JPH0579835A - Cantilever for interatomic-force microscope and manufacture thereof - Google Patents

Cantilever for interatomic-force microscope and manufacture thereof

Info

Publication number
JPH0579835A
JPH0579835A JP5466592A JP5466592A JPH0579835A JP H0579835 A JPH0579835 A JP H0579835A JP 5466592 A JP5466592 A JP 5466592A JP 5466592 A JP5466592 A JP 5466592A JP H0579835 A JPH0579835 A JP H0579835A
Authority
JP
Japan
Prior art keywords
cantilever
force microscope
probe
needle
atomic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5466592A
Other languages
Japanese (ja)
Other versions
JP2653313B2 (en
Inventor
Hiroyuki Kado
博行 加道
Takao Toda
隆夫 任田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4054665A priority Critical patent/JP2653313B2/en
Priority to EP92111956A priority patent/EP0530473B1/en
Priority to DE69208979T priority patent/DE69208979T2/en
Publication of JPH0579835A publication Critical patent/JPH0579835A/en
Priority to US08/201,087 priority patent/US5357787A/en
Application granted granted Critical
Publication of JP2653313B2 publication Critical patent/JP2653313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cantilever for accurately measuring a sample, which has the relatively large aspect ratio of a groove shape or the like oxide and has the irregularities. CONSTITUTION:A tetrapod-shaped structure 2, wherein needle crystals of zinc oxide are extending into the four apexes from the center of a regular tetrahedron, is provided at the tip part of a cantilever 1 for an interatomic-force microscope. The needle crystal is used as a probe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡(以後
AFMと記す)用カンチレバーとその製造方法に関し、
とりわけ先端曲率が小さく、アスペクト比の大きい探針
を有するAFM用カンチレバーとその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cantilever for an atomic force microscope (hereinafter referred to as AFM) and a manufacturing method thereof,
In particular, the present invention relates to an AFM cantilever having a probe having a small tip curvature and a large aspect ratio, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、固体表面を原子オーダで観察でき
る装置としてAFMが開発されている。AFMでは微小
な力を検出するために、図5に示すような探針9を有す
る長さ100μmから200μm程度のカンチレバー1
0が必要である。従来、この探針としては、カンチレバ
ー先端のエッジ部分を探針として用いたもの、結晶のエ
ッチピットを鋳型として利用し作製したもの、異方性エ
ッチングにより作製したもの[ジャーナル・オブ・バキ
ューム・サイエンス・アンド・テクノロジーA8(1990年)
第3386頁から3396頁(J. Vac. Sci. Technol. A8, 3386-
3396, 1990)]等が使用されている。AFMの分解能は
前記探針の先端曲率半径に依存し、曲率半径が小さいほ
ど分解能は上がる。現在のところ20nmから30nm
の曲率半径の探針が作製され、このカンチレバーを用い
てマイカ等の原子像が観察されている。
2. Description of the Related Art In recent years, an AFM has been developed as an apparatus for observing a solid surface in atomic order. In the AFM, in order to detect a minute force, a cantilever 1 having a probe 9 as shown in FIG.
0 is required. Conventionally, this probe uses the edge part of the cantilever tip as a probe, one produced by using crystal etch pits as a mold, one produced by anisotropic etching [Journal of Vacuum Science And Technology A8 (1990)
Pages 3386 to 3396 (J. Vac. Sci. Technol. A8, 3386-
3396, 1990)] etc. are used. The resolution of the AFM depends on the radius of curvature of the tip of the probe, and the smaller the radius of curvature, the higher the resolution. Currently 20nm to 30nm
A probe with a radius of curvature of is prepared and an atomic image of mica or the like is observed using this cantilever.

【0003】[0003]

【発明が解決しようとする課題】しかし、AFMの用途
としては、試料表面の原子レベルでの観察と同時に、ナ
ノメータあるいはミクロンオーダでの凹凸の大きな試料
観察がある。このような試料観察の場合、特にグレーテ
ィング等の深い溝形状を有する試料では、前記のような
探針では、探針が溝部の底まで届かず正確な形状測定が
困難であった。
However, the application of the AFM is not only observation of the sample surface at the atomic level, but also observation of the sample having large irregularities on the order of nanometers or microns. In the case of such sample observation, particularly in the case of a sample having a deep groove shape such as a grating, the above-described probe cannot reach the bottom of the groove portion, and accurate shape measurement is difficult.

