JPH0579598A - Perssure container - Google Patents

Perssure container

Info

Publication number
JPH0579598A
JPH0579598A JP3311304A JP31130491A JPH0579598A JP H0579598 A JPH0579598 A JP H0579598A JP 3311304 A JP3311304 A JP 3311304A JP 31130491 A JP31130491 A JP 31130491A JP H0579598 A JPH0579598 A JP H0579598A
Authority
JP
Japan
Prior art keywords
winding
trajectory
passing
low latitude
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3311304A
Other languages
Japanese (ja)
Inventor
Kazushi Fujimoto
和士 藤本
Gennai Yanagisawa
源内 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENG SYST KK
Original Assignee
ENG SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENG SYST KK filed Critical ENG SYST KK
Priority to JP3311304A priority Critical patent/JPH0579598A/en
Publication of JPH0579598A publication Critical patent/JPH0579598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To improve the pressureproofness and appearance and shape by carrying out winding through the transition from a trajectory passing through the vicinity of a polar point to a trajectory passing through the low latitude each time when a stiffening member increases its turn and/or through the transition from the trajectory passing through the low latitude to the trajectory passing through the vicinity of the polar point. CONSTITUTION:As for the trajectory of a filament winding, winding starts from the position in contact with a mouthpiece part 4 as shown by the trajectory 1, and the shift towards a trajectory 3 passing through the low latitude is performed together with the increase of turns. Further, on the contrary, winding is performed through the shift toward the trajectory 1 from the trajectory 3. Accordingly, the helical winding in winding of 20 deg. for a liner 5 made of aluminium is carried out, allowing carbon fibers to be impregnated with epoxy resin, through the filament winding method. Accordingly, as for a shaped pressure container, a winding trajectory on a dome part is newly formed, and the reduction of weight and the superior pressureproofness are secured, and the outside appearance and shape can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量で耐圧性が高く、か
つ外観形状に優れた圧力容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure vessel that is lightweight, has high pressure resistance, and has an excellent external shape.

【0002】[0002]

【従来の技術】ガス、液化ガス等を封入する容器とし
て、従来は金属製の容器が使用されてきた。しかしなが
ら、耐圧性を上げるために肉厚を厚くすると重量が極め
て重くなること、また腐食し易い等の欠点がある。そこ
で、最近は軽量で耐圧性が高く、かつ耐腐食性に優れた
複合材料製の圧力容器が開発され、民需品としても実用
化されつつある。
2. Description of the Related Art Conventionally, a metal container has been used as a container for enclosing gas, liquefied gas and the like. However, if the wall thickness is increased in order to increase the pressure resistance, the weight becomes extremely heavy, and there are drawbacks such as easy corrosion. Therefore, recently, a pressure vessel made of a composite material that is lightweight, has high pressure resistance, and is excellent in corrosion resistance has been developed and is being put into practical use as a consumer product.

【0003】複合材料の製圧力容器は一般にフィラメン
トワインディング法により製造される。ドーム部を巻く
にはヘリカル巻き、インプレーン巻き、及びポーラ巻き
があり、いづれの巻き方もライナー両端の口金に強化材
を接しながらワインディングすることが知られている。
また、フィラメントワインディング容器を設計するに当
たり、ドーム部の繊維配向角、応力分布等は種々の理論
により求めることができるが、この場合も強化材を口金
に接して巻くことが計算上での前提となっている。(例
えば、フィラメントワインディング[日刊工業新聞社]
1970)
Composite pressure vessels are generally manufactured by the filament winding method. There are helical winding, in-plane winding, and polar winding for winding the dome portion, and it is known that winding is performed by contacting the reinforcing materials to the caps at both ends of the liner.
Also, when designing a filament winding container, the fiber orientation angle of the dome, stress distribution, etc. can be obtained by various theories, but in this case as well, it is a prerequisite for calculation that the reinforcing material is wound in contact with the base. Is becoming (For example, filament winding [Nikkan Kogyo Shimbun]
1970)

