JPH0578743A - Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property - Google Patents

Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property

Info

Publication number
JPH0578743A
JPH0578743A JP24809091A JP24809091A JPH0578743A JP H0578743 A JPH0578743 A JP H0578743A JP 24809091 A JP24809091 A JP 24809091A JP 24809091 A JP24809091 A JP 24809091A JP H0578743 A JPH0578743 A JP H0578743A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
electrical steel
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24809091A
Other languages
Japanese (ja)
Inventor
Masayoshi Mizuguchi
政義 水口
Yoshiyuki Ushigami
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24809091A priority Critical patent/JPH0578743A/en
Publication of JPH0578743A publication Critical patent/JPH0578743A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain oriented electrical steel sheet good in magnetic properties and coating film properties by subjecting an electrical steel sheet slab having a specified compsn. contg. intergranular face segregation type elements to low temp. heating, hot rolling, cold rolling and decarburizing annealing and thereafter executing nitriding treatment in NH3. CONSTITUTION:A silicon steel slab constituted of, by weight, 0.025 to 0.095% C, 2.0 to 4.5% Si, <=0.015% S, 0.010 to 0.060% acid soluble Al, 0.0010 to 0.0130% N, 0.050 to O.45% Mn, 0.04 to 0.25% Cr and 0.005 to 0.45% P, furthermore constituted of 0.005 to 0.3% of one or more kinds among Pb, Te, Mo, Nb, Se, Ni, V, Sb, B, Ti and Sn and the balance Fe with inevitable impurities is heated to <1280 deg.C and is subjected to hot rolling. This hot rolled sheet is, as it is or after its annealing, subjected to cold rolling for one time or two times including process annealing to regulate its sheet thickness into a final one. Next, this cold rolled sheet is subjected to decarburizing annealing and is thereafter subjected to nitriding treatment in a gas contg. NH3 in a strip running state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心材料と
して用いられる方向性電磁鋼板の製造方法に関し、磁気
特性、被膜特性ともに優れた方向性電磁鋼板の製造を可
能にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used as an iron core material for electric equipment, and enables the production of a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

【0002】[0002]

【従来の技術】方向性電磁鋼板は主としてトランス、発
電機、その他の電気機器の鉄心材料として用いられ、磁
気特性、特に鉄損特性が良好でなければならない。方向
性電磁鋼板は二次再結晶現象を利用して圧延面に(11
0)面、圧延方向に〔001〕軸をもった、いわゆるゴ
ス方位を有する結晶粒を発達させることにより得られ
る。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers, generators and other electric equipment, and must have good magnetic properties, especially iron loss properties. The grain-oriented electrical steel sheet uses the secondary recrystallization phenomenon on the rolling surface (11
It is obtained by developing crystal grains having a so-called Goss orientation, which has a [001] axis in the 0) plane and the rolling direction.

【0003】二次再結晶は周知のように仕上焼鈍で生じ
るが、二次再結晶温度域まで一次再結晶の成長を抑制す
る微細なAlN、MnSe等の析出物、いわゆるインヒ
ビターを存在させる必要がある。このため、電磁鋼スラ
ブは、例えば1350〜1400℃程度の高温度に加熱
され、インヒビターを形成する成分、例えばAl、M
n、S、Se、N等を完全に固溶させ、熱延板あるいは
最終冷延前の中間板においてインヒビターを微細に析出
させる焼鈍が行われている。
As is well known, secondary recrystallization occurs by finish annealing, but it is necessary to allow the presence of fine precipitates such as AlN and MnSe, which are so-called inhibitors, which suppress the growth of primary recrystallization up to the secondary recrystallization temperature range. is there. Therefore, the electromagnetic steel slab is heated to a high temperature of, for example, about 1350 to 1400 ° C., and a component that forms an inhibitor, such as Al or M.
Annealing is performed in which n, S, Se, N, etc. are completely solid-solved and the inhibitor is finely precipitated in the hot-rolled sheet or the intermediate sheet before the final cold rolling.

【0004】かかる処理を施すことにより磁束密度の高
い方向性電磁鋼板が製造されるようになったが、電磁鋼
スラブの加熱は前述のように高温で行われるために、溶
融スケールの発生量が大で加熱炉の操業に支障をきた
す。また加熱炉のエネルギー原単位高や表面疵の発生等
の問題がある。スラブ加熱温度を下げた方向性電磁鋼板
製造法が検討されている。例えば、特開昭52−241
16号公報ではAlの他にZr、Ti、B、Nb、T
a、V、Cr、Mo等の窒化物形成元素を含有させるこ
とにより、スラブ加熱を1100〜1260℃で行う製
造法が開示されている。また、特開昭59−56522
号公報ではMnを0.08〜0.45%、Sを0.00
7%以下とし、〔Mn〕×〔S〕積を下げ、さらにA
l、P、Nを含有させた電磁鋼スラブを素材とする製造
法を提案している。
By carrying out such a treatment, a grain-oriented electrical steel sheet having a high magnetic flux density has come to be manufactured. However, since the electrical steel slab is heated at a high temperature as described above, the amount of molten scale generated is small. The large size will interfere with the operation of the heating furnace. There are also problems such as high energy consumption per unit of heating furnace and occurrence of surface defects. A grain-oriented electrical steel sheet manufacturing method in which the slab heating temperature is lowered is being studied. For example, JP-A-52-241
No. 16, in addition to Al, Zr, Ti, B, Nb, T
A manufacturing method is disclosed in which slab heating is performed at 1100 to 1260 ° C. by incorporating a nitride forming element such as a, V, Cr, or Mo. Also, JP-A-59-56522
In the publication, Mn is 0.08 to 0.45% and S is 0.00
7% or less, lower [Mn] × [S] product, and
A manufacturing method using an electromagnetic steel slab containing l, P, and N as a raw material is proposed.

