JPH0579816A - Length measuring interferometer - Google Patents

Length measuring interferometer

Info

Publication number
JPH0579816A
JPH0579816A JP3241766A JP24176691A JPH0579816A JP H0579816 A JPH0579816 A JP H0579816A JP 3241766 A JP3241766 A JP 3241766A JP 24176691 A JP24176691 A JP 24176691A JP H0579816 A JPH0579816 A JP H0579816A
Authority
JP
Japan
Prior art keywords
light
lens
lenses
optical element
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3241766A
Other languages
Japanese (ja)
Other versions
JP3003964B2 (en
Inventor
Yorio Wada
順雄 和田
Arinori Tokuhashi
有紀 徳橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3241766A priority Critical patent/JP3003964B2/en
Publication of JPH0579816A publication Critical patent/JPH0579816A/en
Application granted granted Critical
Publication of JP3003964B2 publication Critical patent/JP3003964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To make a splitting optical element such as a polarizing prism small and to facilitate optical alignment without using a corner cube by obliquely casting convergent light into a length measuring interferometer. CONSTITUTION:The parallel luminous flux of incident light 1 containing two polarized-light components (linear polarized-light components which are mutually vibrated in the perpendicular direction within the vertical plane in the advancing direction of light) is condensed with a first lens 2 and obliquely cast into a splitting optical element 3. The transmitting and reflecting divergent lights, which are split in the element 3, are made to be the parallel luminous fluxes through second and third lenses 5 and 11. The luminous fluxes are cast into a vertically located moving mirror 7 and a fixed mirror 13 through 1/4-wavelength plates 6 and 12. The measuring light and the reference light of the parallel luminous fluxes reflected from the mirrors pass through the same wavelength plates 6 and 12 and the lenses 5 and 11 and become the convergent lights. The cat's eyes are formed, respectively, with a reflecting mirror 8 provided at a converging point and the lenses 5 and 11. Thus, the interval between the respective beams of the measuring light and the reference light can be widely set arbitrarily, and the alignment of the optical system is made easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,測長用干渉計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for length measurement.

【0002】[0002]

【従来の技術】従来、測長用干渉計については様々な方
式の提案が成されてきた。最も基本的な構成としては、
1/2波長毎の干渉縞(フリンジ)を検出し、このフリ
ジン数を計数することにより移動距離を測定するマイケ
ルソン干渉計がある。
2. Description of the Related Art Conventionally, various types of interferometers for length measurement have been proposed. The most basic configuration is
There is a Michelson interferometer that measures a moving distance by detecting interference fringes (fringes) for each ½ wavelength and counting the number of frizines.

【0003】更に、S.J.Bennett によって
提案された所謂ダブルパス型の干渉計がある。これは1
フリンジが1/4波長に相当するため、前述のマイケル
ソン干渉計に比べ感度を倍にできるものである。(S.
J.Bennett Optics Communic
ation, vol.4(1972))
Furthermore, S. J. There is a so-called double pass type interferometer proposed by Bennett. This is 1
Since the fringe corresponds to a quarter wavelength, the sensitivity can be doubled as compared with the Michelson interferometer described above. (S.
J. Bennett Optics Communic
ation, vol. 4 (1972))