【0004】したがって、このような用途においては、
探針の先端曲率が小さいのと同時に、溝部の底まで届く
ような、細長い形状の探針を有するカンチレバーが要望
されている。
Therefore, in such an application,
There is a demand for a cantilever having an elongated probe that can reach the bottom of the groove while having a small tip curvature.

【0005】本発明は、このような従来のAFM用カン
チレバーの問題を解決するため、深い溝形状を有するよ
うな試料でも、精度良く観察することが可能な、高アス
ペクト比でしかも先端曲率が極めて小さい探針を有する
AFM用カンチレバーとその製造方法を提供することを
目的とする。
In order to solve the problem of the conventional cantilever for AFM, the present invention enables a sample having a deep groove shape to be accurately observed, has a high aspect ratio, and has a very tip curvature. An object of the present invention is to provide an AFM cantilever having a small probe and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明のAFM用カンチレバーは、少なくとも一部
分に直線状の針状結晶を含む形状の構造体で形成された
探針を有する構造である。
In order to achieve the above object, the cantilever for AFM of the present invention has a structure having a probe formed at least in part with a structure having a linear needle crystal. is there.

【0007】特に前記構造体は、酸化亜鉛またはセレン
化亜鉛を主成分とする針状結晶が、正四面体の体心から
4頂点方向に延びたテトラポッド形状を有する構造体で
あることが好ましい。
[0007] In particular, it is preferable that the structure has a tetrapod shape in which needle-shaped crystals containing zinc oxide or zinc selenide as a main component extend from the body center of a regular tetrahedron in the four vertex directions.

【0008】また、本発明の原子間力顕微鏡用カンチレ
バーの製造方法は、少なくともカンチレバー先端部に接
着剤を塗布した後、前記カンチレバーをほぼ水平に保持
した状態で、前記接着剤上に少なくとも4本以上の針状
結晶を組み合わせた形状を有する構造体を置き、接着さ
せるという構成を備えたものである。
Further, in the method for manufacturing a cantilever for an atomic force microscope of the present invention, at least four cantilevers are applied on the adhesive after the adhesive is applied to at least the tip of the cantilever and the cantilever is held substantially horizontally. A structure having a shape obtained by combining the above needle-like crystals is placed and adhered.

【0009】[0009]

【作用】前記本発明の構造によれば、カンチレバーに設
けられた探針が、高アスペクト比でしかも先端曲率が極
めて小さい形状であるため、従来のカンチレバーでは探
針側面等が溝上部の角に接触し精度良く測定できなかっ
たような深い溝形状の試料でも、底面まで探針が届き、
精度よく観察できるAFMが得られる。
According to the structure of the present invention, since the probe provided on the cantilever has a shape with a high aspect ratio and a very small tip curvature, in the conventional cantilever, the side surface of the probe is located at the upper corner of the groove. Even with deep groove-shaped samples that come into contact and could not be measured accurately, the probe reaches the bottom surface,
An AFM that can be accurately observed is obtained.

【0010】特に、酸化亜鉛やセレン化亜鉛を針状結晶
の主成分とするテトラポッド形状の三次元構造体をもち
いれば、探針となる一本の針状結晶をカンチレバーに対
して垂直に取り付けることが比較的容易にできる。ま
た、カンチレバーと探針の取り付け部分が、残りの三本
の針状結晶の先端部の三箇所となるため、機械的強度も
強くなり、安定なカンチレバーが得られる。
In particular, if a tetrapod-shaped three-dimensional structure containing zinc oxide or zinc selenide as a main component of a needle-shaped crystal is used, one needle-shaped crystal serving as a probe is perpendicular to the cantilever. It can be installed relatively easily. Further, since the mounting portions of the cantilever and the probe are at three positions of the tip portions of the remaining three needle-shaped crystals, the mechanical strength becomes strong and a stable cantilever can be obtained.

【0011】また、本発明の製造方法によれば、前記三
次元構造体を比較的簡単に、カンチレバーに取り付ける
ことが可能となる。
According to the manufacturing method of the present invention, the three-dimensional structure can be attached to the cantilever relatively easily.