【0005】低温スラブ加熱方法は一定の作用効果が奏
されているが、インヒビター形成成分、例えばAl、M
n、S、Se、N等が鋼中に完全に固溶されていないか
ら、二次再結晶の発現に効果的なインヒビターを形成す
ることが課題である。本出願人は特開昭63−1001
11号で脱炭焼鈍時に所定板厚に冷間圧延された方向性
電磁鋼板をストリップ状で通板する際にNH3 を用いて
窒化させ、インヒビターを作り込む製造方法を提案し
た。
Although the low-temperature slab heating method has a certain effect, an inhibitor-forming component such as Al or M is used.
Since n, S, Se, N, etc. are not completely dissolved in the steel, it is a problem to form an inhibitor effective for developing secondary recrystallization. The applicant of the present invention is Japanese Patent Laid-Open No. 63-1001.
No. 11 proposed a manufacturing method in which a grain-oriented electrical steel sheet cold-rolled to a predetermined thickness during decarburization annealing is nitrided with NH 3 when passing in a strip form and an inhibitor is produced.

【0006】[0006]

【発明が解決しようとする課題】NH3 等により〔A
l、Si〕Nを主成分とするインヒビターを形成させた
場合、仕上焼鈍時に雰囲気ガス中のN2 の鋼板への吸収
(窒化)又は雰囲気ガス中へ鋼板からN2 の脱離が生
じ、インヒビターの強度が一定とならず、結果として二
次再結晶の発現が不安定となる場合がある。これらの現
象は、鋼板の板厚が薄くなるほど反応の界面積が増大
し、仕上焼鈍時に雰囲気の影響を強く受けるためにイン
ヒビターの強度も変わり、二次再結晶発現の不安定性が
一層助長されるためと考えられる。その結果、薄手材ほ
ど磁性の再現性が乏しく、又磁気特性もあまりよくなか
った。
[Problems to be Solved by the Invention] With NH 3 or the like [A
In the case of forming an inhibitor whose main component is 1, Si] N, absorption (nitridation) of N 2 in the atmosphere gas into the steel sheet or desorption of N 2 from the steel sheet into the atmosphere gas occurs during finish annealing. May not be constant, resulting in unstable secondary recrystallization. In these phenomena, as the plate thickness of the steel sheet becomes thinner, the interfacial area of the reaction increases, and the strength of the inhibitor also changes due to the strong influence of the atmosphere during finish annealing, which further promotes the instability of secondary recrystallization. It is thought to be because. As a result, the reproducibility of magnetism was poorer and the magnetic characteristics were not so good as the thinner material.

【0007】又、仕上焼鈍において被膜形成後、二次再
結晶が発現するが、元々二次再結晶は、鋼板中の〔A
l、Si〕と結びついた窒素が脱離することにより生じ
るものであり、脱離後の窒素は被膜を介して鋼板から雰
囲気ガス中に放出される。仕上焼鈍時に鋼板が過剰の窒
素を吸収すると、二次再結晶時に被膜をつき破って鋼板
から窒素が放出され、いわゆるシモフリと呼ばれる地鉄
の露出した被膜不良部が発生する。しかも、鋼板の板厚
が薄くなるほど反応の界面積が増大し、仕上焼鈍時に多
量の窒素を吸収するために二次再結晶後の被膜を介した
放出窒素量も増加し、シモフリは発生し易い。
[0007] Further, secondary recrystallization occurs after the film is formed in the finish annealing, but the secondary recrystallization is originally caused by [A
It is generated by desorption of nitrogen associated with [1, Si], and the desorbed nitrogen is released from the steel sheet into the atmospheric gas through the coating. When the steel sheet absorbs excess nitrogen during finish annealing, the coating film is ruptured during the secondary recrystallization and nitrogen is released from the steel sheet, resulting in a so-called shimofuri-exposed coating defect portion of the base steel. Moreover, as the plate thickness of the steel sheet becomes thinner, the interfacial area of the reaction increases, and the amount of nitrogen released through the film after secondary recrystallization also increases due to the absorption of a large amount of nitrogen during the finish annealing, and shimofuri is likely to occur. ..