【0004】図6に基づき、前記Bennett干渉計
について説明する。入射光1は2っの偏光成分(光の進
行方向に垂直な面内で互いに直角方向に振動する直線偏
光成分)を含んでおり、今、入射方向を含む面で振動す
る偏光成分を実線で示し1aとし、これと直交して振動
する偏光成分を破線で示し1bとして説明する。偏光成
分1aは偏光プリズム3の偏光膜4を透過して1/4波
長板6を通って移動鏡7で反射し、再び1/4波長板6
を通り偏光プリズム3に戻る。偏光成分1aは1/4波
長板6を2回通過したので、振動面が90°回転してい
るため、偏光プリズム3の偏光膜4で反射されてコーナ
ーキューブ19に向かい、ここで反射され偏光プリズム
3の偏光膜4で反射されて、再び1/4波長板6を通り
移動鏡7に当たり、また1/4波長板6を通り偏光プリ
ズム3に戻る。ここで偏光成分1aはさらに1/4波長
板6を2度通過したので、振動面が90°回転するた
め、今度は偏光プリズム3を透過して測定光1aとして
図示しない干渉縞検出部に向かう。
The Bennett interferometer will be described with reference to FIG. Incident light 1 contains two polarization components (linear polarization components that oscillate in directions perpendicular to each other in a plane perpendicular to the traveling direction of light), and now the polarization component that oscillates in a plane including the incidence direction is indicated by a solid line. The polarization component oscillating in the orthogonal direction is shown as a broken line 1b. The polarization component 1a passes through the polarization film 4 of the polarization prism 3, passes through the quarter-wave plate 6 and is reflected by the moving mirror 7, and again returns to the quarter-wave plate 6 again.
And returns to the polarizing prism 3. Since the polarization component 1a has passed through the quarter-wave plate 6 twice, the vibrating surface is rotated by 90 °, so that the polarization component 1a is reflected by the polarization film 4 of the polarization prism 3 toward the corner cube 19 where it is reflected and polarized. The light is reflected by the polarizing film 4 of the prism 3, passes through the quarter-wave plate 6 again, hits the moving mirror 7, and returns to the polarizing prism 3 through the quarter-wave plate 6. Here, since the polarization component 1a has further passed through the quarter-wave plate 6 twice, the vibrating surface rotates by 90 °, and this time, the polarization component 3a passes through the polarization prism 3 and goes to the interference fringe detection unit (not shown) as measurement light 1a. ..

【0005】一方、前記偏光成分1aと直交する振動成
分の偏光成分1b(破線にて示す)は、偏光成分1aと
振動面の向きが90°異なるため、偏光プリズム3に於
ける透過、反射の関係が偏光成分1aとは正反対であ
り、破線に示す経路に沿って参照光1bとして干渉縞検
出部へ向かい、ここで偏光成分1a、1bとを干渉させ
ることで干渉縞ができることになる。
On the other hand, since the polarization component 1b (shown by a broken line) of the vibration component orthogonal to the polarization component 1a has a vibration surface direction different from that of the polarization component 1a by 90 °, transmission and reflection in the polarization prism 3 are caused. The relationship is exactly opposite to that of the polarized light component 1a, and the reference light beam 1b travels along the path indicated by the broken line to the interference fringe detection section, where interference with the polarized light components 1a and 1b causes interference fringes.

【0006】今、実線に示した経路を測定光路、破線で
示した経路を参照光路と呼ぶことにする。移動鏡7が偏
光プリズム3に近づく或いは遠去かるように図中で左右
に移動すると、参照光路長と測定光路長の差が変化する
ため干渉縞が移動する。この縞の数を数えると、移動縞
の移動距離(元の位置と移動後の位置との間の長さ)が
わかり、測長ができる。
Now, the path shown by the solid line will be called the measurement optical path, and the path shown by the broken line will be called the reference optical path. When the movable mirror 7 moves to the left or right in the drawing so as to move closer to or farther from the polarizing prism 3, the interference fringes move because the difference between the reference optical path length and the measurement optical path length changes. By counting the number of these stripes, the moving distance (the length between the original position and the position after the movement) of the moving stripes can be known and the length can be measured.

【0007】[0007]

【発明が解決しようとする課題】然し従来のこの様な干
渉計では、光源からの光を測定光と参照光とに分割する
ための半透鏡または偏光プリズム等の分割光学素子の有
効径は、測長ビーム径より大きくする必要がある。そこ
で、測長ビーム径を大きくしようとすれば光学素子自体
も大きくなり、装置全体が大型化してしまい、従ってコ
スト高とならざるを得ない。さらに、図6に示す如きダ
ブルパス型干渉計においても測長ビーム径やビーム間隔
を大きくしようとすると、偏光プリズム3やコーナーキ
ューブ19の有効径を大きくしなければならないと云う
問題は解消されない。
However, in such a conventional interferometer, the effective diameter of the splitting optical element such as a semi-transparent mirror or a polarizing prism for splitting the light from the light source into the measurement light and the reference light is It must be larger than the measuring beam diameter. Therefore, if an attempt is made to increase the measurement beam diameter, the optical element itself becomes large, and the entire apparatus becomes large, which inevitably results in high cost. Further, even in the double-pass type interferometer as shown in FIG. 6, the problem that the effective diameters of the polarizing prism 3 and the corner cube 19 must be increased cannot be solved if the length measurement beam diameter and the beam interval are increased.