【0012】[0012]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0013】図1は、本発明のAFM用カンチレバーの
概略図である。カンチレバー1の先端部分に、酸化亜鉛
の針状結晶で構成されたテトラポッド形状の構造体2を
設け、前記カンチレバーに垂直な針状結晶を探針として
用いる。前記AFM用カンチレバーの製造方法を図2に
示す。フォトリソグラフィーにより作製した長さ100
μm、厚さ1.5μmのV型のSiO2薄膜カンチレバー
1の先端部分に、金属針を用いてエポキシ樹脂の接着剤
3を塗布する(図2(a))。その後、前記カンチレバ
ーをほぼ水平に保持し、前記接着剤上に、金属針を用い
て1つの酸化亜鉛の針状結晶の長さが5μmから30μ
mのテトラポッド形状の構造体2を置き、接着した(図
2(b))。前記構造体は、気相成長により作製した。
前記構造体は、正四面体の体心から4頂点方向に針状結
晶が延びたテトラポッド形の三次元構造の結晶であるた
め、カンチレバーに取り付ける際に、前記構造体をカン
チレバー上に置くことで、自然に1つの針状結晶をカン
チレバーに対して垂直に設置でき、前記針状結晶を探針
として用いることができる。
FIG. 1 is a schematic view of an AFM cantilever according to the present invention. A tetrapod-shaped structure 2 made of acicular crystals of zinc oxide is provided at the tip of the cantilever 1, and the acicular crystals perpendicular to the cantilever are used as a probe. A method for manufacturing the cantilever for AFM is shown in FIG. Length 100 made by photolithography
An epoxy resin adhesive 3 is applied to the tip of a V-shaped SiO 2 thin film cantilever 1 having a thickness of μm and a thickness of 1.5 μm by using a metal needle (FIG. 2A). After that, the cantilever is held substantially horizontally, and one zinc oxide needle crystal having a length of 5 μm to 30 μ is placed on the adhesive using a metal needle.
The tetrapod-shaped structure 2 of m was placed and adhered (FIG. 2 (b)). The structure was prepared by vapor phase growth.
Since the structure is a tetrapod-shaped three-dimensional crystal in which needle-like crystals extend from the body center of a tetrahedron in the directions of the four vertices, the structure can be placed on the cantilever when attached to the cantilever. Naturally, one needle crystal can be installed vertically to the cantilever, and the needle crystal can be used as a probe.

【0014】このカンチレバーをAFMに組み込み、深
さ1μm、幅1μmの溝形状を有する試料の観察を行
い、Siのエッチピットを鋳型としてSi34で探針を
作製した従来のカンチレバーとの比較を行った。従来の
カンチレバーの場合、探針形状は、Si(100)面の
エッチピット形状で決定され、頂角が70度のピラミッ
ド形状となる。従ってこの探針を有するカンチレバーで
溝部を矢印の方向へ走査すれば、図3に示すように、探
針4が溝の底まで届かず、破線で示したような実際の試
料5の表面形状とは異なる像6が得られた。一方、酸化
亜鉛の針状結晶を探針として有するカンチレバーでは、
図4に示すように、針状結晶の探針7が溝の底まで達
し、試料5の表面形状に忠実な像8が得られた。
This cantilever was incorporated into an AFM, a sample having a groove shape with a depth of 1 μm and a width of 1 μm was observed, and a comparison was made with a conventional cantilever in which a probe was made of Si 3 N 4 using Si etch pits as a template. I went. In the case of the conventional cantilever, the probe shape is determined by the etch pit shape of the Si (100) surface and has a pyramid shape with an apex angle of 70 degrees. Therefore, if the groove portion is scanned in the direction of the arrow with the cantilever having this probe, the probe 4 does not reach the bottom of the groove as shown in FIG. 3, and the actual surface shape of the sample 5 as shown by the broken line is obtained. A different image 6 was obtained. On the other hand, in a cantilever having a needle-shaped crystal of zinc oxide as a probe,
As shown in FIG. 4, the needle-shaped crystal probe 7 reached the bottom of the groove, and an image 8 faithful to the surface shape of the sample 5 was obtained.

【0015】なお、前記テトラポッド形状の構造体を作
製すること自体は、たとえば亜鉛微粒子表面を水中で酸
化後、酸素雰囲気中で加熱する方法[ジャーナル・オブ
・クリスタル・グロース102(1990年)第965頁から第973
頁(J. Crystal Growth 102, 965-973, 1990)]などが知
られているが、本発明方法はこのような公知の技術を広
く応用することもできる。
The production of the tetrapod-shaped structure itself is performed by, for example, a method of oxidizing the surface of zinc fine particles in water and then heating in an oxygen atmosphere [Journal of Crystal Growth 102 (1990) No. Pages 965 to 973
Page (J. Crystal Growth 102, 965-973, 1990)] and the like are known, but the method of the present invention can widely apply such known techniques.