【0008】本発明者らは、窒化物のみをインヒビター
とする方向性電磁鋼板の磁性と被膜の安定化は、仕上焼
鈍時の鋼板の窒化、および窒素の抜け等インヒビターの
弱体化をいかに防ぐかにあると考えた。そこで、仕上焼
鈍時の鋼板の窒素の吸収、放出現象を明らかにするため
に、様々な元素を製鋼段階で添加し、最初に脱炭焼鈍後
の鋼板の窒化特性を調べた。
[0008] The inventors of the present invention, how to suppress the nitriding of the steel sheet during finish annealing and the weakening of the inhibitor such as nitrogen escape by stabilizing the magnetic properties and coating of the grain-oriented electrical steel sheet using only nitride as an inhibitor. Thought to be in. Therefore, in order to clarify the absorption and desorption phenomena of nitrogen in the steel sheet during finish annealing, various elements were added at the steelmaking stage, and the nitriding characteristics of the steel sheet after decarburization annealing were investigated first.

【0009】その結果、Pb、Se、Sb、B等の粒界
偏析型の成分を添加した脱炭焼鈍時は、無添加材に比
し、窒化が生じにくいことが判明した。この原因として
は、これらの元素を添加した材料は脱炭焼鈍後バリヤー
を形成し、窒化を阻害しているものと推定している。さ
らに、これらの元素を添加した脱炭焼鈍板をNH3 濃度
を高くして、所定量の窒素を確保した後、仕上焼鈍を行
い、焼鈍過程での鋼板の窒化量を調べたところ、無添加
材に比し、仕上焼鈍過程で鋼板の窒素量が殆ど増加しな
いことが判った。又、その時、同時に仕上焼鈍過程にお
ける一次再結晶の大きさを調べてみると、微量元素を添
加した鋼板は、無添加材に比し、高温領域まで脱炭焼鈍
後の一次再結晶粒径が保持されていることが判った。
As a result, it was found that nitriding is less likely to occur during decarburization annealing in which grain boundary segregation type components such as Pb, Se, Sb and B are added, as compared with the additive-free material. It is presumed that the reason for this is that the material added with these elements forms a barrier after decarburization annealing and inhibits nitriding. Furthermore, the decarburized annealed plate containing these elements was made to have a high NH 3 concentration and a predetermined amount of nitrogen was secured, then finish annealing was performed, and the nitriding amount of the steel sheet in the annealing process was examined. It was found that the nitrogen content of the steel sheet hardly increased during the finish annealing process as compared with the material. Also, at that time, when the size of primary recrystallization in the finish annealing process was examined at the same time, the steel sheet to which trace elements were added had a primary recrystallized grain size after decarburization annealing up to a high temperature region as compared to the additive-free steel sheet. It turned out that it was held.

【0010】即ち、これらの微量の元素を添加した鋼板
は、仕上焼鈍過程での窒化を阻害すると同時に、一次再
結晶粒の成長抑制効果もあった。従来、窒化物のみをイ
ンヒビターとする方向性電磁鋼板の弱点であった薄手材
ほどシモフリの発生頻度が高く、かつ磁性が不安定とな
る現象がPb、Se、Sb、B等の粒界面偏析型元素を
添加することにより解消した。
That is, the steel sheet to which these trace elements are added has an effect of inhibiting nitriding in the finish annealing process and at the same time having an effect of suppressing the growth of primary recrystallized grains. Conventionally, the weaker point of grain-oriented electrical steel sheets using only nitride as an inhibitor is that the thinner the sheet, the more frequently the shimofuri occurs and the magnetism becomes unstable. Pb, Se, Sb, B and other grain boundary segregation type It was solved by adding an element.

【0011】このように本発明はシモフリがなく、グラ
スが良好でかつ二次再結晶も安定して発現し、磁気特性
的にも良好な方向性電磁鋼板をストリップの窒化法で得
ることができる。
As described above, according to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having no glass, good glass, stable secondary recrystallization, and good magnetic characteristics by the strip nitriding method. ..