【0008】本発明は、上記の問題を解消し、ダブルパ
ス型干渉計においても、測長ビーム径や、ビーム間隔よ
りも偏光プリズム径を小さくすることが出来、さらにコ
ーナーキューブを必要としなくて済む構成の干渉計を提
供することを目的とするものである。
The present invention solves the above-mentioned problems, and even in a double-pass type interferometer, the measuring beam diameter and the polarizing prism diameter can be made smaller than the beam interval, and a corner cube is not necessary. It is intended to provide an interferometer having a configuration.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明による測長用干渉計は、先ず、平行光束を集
光して分割光学素子へ傾斜して入射せしめる第1のレン
ズと、該分割光学素子にて分割された透過及び反射した
発散光をそれぞれ平行光束にする第2、第3のレンズ
と、該両レンズの後方の1/4波長板と、該波長板を出
射した平行光束の光軸に対し垂直に位置する固定及び可
動の反射鏡と、該反射鏡により反射した平行光束を再
び、前記1/4波長板、第2、第3のレンズを通過せし
めて収束光とし、該収束光の収束点に反射鏡を設け、該
反射鏡と第2、第3のレンズとにより夫々キャッツアイ
を構成せしめたことを特徴とし、更に、分割光学素子と
第2、第3のレンズを、焦点距離がその直径と等しい半
球レンズ2枚を偏光膜を介して球状に形成してなる光学
素子と置換してなることを特徴とするものである。
In order to achieve the above object, in the interferometer for length measurement according to the present invention, first, a first lens for converging a parallel light beam and making it enter a splitting optical element at an angle is provided. The second and third lenses that convert the transmitted and reflected divergent light beams split by the split optical element into parallel light beams, the quarter wavelength plate behind the both lenses, and the parallel light beam emitted from the wavelength plate. A fixed and movable reflecting mirror positioned perpendicular to the optical axis of the light beam, and a parallel light beam reflected by the reflecting mirror are again passed through the quarter-wave plate, the second and third lenses to be converged light. , A reflecting mirror is provided at the converging point of the convergent light, and a cat's eye is constituted by the reflecting mirror and the second and third lenses, respectively. Furthermore, the splitting optical element and the second and third lenses are provided. Two hemispherical lenses with a focal length equal to the diameter And it is characterized in that formed by replacing the optical element obtained by forming a spherical by.

【0010】[0010]

【作用】以上の通り、収束光を分割光学素子に対し斜め
から入射せしめ、収束した光束が最も集中している部分
に分割光学素子を用いることになるので、ダブルパス型
干渉計において、測定光および参照光のそれぞれのビー
ム間隔は、分割光学素子の有効径によらず、任意に広く
設定できる。また分割光学素子より出射した測定光、参
照光のそれぞれは発散光であり、これを平行光にするレ
ンズは同時に平行光の収束位置に設けられた反射鏡とキ
ャッツアイを構成し、従ってコーナーキューブを用いな
くても光学系のアライメントが容易になる。
As described above, the convergent light is obliquely incident on the split optical element, and the split optical element is used in the portion where the converged light flux is most concentrated. Therefore, in the double-pass interferometer, The respective beam intervals of the reference light can be set arbitrarily wide regardless of the effective diameter of the split optical element. Also, the measurement light and the reference light emitted from the splitting optical element are divergent light, and the lens that makes this parallel light simultaneously forms a reflecting mirror and a cat's eye provided at the converging position of the parallel light, and thus the corner cube. The alignment of the optical system becomes easy without using.