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、この
ように強化材を口金に接するように巻くと、現実には口
金近傍(極点近傍)の厚みがドーム部の他の厚みに比べ
て過剰に厚くなる。特に、大きな容器を細い強化材で巻
くほど、この傾向が顕著となる。このように口金近傍の
巻き厚が増加し過ぎると強化材の滑りの原因となり、巻
き形状を崩し、破壊強度の低下を引き起こす。また、部
分的に余分な強化材を巻くと言う点で非効率的である
し、巻きの外観形状が損なわれるといった問題点も生じ
る。
However, when the reinforcing material is wound so as to be in contact with the die in this manner, the thickness in the vicinity of the die (in the vicinity of the pole) is actually excessively thicker than other thicknesses of the dome portion. Become. This tendency becomes more remarkable as a large container is wound with a thin reinforcing material. If the winding thickness in the vicinity of the die is excessively increased in this manner, slippage of the reinforcing material is caused, the winding shape is broken, and the breaking strength is reduced. Further, it is inefficient in that extra reinforcing material is partially wound, and there arises a problem that the outer shape of the winding is impaired.

【0005】[0005]

【問題を解決するための手段】本発明者らは、圧力容器
のドーム部における強化材の巻き軌道を従来法とは根本
的に変えることにより、上記の問題点を解決できること
を見出し、本発明に到達した。
The present inventors have found that the above problems can be solved by fundamentally changing the winding trajectory of the reinforcing material in the dome portion of the pressure vessel from the conventional method. Reached

【0006】すなわち本発明によれば、フィラメントワ
インディング法により繊維強化層を形成された圧力容器
のドーム部において、強化材が周回を重ねる毎に極点近
傍を通る軌道から低緯度を通る軌道へ移行しながら、及
び/あるいは低緯度を通る軌道から極点近傍を通る軌道
へ移行しながら、巻かれていることを特徴とする圧力容
器が提供される。
That is, according to the present invention, in the dome portion of the pressure vessel in which the fiber reinforced layer is formed by the filament winding method, the reinforcement moves from the orbit passing near the poles to the orbit passing through the low latitude every time the reinforcing material goes around. While and / or while transitioning from an orbit passing through a low latitude to an orbit passing near a pole, there is provided a pressure vessel characterized by being wound.

【0007】以下、図面を参照しながら本発明を説明す
る。図1は圧力容器ドーム部の概念図を示している。本
発明において、フィラメントワインディングの軌道は、
まず軌道1のように口金部に接する位置から巻き始め、
周回を重ねる毎に低緯度を通る軌道3の方向へ移行する
ことが好ましい。これとは逆に、軌道3から軌道1の方
向へ移行しながらワインディングを行うこと、あるいは
この両者の軌道を適宜組合せることも良好な結果を得る
ことができる。
The present invention will be described below with reference to the drawings. FIG. 1 shows a conceptual diagram of the pressure vessel dome portion. In the present invention, the trajectory of filament winding is
First, start winding from the position where it contacts the base like track 1,
It is preferable to shift to the direction of the orbit 3 passing through the low latitude each time the orbit is repeated. On the contrary, good results can be obtained by performing winding while moving from the track 3 to the track 1 or by appropriately combining the two tracks.

【0008】本発明において、フィラメントワインディ
ング方式は乾式、湿式のどちらでも良く、巻きはヘリカ
ル、インプレーン、ポーラのいづれでも良い。強化材は
一般に用いられる高強度・高弾性率の繊維あるいはテー
プ形状のものを使用できる。特に、実用性能上から炭素
繊維、アラミド繊維、ガラス繊維が好ましい。また、マ
トリックス樹脂は要求特性に合わせて、熱硬化性あるい
は熱可塑性樹脂の中から適宜選択できる。
In the present invention, the filament winding method may be either dry or wet, and the winding may be helical, in-plane or polar. As the reinforcing material, generally used fibers or tapes having high strength and high elastic modulus can be used. Particularly, carbon fibers, aramid fibers, and glass fibers are preferable in terms of practical performance. Further, the matrix resin can be appropriately selected from thermosetting or thermoplastic resins according to the required characteristics.