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量でC:0.025〜0.095%、Si:
2.0〜4.5%、S≦0.015%、酸可溶性Al:
0.010〜0.060%、N:0.0010〜0.0
130%、Mn:0.050〜0.45%、Cr:0.
04〜0.25%、P:0.005〜0.045%を含
み、更に微量添加元素として、Pb、Te、Mo、N
b、Se、Ni、V、Sb、B、Ti、Snのいずれか
の元素の1種類以上を添加量として0.005〜0.3
%含み、残部Fe及び不可避的不純物からなる電磁鋼ス
ラブを、1280℃未満の温度に加熱し、熱間圧延し、
熱延まま又は熱延板焼鈍し、1回又は中間焼鈍を挟んで
2回以上冷間圧延し、次いで脱炭焼鈍した後、仕上焼鈍
する方向性電磁鋼板の製造プロセスにおいて、脱炭焼鈍
後、ストリップを走行せしめる状態で、アンモニアを含
むガス中で窒化処理を行うことを特徴とする磁気特性、
被膜特性ともに優れた方向性電磁鋼板の製造方法にあ
る。
The gist of the present invention is that C: 0.025 to 0.095% by weight and Si:
2.0-4.5%, S ≦ 0.015%, acid-soluble Al:
0.010 to 0.060%, N: 0.0010 to 0.0
130%, Mn: 0.050 to 0.45%, Cr: 0.
04-0.25%, P: 0.005-0.045%, and Pb, Te, Mo, N as minor addition elements.
0.005 to 0.3 with one or more elements selected from the group consisting of b, Se, Ni, V, Sb, B, Ti and Sn as an additive amount
%, The balance Fe and unavoidable impurities electromagnetic steel slab is heated to a temperature of less than 1280 ℃, hot rolled,
As-hot-rolled or hot-rolled sheet annealed, cold rolled once or twice with intermediate annealing sandwiched, then decarburized and annealed, and then finish annealed In the manufacturing process of the grain-oriented electrical steel sheet, after decarburization and annealing, Magnetic characteristics characterized by performing a nitriding treatment in a gas containing ammonia while the strip is running.
This is a method for producing a grain-oriented electrical steel sheet with excellent coating properties.

【0013】以下、本発明について詳細に説明する。本
発明者等は、電磁鋼スラブを1280℃未満の温度で加
熱する低温スラブ加熱を適用して磁気特性及び被膜外観
性の優れた方向性電磁鋼板を安定して製造すべく検討し
た。その結果、鋼中に、Pb、Te、Mo、Nb、S
e、Ni、V、Sb、Ti、Sn等のいずれかの元素の
1種類以上を微量添加すると、ストリップ窒化でインヒ
ビターを形成させる方向性電磁鋼板において磁気特性が
優れ、かつ被膜が良好なものが得られることを見出し
た。
The present invention will be described in detail below. The present inventors applied low-temperature slab heating to heat an electromagnetic steel slab at a temperature of less than 1280 ° C. and studied to stably manufacture a grain-oriented electrical steel sheet having excellent magnetic properties and coating appearance. As a result, in the steel, Pb, Te, Mo, Nb, S
When a trace amount of one or more elements selected from the group consisting of e, Ni, V, Sb, Ti, Sn, etc. is added, a grain-oriented electrical steel sheet that forms an inhibitor by strip nitriding has excellent magnetic properties and a good coating film. It was found that it can be obtained.

【0014】本発明が適用される電磁鋼スラブの成分組
成は次のとおりである。Cの含有量が少なくなると二次
再結晶が不安定となるので0.025%以上とする。一
方、その含有量が多くなりすぎると脱炭焼鈍時間が長く
なるので0.095%以下とする。Siは鉄損の低下、
インヒビター形成のために必要な成分で、そのために
2.0%以上含有させる。一方、その含有量が多くなる
と冷間圧延時に割れ発生が多発するので4.5%以下と
する。
The composition of the electrical steel slab to which the present invention is applied is as follows. If the C content decreases, the secondary recrystallization becomes unstable, so the content is made 0.025% or more. On the other hand, if the content is too large, the decarburization annealing time becomes long, so the content is made 0.095% or less. Si decreases iron loss,
It is a component necessary for inhibitor formation, and for that reason, it is contained in an amount of 2.0% or more. On the other hand, if the content thereof increases, cracking frequently occurs during cold rolling, so the content is made 4.5% or less.

【0015】Mnは熱間脆性を防ぐとともに、グラス被
膜を良質化する作用があり、これを奏するには0.05
0%以上必要である。一方、その含有量が増えると、磁
束密度が劣化するので0.45%以下とする。さらに本
発明ではスラブ加熱を1280℃未満で行うので、例え
ばSとの化合物であるMnSは完全固溶せず、インヒビ
ターとしてMnSを用いない点からもその上限は前述の
とおりとする。
Mn has the function of preventing hot brittleness and improving the quality of the glass coating. To achieve this, 0.05
0% or more is required. On the other hand, when its content increases, the magnetic flux density deteriorates, so the content is made 0.45% or less. Further, in the present invention, since the slab heating is performed at a temperature lower than 1280 ° C., for example, MnS which is a compound with S does not form a complete solid solution and MnS is not used as an inhibitor.

【0016】Sは偏析を生じやすく、正常な二次再結晶
粒の成長を妨げる原因となるために0.015%以下と
する。AlはNあるいはSiと結合して(Al、Si)
Nを形成し、二次再結晶の安定化に必要であり、そのた
めに0.010%以上含有させる。一方、本発明でのス
ラブ加熱温度は1280℃未満でAlを不完全に固溶さ
せることから、AlNの含有量が多くなると熱間圧延の
段階で不適切なAlNが形成されるので0.060%以
下とする。
S is liable to cause segregation and hinders the normal growth of secondary recrystallized grains, so S is made 0.015% or less. Al combines with N or Si (Al, Si)
It forms N and is necessary for stabilizing the secondary recrystallization. Therefore, it is contained in an amount of 0.010% or more. On the other hand, since the slab heating temperature in the present invention is less than 1280 ° C. and Al is incompletely solid-dissolved, if the content of AlN is large, inappropriate AlN is formed at the stage of hot rolling. % Or less.