【0011】[0011]

【実施例】以下図1に基づき本発明による測長用干渉計
の実施例を詳説する。図示しない光源からの直線偏光の
平行光束1は、レンズ2によって収束光となり、分割光
学素子(半透鏡でも分割光学素子でも良いがここでは偏
光プリズムを使用する)3に対して斜めに入射する。こ
こでレンズ2の焦点位置に偏光プリズム3の一方の端面
3aが位置するように配置する。光束の一方は偏光膜4
を透過し、レンズ5により平行光束となり、1/4波長
板6を通り円偏光となった後に可動反射鏡7で反射され
る。反射光は再び1/4波長板6を経て直線偏光に変換
されるが、この時、偏光面が90°回転されるので、今
度は偏光膜4で反射する。この光束は収束光であり、そ
の収束位置に偏光プリズム3の別の端面3bが位置する
ようにしてある。この端面3bに反射鏡8を蒸着等で形
成すれば、この反射鏡8で反射された光は再び偏光膜4
で反射し、レンズ5で平行光となり、1/4波長板6を
通り、可動反射鏡7へと向かう。ここでレンズ5と反射
鏡8はキャッツアイを構成することになる。可動反射鏡
7で反射した光束は、今度は偏光膜4を透過して、レン
ズ9で平行光10となり、図示しない干渉縞検出部へと
向かう。この平行光束10を測定光とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a length measuring interferometer according to the present invention will be described in detail below with reference to FIG. A linearly polarized parallel light flux 1 from a light source (not shown) is converged by a lens 2 and obliquely enters a splitting optical element (a semi-transparent mirror or a splitting optical element, but a polarizing prism is used here) 3. Here, the one end surface 3a of the polarization prism 3 is arranged at the focal position of the lens 2. One of the light beams is the polarizing film 4
Through the lens 5, becomes a parallel light flux, passes through the quarter-wave plate 6 to become circularly polarized light, and is then reflected by the movable reflecting mirror 7. The reflected light passes through the quarter-wave plate 6 again and is converted into linearly polarized light. At this time, since the polarization plane is rotated by 90 °, this time it is reflected by the polarizing film 4. This light flux is convergent light, and another end surface 3b of the polarizing prism 3 is positioned at the convergent position. If the reflecting mirror 8 is formed on the end face 3b by vapor deposition or the like, the light reflected by the reflecting mirror 8 is again reflected by the polarizing film 4
Is reflected by the lens 5, becomes parallel light by the lens 5, passes through the quarter-wave plate 6, and travels toward the movable reflecting mirror 7. Here, the lens 5 and the reflecting mirror 8 form a cat's eye. The light beam reflected by the movable reflecting mirror 7 is transmitted through the polarizing film 4 this time, becomes parallel light 10 by the lens 9, and travels to an interference fringe detection unit (not shown). This parallel light flux 10 is used as measurement light.

【0012】一方、レンズ2から入射し偏光膜4で反射
した方の光束1はレンズ11で平行光になり、1/4波
長板12を経て、固定された参照鏡13で反射し、偏光
膜4を透過して偏光プリズム3の端面に形成された反射
鏡8に焦点を結ぶ。反射鏡8で反射された光は偏光膜4
を透過して、再びレンズ11、1/4波長板12を通
り、参照鏡13で反射する。ここでレンズ5と反射鏡8
の場合と同様に、レンズ11と反射鏡8はキャッツアイ
を構成している。参照鏡13での反射光は偏光膜4で反
射して、レンズ9で平行になる。この平行光束を参照光
とすると前述の測定光と干渉し、干渉縞検出部において
干渉縞が検出できる。
On the other hand, the light beam 1 which enters from the lens 2 and is reflected by the polarizing film 4 becomes parallel light by the lens 11, passes through the quarter-wave plate 12 and is reflected by the fixed reference mirror 13 to make the polarizing film. After passing through 4, the light is focused on the reflecting mirror 8 formed on the end face of the polarizing prism 3. The light reflected by the reflecting mirror 8 is the polarizing film 4
Through the lens 11 and the quarter-wave plate 12, and is reflected by the reference mirror 13. Here, the lens 5 and the reflecting mirror 8
Similarly to the case, the lens 11 and the reflecting mirror 8 form a cat's eye. The light reflected by the reference mirror 13 is reflected by the polarizing film 4 and becomes parallel by the lens 9. When this parallel light flux is used as the reference light, it interferes with the above-mentioned measurement light, and the interference fringes can be detected by the interference fringe detector.