【0016】また、本実施例では、カンチレバー材料に
SiO2薄膜を用いたが、Si34薄膜や、タングステ
ンや金などの金属薄膜を用いることができる。
Further, in this embodiment, the SiO 2 thin film is used as the cantilever material, but a Si 3 N 4 thin film or a metal thin film such as tungsten or gold can be used.

【0017】さらに、テトラポッド形状の3次元構造体
としては、針状結晶が酸化亜鉛を主成分とするものだけ
ではなく、セレン化亜鉛を主成分とするものを用いても
同様の効果が得られる。
Further, as the tetrapod-shaped three-dimensional structure, not only the acicular crystals containing zinc oxide as a main component, but also those having zinc selenide as a main component can obtain the same effect. Be done.

【0018】さらに、カンチレバーに接着する探針とし
ては、SiC、Al23、W、黒鉛、Fe、Cu、B、
Sn、Pb、In、チタン酸カリウム等の機械的強度の
強い針状結晶で形成された構造体を用いることができ
る。ただし、これらのは構造体は、二次元針状結晶であ
るため、カンチレバーの作製歩止まりは、テトラポッド
形状の構造体に比べ悪くなる。
Further, as the probe adhered to the cantilever, SiC, Al 2 O 3 , W, graphite, Fe, Cu, B,
A structure formed of a needle-shaped crystal having high mechanical strength such as Sn, Pb, In, or potassium titanate can be used. However, since these structures are two-dimensional needle crystals, the production yield of the cantilever is worse than that of the tetrapod-shaped structures.

【0019】[0019]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、高アスペクト比で先端曲率が非常に小
さい探針を有するカンチレバーが得られ、前記カンチレ
バーを用いることでグレーティング等の深い溝形状を有
する試料を精度よく測定することが可能になった。
As is clear from the above description,
According to the present invention, a cantilever having a probe having a high aspect ratio and a very small tip curvature can be obtained, and by using the cantilever, it is possible to accurately measure a sample having a deep groove shape such as a grating. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる実施例の原子間力顕微鏡用カン
チレバーの概略図
FIG. 1 is a schematic view of an atomic force microscope cantilever according to an embodiment of the present invention.

【図2】本発明にかかる実施例の原子間力顕微鏡用カン
チレバーの製造方法の説明図
FIG. 2 is an explanatory view of a method for manufacturing a cantilever for an atomic force microscope according to an embodiment of the present invention.

【図3】従来のカンチレバーで得られたAFM像の説明
FIG. 3 is an explanatory diagram of an AFM image obtained by a conventional cantilever.

【図4】本発明にかかる実施例のカンチレバーで得られ
たAFM像の説明図
FIG. 4 is an explanatory diagram of an AFM image obtained by a cantilever of an example according to the present invention.

【図5】従来の原子間力顕微鏡用カンチレバーの概略図FIG. 5 is a schematic view of a conventional cantilever for an atomic force microscope.

【符号の説明】[Explanation of symbols]

1 カンチレバー 2 テトラポッド形状の構造体 3 接着剤 4 Si34探針 5 試料 6 AFM像 7 酸化亜鉛針状結晶探針 8 AFM像 9 探針 10 カンチレバー1 cantilever 2 tetrapod-shaped structure 3 adhesive 4 Si 3 N 4 probe 5 sample 6 AFM image 7 zinc oxide needle crystal probe 8 AFM image 9 probe 10 cantilever