【0017】Nは前記Al、Si等と結合して二次再結
晶の安定化作用を奏させるために0.0010%以上含
有させる。しかし、その含有量が多くなると表面欠陥が
生じるので0.0130%以下とする。Pは低温スラブ
加熱の場合には、磁束密度を高める作用があり、この作
用を奏するためには0.005%以上必要である。一
方、その含有量が多くなると冷延性が劣化するので0.
045%以下とする。
N is contained in an amount of 0.0010% or more in order to combine with Al, Si and the like to stabilize secondary recrystallization. However, if its content increases, surface defects occur, so the content is made 0.0130% or less. P has an effect of increasing the magnetic flux density in the case of low temperature slab heating, and 0.005% or more is necessary to exhibit this effect. On the other hand, when the content is large, the cold ductility is deteriorated, so
045% or less.

【0018】Crは高磁束密度が得られるAl量の範囲
を拡げることを介して磁気特性を高める作用があり、そ
のために0.04%以上必要である。一方、その含有量
が多くなると脱炭性が劣化するので0.25%以下とす
る。更に、上記元素の他にPb、Te、Mo、Nb、S
e、Ni、V、Sb、B、Ti、Snの1種類以上を適
量添加すると、仕上焼鈍における鋼板の窒素の吸収、及
び鋼板からの窒素の脱離を抑制し、被膜、磁性の安定性
が図れると同時にそれらの元素そのものも粒界に析出す
ることによりインヒビターを形成し、鉄損が改善され
る。これらの元素の添加量は0.005%未満ではその
効果が小さく、一方0.3%を超えると磁気特性上好ま
しくない影響を及ぼすか、あるいは意味がない。適正範
囲は0.005〜0.3%である。
Cr has the effect of enhancing the magnetic properties through expanding the range of the amount of Al that gives a high magnetic flux density, and for this reason 0.04% or more is necessary. On the other hand, if its content increases, the decarburizing property deteriorates, so the content is made 0.25% or less. Furthermore, in addition to the above elements, Pb, Te, Mo, Nb, S
When one or more of e, Ni, V, Sb, B, Ti, and Sn are added in an appropriate amount, absorption of nitrogen in the steel sheet during finish annealing and desorption of nitrogen from the steel sheet are suppressed, and the stability of the coating film and magnetism is improved. At the same time, these elements themselves also precipitate at grain boundaries to form inhibitors, and iron loss is improved. If the added amount of these elements is less than 0.005%, the effect is small, while if it exceeds 0.3%, it has an unfavorable effect on the magnetic properties or is meaningless. The appropriate range is 0.005 to 0.3%.

【0019】電磁鋼スラブは転炉あるいは電気炉などの
溶解炉で溶製され、必要に応じて真空脱ガス処理が施さ
れ、連続鋳造または造塊−分塊圧延により製造される。
電磁鋼スラブは熱間圧延に先立って加熱されるが、その
加熱温度は1280℃未満として省エネルギーが図られ
る。この加熱温度では該電磁鋼スラブ中のAlは完全に
固溶されず、不完全固溶状態となる。又さらに固溶温度
の高いMnSは当然ながら不完全固溶である。
The electromagnetic steel slab is melted in a melting furnace such as a converter or an electric furnace, vacuum degassing treatment is performed if necessary, and is manufactured by continuous casting or ingot-slab rolling.
The electromagnetic steel slab is heated prior to hot rolling, but the heating temperature is less than 1280 ° C to save energy. At this heating temperature, Al in the electromagnetic steel slab is not completely solid-solved, but becomes incompletely solid-solved. Further, MnS having a higher solid solution temperature is, of course, an incomplete solid solution.

【0020】スラブ加熱後は熱間圧延され、必要によっ
ては焼鈍され、あるいは焼鈍されることなく、冷間圧延
される。冷間圧延は1回又は中間焼鈍を挟んで2回以上
の冷間圧延を施され、最終板厚とされる。ところで本発
明においては、電磁鋼スラブは1280℃未満の低い温
度に加熱される。従って、鋼中のAl、Mn、S等を不
完全固溶状態としており、このままでは、鋼板中に二次
再結晶を発現させるための(Al、Si)N、MnS等
の析出型のインヒビターが存在しない。故に、二次再結
晶発現以前に、鋼中にNを侵入させ、インヒビターとし
て機能する(Al、Si)Nを形成する必要がある。
After heating the slab, it is hot-rolled, and if necessary, annealed or cold-rolled without being annealed. Cold rolling is performed once or twice or more with intermediate annealing sandwiched between them to obtain a final plate thickness. By the way, in the present invention, the electromagnetic steel slab is heated to a low temperature of less than 1280 ° C. Therefore, Al, Mn, S, etc. in the steel are in an incomplete solid solution state, and if they remain as they are, precipitation-type inhibitors such as (Al, Si) N, MnS for expressing secondary recrystallization in the steel sheet. not exist. Therefore, it is necessary to infiltrate N into the steel to form (Al, Si) N that functions as an inhibitor before the secondary recrystallization occurs.

【0021】電磁鋼スラブは熱間圧延後、必要に応じて
焼鈍し、冷間圧延する。冷間圧延は1回又は中間焼鈍を
挟んで2回以上行われ、所定の板厚とした後、脱炭焼鈍
する。脱炭焼鈍は800〜900℃の温度で湿潤雰囲気
ガス中で行うが、脱炭に引き続き(Al、Si)N等の
析出物型のインヒビターの形成を図るために、ストリッ
プ状態でNH3 等により窒化する。窒化は600〜90
0℃の温度域でドライな雰囲気(低露点)で行うのが好
ましい。次いで焼鈍分離剤を塗布し、高温の仕上焼鈍を
施す。
The electromagnetic steel slab is hot-rolled, annealed if necessary, and cold-rolled. The cold rolling is performed once or twice or more with an intermediate anneal sandwiched between them to obtain a predetermined plate thickness, and then decarburization anneal. Decarburization annealing is performed in a humid atmosphere gas at a temperature of 800 to 900 ° C., but in order to form a precipitation type inhibitor such as (Al, Si) N after decarburization, NH 3 or the like is used in a strip state in order to form a precipitate type inhibitor. Nitriding. Nitriding is 600-90
It is preferably carried out in a temperature range of 0 ° C. in a dry atmosphere (low dew point). Next, an annealing separator is applied and high temperature finish annealing is performed.

【0022】仕上焼鈍過程における鋼板に吸窒、脱窒状
況及び一次再結晶粒径の変化をPb、B、Se等の微量
元素を添加した材料と無添加の材料について調査した。
その結果を図1、図2に示す。図1に示すように、B、
Pb、Se等の元素を微量添加した鋼板は仕上焼鈍時で
の鋼板吸窒現象はなく、かつ高温領域迄鋼中の窒素が確
保されていることが判った。一方、それらを添加してい
ない鋼板は仕上焼鈍時の鋼板の吸窒量(追加窒化)が大
きく、又窒素の抜けも大きいことが判った。
The changes in the state of nitrogen absorption and denitrification and the primary recrystallized grain size of the steel sheet during the finish annealing process were investigated for the material to which trace elements such as Pb, B and Se were added and the material to which no trace element was added.
The results are shown in FIGS. 1 and 2. As shown in FIG. 1, B,
It was found that the steel sheet to which a trace amount of elements such as Pb and Se were added did not have a steel sheet nitrogen absorption phenomenon during finish annealing, and nitrogen in the steel was secured up to a high temperature region. On the other hand, it was found that the steel sheet not added with them had a large amount of nitrogen absorption (additional nitriding) of the steel sheet at the time of finish annealing and a large amount of nitrogen escaped.

【0023】また、仕上焼鈍中の一次再結晶の粒径の成
長挙動であるが、図2に示すように、B、Pb、Se等
の元素を添加したものは、一次再結晶の粒成長が抑えら
れているのに対し、無添加のものは、粒成長の抑止力が
充分でなく、800℃付近から早くも一次再結晶の粒成
長を生じていた。B、Pb、Seを添加した材料を脱炭
焼鈍後、オージェ等で分析したところ、これらは一次再
結晶の粒内には存在せず、粒界に偏析していることが確
認された。
Regarding the growth behavior of the grain size of the primary recrystallization during the finish annealing, as shown in FIG. 2, when the elements such as B, Pb and Se are added, the grain growth of the primary recrystallization occurs. On the other hand, in the case of no addition, the grain growth inhibitory effect was not sufficient in the case of no addition, and the grain growth of primary recrystallization occurred as early as around 800 ° C. After the materials to which B, Pb, and Se were added were decarburized and annealed, they were analyzed by Auger and the like, and it was confirmed that they were not present in the grains of the primary recrystallization and were segregated at the grain boundaries.

【0024】なお、仕上焼鈍時での鋼板の吸窒(追加窒
化)を抑え、かつ一次再結晶の粒成長を抑制する元素を
他に調べたところ、Te、Mo、Nb、Ni、V、S
b、Ti、Snが同様な結果を示した。以上の手段で仕
上焼鈍時の吸窒(追加窒化)を抑えて一次再結晶の粒の
粗大化を抑制することにより、被膜特性、磁気特性がと
もに良好でかつバラツキも小さい品質の優れた方向性電
磁鋼板が得られる。
Other elements that suppress nitrogen absorption (additional nitriding) of the steel sheet during finish annealing and suppress grain growth of primary recrystallization were investigated, and Te, Mo, Nb, Ni, V, and S were found.
b, Ti and Sn showed similar results. By controlling nitrogen absorption (additional nitriding) at the time of finish annealing and suppressing coarsening of primary recrystallized grains by the above means, both good film characteristics and magnetic characteristics and small variation are obtained. A magnetic steel sheet is obtained.