【0013】図2は、本発明の第2の実施例を示すもの
であり、図1における2個のレンズ2、9の代わりに1
個のレンズ14を使用したものであり、この場合レンズ
枚数が削減できる。
FIG. 2 shows a second embodiment of the present invention, in which instead of the two lenses 2 and 9 shown in FIG.
In this case, the number of lenses can be reduced.

【0014】図3は、本発明の第3の実施例を示すもの
であり、図1における反射鏡8の位置を偏光プリズム3
の端面3aから離し、反射鏡15としたものである。こ
の場合、反射鏡15の反射面と偏光プリズム3の偏光膜
4との間隔が長くなるので、光束が偏光膜4に入射する
角度を小さくできる。
FIG. 3 shows a third embodiment of the present invention, in which the position of the reflecting mirror 8 in FIG.
The reflecting mirror 15 is separated from the end face 3a. In this case, since the distance between the reflecting surface of the reflecting mirror 15 and the polarizing film 4 of the polarizing prism 3 becomes long, the angle at which the light beam enters the polarizing film 4 can be reduced.

【0015】更に、図4は、本発明の第4の実施例を示
すものであり、偏光プリズム3に換えて半球レンズ16
a、16bを使用したものである。図において、前記半
球レンズ16a、16bは、偏光膜17を介して球状に
形成されており、かつそれぞれの焦点距離は半球の直径
と同じになっている。また、半球レンズ16bの外周に
凹面状の反射鏡18が備えられている。従って、この半
球レンズ16a、16bが、第1の実施例における偏光
プリズム3、レンズ5、11の機能を果たすことにな
り、これら光学素子を省略し得、コンパクトな干渉計を
提供することができる。そのうえ、2枚の半球レンズ1
6a、16bを回転自在に構成しておき、偏光膜4に入
射する光束の角度を変えられるようにしておけば、移動
鏡7、参照鏡13に光束が垂直に入射するよう調整する
のが極めて容易となり、光学的アライメントも簡単とな
る。
Further, FIG. 4 shows a fourth embodiment of the present invention, in which the hemispherical lens 16 is used in place of the polarizing prism 3.
a and 16b are used. In the figure, the hemispherical lenses 16a and 16b are formed in a spherical shape with a polarizing film 17 in between, and each focal length is the same as the diameter of the hemisphere. A concave reflecting mirror 18 is provided on the outer circumference of the hemispherical lens 16b. Therefore, the hemispherical lenses 16a and 16b fulfill the functions of the polarizing prism 3 and the lenses 5 and 11 in the first embodiment, these optical elements can be omitted, and a compact interferometer can be provided. .. Besides, two hemispherical lenses 1
If 6a and 16b are rotatably configured so that the angle of the light beam incident on the polarizing film 4 can be changed, it is extremely necessary to adjust the light beam to vertically enter the movable mirror 7 and the reference mirror 13. It becomes easier and the optical alignment becomes easier.

【0016】図5は、第4の実施例の変形例である。即
ち、第4の実施例においては、光束は偏光膜17の上下
を通っているが、この実施例では光束が偏光膜17に入
射する角度が上下で異なるので、偏光膜17で分割され
る光強度の割合が異なることになる。そこで、図5のよ
うに入射する光束が偏光膜17の左右を通るようにした
ことで、入射する光束の角度を同じにできると云う利点
がある。
FIG. 5 shows a modification of the fourth embodiment. That is, in the fourth embodiment, the light beam passes above and below the polarizing film 17, but in this embodiment, the angle at which the light beam enters the polarizing film 17 is different at the top and bottom, so the light split by the polarizing film 17 is different. The intensity ratio will be different. Therefore, as shown in FIG. 5, by making the incident light flux pass through the right and left sides of the polarizing film 17, there is an advantage that the angles of the incident light flux can be made the same.