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一部分に直線状の針状結晶を含
む構造体で形成された探針を具備していることを特徴と
する原子間力顕微鏡用カンチレバー。
1. A cantilever for an atomic force microscope, comprising a probe formed of a structure containing a linear needle crystal in at least a part thereof.
【請求項2】構造体が、少なくとも4本の針状結晶を組
み合わせた形状を有することを特徴とする請求項1に記
載の原子間力顕微鏡用カンチレバー。
2. The cantilever for an atomic force microscope according to claim 1, wherein the structure has a shape in which at least four needle crystals are combined.
【請求項3】構造体が、正四面体の体心から4頂点方向
に針状結晶が延びたテトラポッド形状を有することを特
徴とする請求項1または2に記載の原子間力顕微鏡用カ
ンチレバー。
3. The cantilever for an atomic force microscope according to claim 1, wherein the structure has a tetrapod shape in which needle crystals extend from the body center of a regular tetrahedron in the directions of four vertices.
【請求項4】針状結晶が、酸化亜鉛を主成分とすること
を特徴とする請求項1から3のいずれかに記載の原子間
力顕微鏡用カンチレバー。
4. The cantilever for an atomic force microscope according to claim 1, wherein the needle-shaped crystal contains zinc oxide as a main component.
【請求項5】針状結晶が、セレン化亜鉛を主成分とする
ことを特徴とする請求項1から3のいずれかに記載の原
子間力顕微鏡用カンチレバー。
5. The cantilever for an atomic force microscope according to claim 1, wherein the acicular crystal contains zinc selenide as a main component.
【請求項6】カンチレバー先端部に接着剤を塗布した
後、前記カンチレバーをほぼ水平に保持した状態で、前
記接着剤上に、少なくとも4本の針状結晶を組み合わせ
た形状を有する構造体を置き、接着させることを特徴と
する原子間力顕微鏡用カンチレバーの製造方法。
6. After applying an adhesive to the tip of the cantilever, a structure having a shape in which at least four needle crystals are combined is placed on the adhesive while the cantilever is held substantially horizontally. And a method of manufacturing a cantilever for an atomic force microscope, which is characterized by bonding.
JP4054665A 1991-07-15 1992-03-13 Cantilever for atomic force microscope and method of manufacturing the same Expired - Fee Related JP2653313B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4054665A JP2653313B2 (en) 1991-07-15 1992-03-13 Cantilever for atomic force microscope and method of manufacturing the same
EP92111956A EP0530473B1 (en) 1991-07-15 1992-07-14 Cantilever for atomic force microscope and method of manufacturing the same
DE69208979T DE69208979T2 (en) 1991-07-15 1992-07-14 Cantilever cantilever for atomic force microscope and method for its production
US08/201,087 US5357787A (en) 1991-07-15 1994-02-24 Cantilever for atomic force microscope and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-173709 1991-07-15
JP17370991 1991-07-15
JP4054665A JP2653313B2 (en) 1991-07-15 1992-03-13 Cantilever for atomic force microscope and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0579835A true JPH0579835A (en) 1993-03-30
JP2653313B2 JP2653313B2 (en) 1997-09-17

Family

ID=26395468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054665A Expired - Fee Related JP2653313B2 (en) 1991-07-15 1992-03-13 Cantilever for atomic force microscope and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2653313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113307A (en) * 1991-03-11 1993-05-07 Hitachi Ltd Manufacture of deep hole probe and analyzing apparatus using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113307A (en) * 1991-03-11 1993-05-07 Hitachi Ltd Manufacture of deep hole probe and analyzing apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same

Also Published As

Publication number Publication date
JP2653313B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JP2624873B2 (en) Atomic force microscope probe and method of manufacturing the same
US5580827A (en) Casting sharpened microminiature tips
US4916002A (en) Microcasting of microminiature tips
US5357787A (en) Cantilever for atomic force microscope and method of manufacturing the same
JPH08313541A (en) Cantilever for scanning probe microscope and its manufacture
EP0619872A1 (en) Piezoresistive cantilever for atomic force microscopy.
JP4656761B2 (en) SPM cantilever
JPH05332713A (en) Probe for scanning tunnel microscope and its manufacture
Heinzelmann et al. Atomic force microscopy: General aspects and application to insulators
JPH11503516A (en) Stress cell for scanning probe microscope
US6415653B1 (en) Cantilever for use in a scanning probe microscope
JPH01262403A (en) Probe and its manufacture
US20070040117A1 (en) Standard specimen for probe shape evaluation and method for evaluating probe shape
DE10007617B4 (en) Characterization of magnetic fields
JP2653313B2 (en) Cantilever for atomic force microscope and method of manufacturing the same
Itoh et al. Fabrication of an ultrasharp and high‐aspect‐ratio microprobe with a silicon‐on‐insulator wafer for scanning force microscopy
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
Meyer et al. Structure and dynamics of solid surfaces observed by atomic force microscopy
JP3599880B2 (en) Cantilever tip
Jinkins et al. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy
JPH06123621A (en) Cantilever with probe for interatomic force microscope
JP2725741B2 (en) Micro surface hardness measuring device
Quate SCANNING TUNNELING MICROSCOPY
JPH05231860A (en) Interatomic force microscope and its scanning method
JP2622322B2 (en) Method of manufacturing probe for atomic force microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees