventional frequency characteristic measuring method,

【図5】図4の各ランダム雑音、周波数特性図。FIG. 5 is a diagram of each random noise and frequency characteristic of FIG.

【符号の説明】[Explanation of symbols]

5…基準周波数発振器、6、7…周波数シンセサイザ、
8…パルス発生器、9…被試験デバイス、10…サンプ
リングヘッド、11…A/D変換器、12…メモリ、1
3…計算機、14…XYプロッタ。
5 ... Reference frequency oscillator, 6, 7 ... Frequency synthesizer,
8 ... Pulse generator, 9 ... Device under test, 10 ... Sampling head, 11 ... A / D converter, 12 ... Memory, 1
3 ... Calculator, 14 ... XY plotter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】繰り返しパルスを被測定回路網に通して、
その入出力パルス波形を前記繰り返しパルスの繰り返し
周波数とサンプリング周波数の整数倍の周波数との間に
ビート周波数が生じるように設定された前記サンプリン
グ周波数でサンプリングし、そのサンプリングデータか
ら前記入出力パルス波形の周波数スペクトラムを演算す
ることで前記被測定回路の周波数特性を測定するように
したことを特徴とする周波数特性測定法。
1. A repetitive pulse is passed through a network under test,
The input / output pulse waveform is sampled at the sampling frequency set so that a beat frequency is generated between the repeating frequency of the repeating pulse and a frequency that is an integral multiple of the sampling frequency, and the input / output pulse waveform of the input / output pulse waveform is obtained from the sampling data. A frequency characteristic measuring method, characterized in that the frequency characteristic of the circuit under measurement is measured by calculating a frequency spectrum.
JP3245491A 1991-09-25 1991-09-25 Measuring method of frequency characteristic Pending JPH0580091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245491A JPH0580091A (en) 1991-09-25 1991-09-25 Measuring method of frequency characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245491A JPH0580091A (en) 1991-09-25 1991-09-25 Measuring method of frequency characteristic

Publications (1)

Publication Number Publication Date
JPH0580091A true JPH0580091A (en) 1993-03-30

Family

ID=17134454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245491A Pending JPH0580091A (en) 1991-09-25 1991-09-25 Measuring method of frequency characteristic

Country Status (1)

Country Link
JP (1) JPH0580091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522167A (en) * 2001-06-29 2004-07-22 テラダイン・インコーポレーテッド Techniques for determining the power spectrum of small leaks of non-coherent sampling data
CN103217600A (en) * 2013-03-15 2013-07-24 深圳市三奇科技有限公司 Testing device and testing method of aging rate of frequency devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522167A (en) * 2001-06-29 2004-07-22 テラダイン・インコーポレーテッド Techniques for determining the power spectrum of small leaks of non-coherent sampling data
CN103217600A (en) * 2013-03-15 2013-07-24 深圳市三奇科技有限公司 Testing device and testing method of aging rate of frequency devices

Similar Documents

Publication Publication Date Title
JP5232388B2 (en) Broadband signal analyzer, broadband periodic jitter analyzer, broadband skew analyzer, broadband signal analysis method, and test system
Hidalgo et al. A simple adjustable window algorithm to improve FFT measurements
US7801505B2 (en) Multipulse/multitone mixing receiver
TWI395955B (en) Probability density function separating apparatus, probability density function separating method, testing apparatus, bit error rate measuring apparatus, electronic device, and program
CN110837002B (en) Spectrum scanning measuring device and time domain waveform obtaining method
JP5066073B2 (en) Measuring apparatus, measuring method, test apparatus, test method, and electronic device
Choi et al. Signal acquisition of high-speed periodic signals using incoherent sub-sampling and back-end signal reconstruction algorithms
JPH0630444B2 (en) A / D converter test method
CN101558568B (en) Information processing equipment and method for repeating signal processing
US20020136337A1 (en) Method and apparatus for high-resolution jitter measurement
CN114184099B (en) Method and device for measuring fuze time delay
JPH0580091A (en) Measuring method of frequency characteristic
JPH06506057A (en) Method for determining the transmission characteristics of electrical conductors
US4860227A (en) Circuit for measuring characteristics of a device under test
US6281819B1 (en) Device for ENOB estimation for ADC's based on dynamic deviation and method therefor
Liu et al. An ENOB Evaluation Method for an Acquisition Channel
Raze et al. Non coherent spectral analysis of ADC using FFT windows: An alternative approach
Sonnaillon et al. Implementation of a high-frequency digital lock-in amplifier
Belega et al. Choice of the window used in the interpolated discrete Fourier transform method
JPS63117270A (en) Transmission characteristic measurement
Mishra et al. Determination of Nonlinearity and Effective Resolution of an A/D Converter for Arbitrary Application Input
Mirri et al. Implementation and performance evaluation of a broadband digital harmonic vector voltmeter
Artyukh A method for continuous superprecise time-interval measurement
Belega et al. Choice of the acquisition parameters for frequency estimation of a sine wave by interpolated DFT method
JPH04172271A (en) Virtual measuring device, digital-signal processing device, electronic-device adjusting apparatus and semiconductor testing apparatus