【0017】[0017]

【発明の効果】本発明によれば、収束光を測長用干渉計
に対して斜めに入射せしめるようにしたので、偏光プリ
ズム等の分割光学素子を小さくすることができると共
に、コーナーキューブを用いなくても光学的アライメン
トが容易になる。また、測定光、参照光のそれぞれのビ
ーム間隔はプリズムの有効径によらず任意に広く設定で
きると云う新規の効果が期待され、コンパクトで低コス
トのダブルパス型の測長用干渉計を提供できる。
According to the present invention, since the convergent light is made incident obliquely on the interferometer for length measurement, it is possible to make the splitting optical element such as the polarizing prism small and use the corner cube. Optical alignment is facilitated without it. Further, a new effect is expected in that the beam spacing of each of the measurement light and the reference light can be set arbitrarily wide regardless of the effective diameter of the prism, and a compact and low-cost double-pass interferometer for length measurement can be provided. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による測長用干渉計の第1の実施例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of an interferometer for length measurement according to the present invention.

【図2】本発明による測長用干渉計の第2の実施例を示
す概略構成図である。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the interferometer for length measurement according to the present invention.

【図3】本発明による測長用干渉計の第3の実施例を示
す概略構成図である。
FIG. 3 is a schematic configuration diagram showing a third embodiment of a length measuring interferometer according to the present invention.

【図4】本発明による測長用干渉計の第4の実施例を示
す概略構成図である。
FIG. 4 is a schematic configuration diagram showing a fourth embodiment of a length measuring interferometer according to the present invention.

【図5】第4の実施例の変形例を示す概略構成図であ
る。
FIG. 5 is a schematic configuration diagram showing a modification of the fourth embodiment.

【図6】測長用干渉計の従来例を示す概略構成図であ
る。
FIG. 6 is a schematic configuration diagram showing a conventional example of an interferometer for length measurement.

【符号の説明】[Explanation of symbols]

1 光源からの平行光 2 レンズ 3 分割光学素子(偏光プリズム) 4 偏光膜 5 レンズ 6 1/4波長板 7 移動鏡 8 反射鏡 9 レンズ 10 平行光 11 レンズ 12 1/4波長板 13 参照鏡 14 レンズ 15 反射鏡 16a 半球レンズ 16b 半球レンズ 17 偏光膜 18 反射鏡 19 コーナーキューブ 1 parallel light from light source 2 lens 3 splitting optical element (polarizing prism) 4 polarizing film 5 lens 6 1/4 wavelength plate 7 moving mirror 8 reflecting mirror 9 lens 10 parallel light 11 lens 12 1/4 wavelength plate 13 reference mirror 14 Lens 15 Reflecting mirror 16a Hemispherical lens 16b Hemispherical lens 17 Polarizing film 18 Reflecting mirror 19 Corner cube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平行光束を集光して分割光学素子へ傾斜
して入射せしめる第1のレンズと、該分割光学素子にて
分割された透過及び反射した発散光をそれぞれ平行光束
にする第2、第3のレンズと、該両レンズの後方の1/
4波長板と、該波長板を出射した平行光束の光軸に対し
垂直に位置する固定及び可動の反射鏡と、該反射鏡によ
り反射した平行光束を再び、前記1/4波長板、第2、
第3のレンズを通過せしめて収束光とし、該収束光の収
束点に反射鏡を設け、該反射鏡と第2、第3のレンズと
により夫々キャッツアイを構成せしめたことを特徴とす
る測長用干渉計。
1. A first lens for converging a parallel light beam to be incident on a splitting optical element at an angle, and a second lens for converting transmitted and reflected divergent light split by the splitting optical element into parallel light beams, respectively. , The third lens and the 1 /
The four-wave plate, the fixed and movable reflecting mirror positioned perpendicular to the optical axis of the parallel light beam emitted from the wavelength plate, and the parallel light beam reflected by the reflecting mirror are again converted into the quarter-wave plate, the second ,
A converging light is made to pass through a third lens, a reflecting mirror is provided at a converging point of the converging light, and a cat's eye is constituted by the reflecting mirror and the second and third lenses, respectively. Long-term interferometer.
【請求項2】 前記分割光学素子と第2、第3のレンズ
を、焦点距離がその直径と等しい半球レンズ2枚を偏光
膜を介して球状に形成してなる光学素子と置換してなる
ことを特徴とする請求項1の測長用干渉計。
2. The split optical element and the second and third lenses are replaced with an optical element in which two hemispherical lenses having a focal length equal to the diameter thereof are spherically formed through a polarizing film. The interferometer for length measurement according to claim 1.
JP3241766A 1991-09-20 1991-09-20 Measurement interferometer Expired - Fee Related JP3003964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241766A JP3003964B2 (en) 1991-09-20 1991-09-20 Measurement interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241766A JP3003964B2 (en) 1991-09-20 1991-09-20 Measurement interferometer