【0009】[0009]

【実施例】炭素繊維にエポキシ樹脂を含浸させながら、
アルミニウム製のライナーに巻き角度20゜でヘリカル
巻きを行った。この時、極点近傍から低緯度方向へ所定
の角度まで軌道をずらせながらワインディングを行っ
た。さらに、円筒部にフープ巻きを行った。このサンプ
ルの静水圧破壊試験を行ったところ920kg/cm
で円筒部より破壊した。これと比較のため、常に口金部
に接するように巻くこと以外は全て同一条件でワインデ
ィングを行った。このサンプルは、破壊強度870kg
/cmでドーム部より破壊された。このように、本発
明のワインディングによれば、同一・同量の強化材を使
用しても破壊強度が上昇した。また、本発明品は外観形
状も美しいのに対し、比較品は口金周辺部のみが過度に
盛り上がり形状的にも好ましいものではなかった。
Example: While impregnating carbon fiber with epoxy resin,
The aluminum liner was helically wound at a winding angle of 20 °. At this time, winding was performed while shifting the orbit from the vicinity of the pole to a predetermined angle in the low latitude direction. Furthermore, hoop winding was performed on the cylindrical portion. When the hydrostatic breakdown test of this sample was performed, it was 920 kg / cm 2.
It was destroyed from the cylindrical part. For comparison with this, the winding was performed under the same conditions except that the winding was always in contact with the base. This sample has a breaking strength of 870 kg.
/ Cm 2 It was destroyed from the dome part. As described above, according to the winding of the present invention, the breaking strength was increased even when the same amount and the same amount of the reinforcing material were used. Further, while the product of the present invention has a beautiful external shape, the comparative product is not preferable because of the excessively raised peripheral portion only in the periphery of the die.

【0010】[0010]

【発明の効果】本発明の圧力容器は、フィラメントワイ
ンディング法により繊維強化層を形成された圧力容器の
ドーム部において、強化材が周回を重ねる毎に極点近傍
を通る軌道から低緯度を通る軌道へ移行しながら、及び
/あるいは低緯度を通る軌道から極点近傍を通る軌道へ
移行しながら、巻かれていることを特徴とする。これに
より、同一の強化材及びマトリックス樹脂を使用して
も、従来法に比ベ破壊強度が上昇する。この原因は充分
把握できていないが、その一つとして強化材がドーム部
の口金近傍に集中せず、他の部分に効果的に分散されて
いることが考えられる。また、余分の強化材を巻かない
という点では生産効率も上り、外観形状にも優れている
等のメリットが見出された。
According to the pressure vessel of the present invention, in the dome portion of the pressure vessel in which the fiber reinforced layer is formed by the filament winding method, the orbit passing through the vicinity of the pole changes to the orbit passing through the low latitude every time the reinforcing material goes around. It is characterized in that it is wound while transitioning and / or transitioning from an orbit passing through low latitude to an orbit passing near the pole. As a result, even if the same reinforcing material and matrix resin are used, the fracture strength is higher than that of the conventional method. The reason for this is not fully understood, but one possible reason is that the reinforcing material is not concentrated in the vicinity of the base of the dome portion, but is effectively dispersed in other portions. Further, it has been found that the production efficiency is increased and the appearance shape is excellent in that no extra reinforcement material is wound.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による圧力容器のドーム部の概念図であ
る。
FIG. 1 is a conceptual diagram of a dome portion of a pressure vessel according to the present invention.

【符号の説明】[Explanation of symbols]

1 強化材のワインディング軌道 2 強化材のワインディング軌道 3 強化材のワインディング軌道 4 口金 5 ライナー E 赤道 M 子午線 1 Reinforcement winding orbit 2 Reinforcement winding orbit 3 Reinforcement winding orbit 4 Clasp 5 Liner E Equator M Meridian

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フィラメントワインディング法により繊
維強化層を形成された圧力容器のドーム部において、強
化材が周回を重ねる毎に極点近傍を通る軌道から低緯度
を通る軌道へ移行しながら、及び/あるいは低緯度を通
る軌道から極点近傍を通る軌道へ移行しながら、巻かれ
ていることを特徴とする圧力容器。
1. In a dome portion of a pressure vessel in which a fiber-reinforced layer is formed by a filament winding method, each time the reinforcing material goes around, it moves from an orbit passing near the pole to an orbit passing through a low latitude, and / or A pressure vessel characterized by being wound while transitioning from an orbit passing through low latitude to an orbit passing near the pole.
JP3311304A 1991-09-18 1991-09-18 Perssure container Pending JPH0579598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311304A JPH0579598A (en) 1991-09-18 1991-09-18 Perssure container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311304A JPH0579598A (en) 1991-09-18 1991-09-18 Perssure container

Publications (1)

Publication Number Publication Date
JPH0579598A true JPH0579598A (en) 1993-03-30

Family

ID=18015528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311304A Pending JPH0579598A (en) 1991-09-18 1991-09-18 Perssure container

Country Status (1)

Country Link
JP (1) JPH0579598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020683A1 (en) * 1995-12-04 1997-06-12 Toray Industries, Inc. Pressure vessel and method of manufacturing same
JPH11502917A (en) * 1995-03-29 1999-03-09 ペルストルプ アーベー Container for pressurized fluid
JP2020528126A (en) * 2017-07-26 2020-09-17 エンプロックス ベスローテン フェンノートシャップ Fiber reinforced pressure vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502917A (en) * 1995-03-29 1999-03-09 ペルストルプ アーベー Container for pressurized fluid
WO1997020683A1 (en) * 1995-12-04 1997-06-12 Toray Industries, Inc. Pressure vessel and method of manufacturing same
JP2020528126A (en) * 2017-07-26 2020-09-17 エンプロックス ベスローテン フェンノートシャップ Fiber reinforced pressure vessel

Similar Documents

Publication Publication Date Title
US3207352A (en) Laminated pressure vessels
US3293860A (en) Filament wound container having reinforced opening
US5996521A (en) Large-scale columnar structure made of a fiber reinforced plastic
JP6703715B2 (en) Composite container
JPH0579598A (en) Perssure container
JPH06331032A (en) Pressure vessel
GB1082712A (en) Improvements relating to the reinforcement of tubular structures
JPH11101397A (en) Pressure vessel of cylindrical shape with frp-made dome
KR102347694B1 (en) Method for manufacturing a pressure vessel
JPH0755097A (en) Method for manufacturing pressure vessel in which opening diameter of dome formed at both side tip parts is different mutually
GB2226380A (en) Tapered tubular composite shafts
CA2091241A1 (en) Low cost segmented structure for pressure vessels, rocket motors, piping
JP2005106142A (en) Pressure vessel
JPH1182888A (en) Frp pressure vessel with excellent pressure resistance and its manufacture
GB930156A (en) Improvements relating to pressure vessels
JPH0615760A (en) Production of pressure vessel with both-side end domes different from each other in opening diameter
JPS5814934B2 (en) Leaf spring and its manufacturing method
JPS6226316Y2 (en)
JP2000337594A (en) Pressure vessel
JPH0314579Y2 (en)
JPS5760989A (en) Mast for sailing boat
Błachut Externally pressurized filament wound domes—scope for optimization
JP2003287193A (en) Pressure vessel
JPH0347184B2 (en)
JPS6287332A (en) Manufacture of fiber reinforced plastic transmission shaft