【0025】[0025]

【実施例】次に実施例について述べる。表1に示す成分
組成のスラブを表2で示す条件で加熱し、2.3mmの厚
みに熱間圧延し、熱延板を冷間圧延し、0.3mmの板厚
とした。その後に、830℃+150秒、H2 75%、
2 25%のガスに加湿して露点約60℃の雰囲気ガス
に調整した条件下で脱炭焼鈍し、続いてNH3 により鋼
板を窒化し、窒素量としては180〜200ppm とし
た。
EXAMPLES Next, examples will be described. A slab having the composition shown in Table 1 was heated under the conditions shown in Table 2, hot-rolled to a thickness of 2.3 mm, and a hot-rolled sheet was cold-rolled to a sheet thickness of 0.3 mm. After that, 830 ℃ +150 seconds, H 2 75%,
It was decarburized and annealed under the condition that it was humidified with a gas of 25% N 2 and adjusted to an atmospheric gas with a dew point of about 60 ° C., then the steel sheet was nitrided with NH 3 , and the nitrogen amount was 180 to 200 ppm.

【0026】次いでMgOを主成分とする焼鈍分離剤を
鋼板に塗布し、コイルに巻き取った後、H2 75%、N
2 25%の雰囲気で仕上焼鈍を1200℃×20時間行
った。得られた方向性電磁鋼板の磁気特性、被膜特性を
測定し、その結果を表3に示す。
Then, an annealing separator containing MgO as a main component is applied to the steel sheet and wound on a coil, and then H 2 75% and N 2 are added.
The finish annealing at 2 25% of the atmosphere were carried out 1200 ° C. × 20 hours. The magnetic properties and coating properties of the obtained grain-oriented electrical steel sheet were measured, and the results are shown in Table 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【発明の効果】本発明によれば、実施例にみられるよう
に仕上焼鈍過程での追加窒化がないために、被膜欠損の
発生が皆無であり、かつ微量元素が粒界に偏析して、イ
ンヒビター機能をもつために高温まで一次再結晶粒径が
保持され、その結果として、方位のそろった二次再結晶
が得られ、極めて磁気特性の優れた方向性電磁鋼板が製
造され得る。
EFFECTS OF THE INVENTION According to the present invention, since there is no additional nitriding in the finish annealing process as seen in the examples, no film defects occur, and trace elements segregate at the grain boundaries, Due to the inhibitor function, the primary recrystallized grain size is maintained up to a high temperature, and as a result, oriented secondary recrystallization is obtained, and a grain-oriented electrical steel sheet having excellent magnetic properties can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】仕上焼鈍過程における鋼中の窒素量の変化を示
す図である。
FIG. 1 is a diagram showing changes in the amount of nitrogen in steel during a finish annealing process.

【図2】仕上焼鈍過程における一次再結晶の変化を示す
図である。
FIG. 2 is a diagram showing changes in primary recrystallization during a finish annealing process.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 8/26 8116−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C23C 8/26 8116-4K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.025〜0.095%、
Si:2.0〜4.5%、S≦0.015%、酸可溶性
Al:0.010〜0.060%、N:0.0010〜
0.0130%、Mn:0.050〜0.45%、C
r:0.04〜0.25%、P:0.005〜0.04
5%を含み、更に微量添加元素として、Pb、Te、M
o、Nb、Se、Ni、V、Sb、B、Ti、Snのい
ずれかの元素の1種類以上を添加量として0.005〜
0.3%含み、残部Fe及び不可避的不純物からなる電
磁鋼スラブを、1280℃未満の温度に加熱し、熱間圧
延し、熱延まま又は熱延板焼鈍し、1回又は中間焼鈍を
挟んで2回以上冷間圧延し、次いで脱炭焼鈍した後、仕
上焼鈍する方向性電磁鋼板の製造プロセスにおいて、脱
炭焼鈍後、ストリップを走行せしめる状態で、アンモニ
アを含むガス中で窒化処理を行うことを特徴とする磁気
特性、被膜特性ともに優れた方向性電磁鋼板の製造方
法。
1. C: 0.025 to 0.095% by weight,
Si: 2.0-4.5%, S ≦ 0.015%, acid-soluble Al: 0.010-0.060%, N: 0.0010
0.0130%, Mn: 0.050 to 0.45%, C
r: 0.04 to 0.25%, P: 0.005 to 0.04
5%, and Pb, Te, M as minor addition elements
0.005 as an additive amount of one or more elements selected from the group consisting of o, Nb, Se, Ni, V, Sb, B, Ti and Sn.
An electromagnetic steel slab containing 0.3% and the balance Fe and unavoidable impurities is heated to a temperature of less than 1280 ° C., hot-rolled, as-hot-rolled or hot-rolled sheet annealed, and sandwiched between one time and intermediate annealing. In the manufacturing process of grain-oriented electrical steel sheet, cold rolling is performed twice or more in the following, followed by decarburization annealing, and then finish annealing. In the manufacturing process of the grain-oriented electrical steel sheet, nitriding treatment is performed in a gas containing ammonia after decarburization annealing while the strip is allowed to run. A method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.
JP24809091A 1991-09-26 1991-09-26 Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property Withdrawn JPH0578743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24809091A JPH0578743A (en) 1991-09-26 1991-09-26 Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24809091A JPH0578743A (en) 1991-09-26 1991-09-26 Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property

Publications (1)

Publication Number Publication Date
JPH0578743A true JPH0578743A (en) 1993-03-30

Family

ID=17173063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24809091A Withdrawn JPH0578743A (en) 1991-09-26 1991-09-26 Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property

Country Status (1)

Country Link
JP (1) JPH0578743A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869190A1 (en) * 1997-03-26 1998-10-07 Kawasaki Steel Corporation Grain oriented electrical steel sheet having very low iron loss and production for same
KR100347597B1 (en) * 1995-12-28 2002-11-23 주식회사 포스코 Method for manufacturing grain oriented electric steel sheet with high magnetic density
KR100419642B1 (en) * 1999-04-29 2004-02-25 주식회사 포스코 method for manufacturing high magnetic flux density grain-oriented electrical steels
KR100701195B1 (en) * 2005-12-21 2007-03-29 주식회사 포스코 A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100721819B1 (en) * 2005-12-14 2007-05-28 주식회사 포스코 Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
US7887645B1 (en) 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
CN103890211A (en) * 2011-10-20 2014-06-25 杰富意钢铁株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
CN104662180A (en) * 2012-09-27 2015-05-27 杰富意钢铁株式会社 Process for producing grain-oriented electromagnetic steel sheet
US9290824B2 (en) 2011-08-18 2016-03-22 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
WO2020067724A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347597B1 (en) * 1995-12-28 2002-11-23 주식회사 포스코 Method for manufacturing grain oriented electric steel sheet with high magnetic density
US6103022A (en) * 1997-03-26 2000-08-15 Kawasaki Steel Corporation Grain oriented electrical steel sheet having very low iron loss and production process for same
US6364963B1 (en) 1997-03-26 2002-04-02 Kawasaki Steel Corporation Grain oriented electrical steel sheet having very low iron loss and production process for same
EP0869190A1 (en) * 1997-03-26 1998-10-07 Kawasaki Steel Corporation Grain oriented electrical steel sheet having very low iron loss and production for same
KR100419642B1 (en) * 1999-04-29 2004-02-25 주식회사 포스코 method for manufacturing high magnetic flux density grain-oriented electrical steels
US7887645B1 (en) 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
KR100721819B1 (en) * 2005-12-14 2007-05-28 주식회사 포스코 Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
KR100701195B1 (en) * 2005-12-21 2007-03-29 주식회사 포스코 A grain-oriented electrical steel sheet manufacturing method without hot band annealing
US9273371B2 (en) 2010-03-17 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented electrical steel sheet
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
JP5031934B2 (en) * 2010-03-17 2012-09-26 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
US9290824B2 (en) 2011-08-18 2016-03-22 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
CN103890211A (en) * 2011-10-20 2014-06-25 杰富意钢铁株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
US9805851B2 (en) 2011-10-20 2017-10-31 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
CN104662180A (en) * 2012-09-27 2015-05-27 杰富意钢铁株式会社 Process for producing grain-oriented electromagnetic steel sheet
CN104662180B (en) * 2012-09-27 2017-06-09 杰富意钢铁株式会社 The manufacture method of grain-oriented electromagnetic steel sheet
WO2020067724A1 (en) * 2018-09-27 2020-04-02 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing same
KR20200035752A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Grain oriented electrical steel sheet method for manufacturing the same
JP2022501517A (en) * 2018-09-27 2022-01-06 ポスコPosco Directional electrical steel sheet and its manufacturing method
US11603572B2 (en) 2018-09-27 2023-03-14 Posco Co., Ltd Grain-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
KR930001330B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JP3481491B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR930001331B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPS5948934B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
KR20200076517A (en) Grain oriented electrical steel sheet and method for manufacturing therof
JPH0578743A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic property and coating film property
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
CN111566244A (en) Oriented electrical steel sheet and method for manufacturing the same
KR102493775B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
KR20020044243A (en) A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
KR102325004B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
WO2008078947A1 (en) Method of manufacturing grain-oriented electrical steel sheets
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR100435455B1 (en) Grain oriented electrical steel sheets with superior magnetic properties and method for producing it by low heating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203