Publications (2)

Publication Number Publication Date
JPH0579816A true JPH0579816A (en) 1993-03-30
JP3003964B2 JP3003964B2 (en) 2000-01-31

Family

ID=17079213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241766A Expired - Fee Related JP3003964B2 (en) 1991-09-20 1991-09-20 Measurement interferometer

Country Status (1)

Country Link
JP (1) JP3003964B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333311A (en) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd Shape measuring apparatus and method
EP1647798A1 (en) * 2004-10-15 2006-04-19 Canon Kabushiki Kaisha Position detection apparatus and method
JP2011501108A (en) * 2007-07-18 2011-01-06 ザ ユニバーシティ オブ バーミンガム Improved interferometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333311A (en) * 2001-05-10 2002-11-22 Matsushita Electric Ind Co Ltd Shape measuring apparatus and method
EP1647798A1 (en) * 2004-10-15 2006-04-19 Canon Kabushiki Kaisha Position detection apparatus and method
JP2006112974A (en) * 2004-10-15 2006-04-27 Canon Inc Position detection device and method
US7391521B2 (en) 2004-10-15 2008-06-24 Canon Kabushiki Kaisha Position detection apparatus and method
CN100425944C (en) * 2004-10-15 2008-10-15 佳能株式会社 Position detection apparatus and method
JP4514209B2 (en) * 2004-10-15 2010-07-28 キヤノン株式会社 Position detection apparatus and method
JP2011501108A (en) * 2007-07-18 2011-01-06 ザ ユニバーシティ オブ バーミンガム Improved interferometer

Also Published As

Publication number Publication date
JP3003964B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
KR100808886B1 (en) Position detection apparatus and method
US7405830B2 (en) Vibration-insensitive interferometer
JPS63311121A (en) Encoder
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
CN102385170B (en) Optical system for measuring and regulating center deviation of optics lens at high precision
US20070041022A1 (en) Interferometer for measuring perpendicular translations
US7542149B2 (en) Optics system for an interferometer that uses a measuring mirror, a reference mirror and a beam deflector
WO2022105533A1 (en) Interferometer displacement measurement system and method
JP2003279309A (en) Laser apparatus and method for measuring length
JP4286460B2 (en) Laser length measuring instrument and laser length measuring method
JPH01284715A (en) Encoder
US4762417A (en) Fringe scanning point diffraction interferometer by polarization
US3635552A (en) Optical interferometer
JPH07120213A (en) Tracking type laser interferometer
JPH07190714A (en) Interferometer
JP2011137810A (en) Device for measuring angular displacement of object by interferometer, and method therefor
JPH0579816A (en) Length measuring interferometer
US4346999A (en) Digital heterodyne wavefront analyzer
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
US4105335A (en) Interferometric optical phase discrimination apparatus
JPH0222503A (en) Laser interference measuring instrument
CN102426406B (en) Optical system capable of simultaneously measuring and adjusting center deviations of two surfaces of optical glass
JPH095018A (en) Device for measuring moving quantity
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees