JPH057795A - Coal grade discrimination using spiral discriminator - Google Patents

Coal grade discrimination using spiral discriminator

Info

Publication number
JPH057795A
JPH057795A JP16465391A JP16465391A JPH057795A JP H057795 A JPH057795 A JP H057795A JP 16465391 A JP16465391 A JP 16465391A JP 16465391 A JP16465391 A JP 16465391A JP H057795 A JPH057795 A JP H057795A
Authority
JP
Japan
Prior art keywords
spiral
coal
stage
slurry
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16465391A
Other languages
Japanese (ja)
Inventor
Toru Yamashita
亨 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP16465391A priority Critical patent/JPH057795A/en
Priority to AU17235/92A priority patent/AU638376B2/en
Publication of JPH057795A publication Critical patent/JPH057795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To provide a coal grade discrimination technique, by which, to enhance discrimination accuracy using a simple device and to make it possible to produce selected low ash coal stably, even if the supply of high ash coal is made. CONSTITUTION:High ash fine pulverized coal is discriminated in two stages using spiral coal grade discriminators 2,4. The slurry flow per unit length of spiral in the first stage is limited to 15 to 25 tons/hour.m with a slurry concentration set to 20 to 50wt.%, while the slurry flow per unit length of spiral in the second stage is limited to 20 to 30 tons/hour.m with a slurry concentration set to 5 to 30wt.%. The slurry flow of the first stage is adjusted to be less than that of the second stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスパイラル選鉱機を用い
た石炭の選別方法に関し、詳しくは粒径2mm以下の高灰
分の微粉炭をスパイラル選鉱機で処理して効率よく選別
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sorting coal using a spiral beneficiation machine, and more particularly to a method for efficiently treating pulverized coal having a high ash content of 2 mm or less with a spiral beneficiation machine.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】スパイ
ラル選鉱機は、設置面積の割に処理能力が高く、操業コ
ストも低く抑えられることから、微粉炭の選別に盛んに
実用化されている。しかしその一方で、選別精度がシャ
ープでなく、特に高灰分の石炭が供給された場合には、
紛れ込みにより精炭品位が大幅に悪化してしまう問題が
あった。すなわち、低灰分の精炭を収率を下げることな
く回収するためには、高比重分の紛れ込みを抑えると同
時にシャープな分離を行い、低比重分がボタ側に逃げる
のを制御することが重要であるが、スパイラル選鉱機に
供給するスラリー流量を増すと高比重分の紛れ込みが激
しくなり、スラリー濃度を増すと分離のシャープさが損
なわれてしまう。
2. Description of the Related Art Spiral beneficiation machines are widely used for the selection of pulverized coal because they have a high processing capacity for their installation area and a low operating cost. However, on the other hand, the sorting accuracy is not sharp, especially when high ash coal is supplied,
There was a problem that the quality of clean coal would be greatly deteriorated due to the inclusion. In other words, in order to recover clean coal with low ash content without lowering the yield, it is possible to suppress the mixing of the high specific gravity and at the same time perform sharp separation to control the escape of the low specific gravity to the button side. It is important to note that increasing the flow rate of the slurry supplied to the spiral concentrator increases the mixing of the high specific gravity, and increasing the slurry concentration impairs the sharpness of separation.

【0003】そのため、選別精度を向上させ、鉱物質の
紛れ込みを極力抑えることにより、原炭の灰分に関係な
く低灰分の精炭を安定して生産することのできるプロセ
スが求められている。
Therefore, there is a demand for a process capable of stably producing clean ash having a low ash content regardless of the ash content of raw coal by improving the sorting accuracy and suppressing the mixture of mineral substances as much as possible.

【0004】一方、上述のスパイラル選鉱機は、通常、
一段の処理で用いられるが、中間産物から精炭を回収す
るため、これをもう一度スパイラル選鉱することは一般
的に知られている。またクロマイト,ルチル,ジルコ
ン,イルメナイト等の重鉱物を回収する際に、精鉱を二
段処理する方法が提唱されている(Ritchie, I.C., and
Glen, J., 1983 "Testwork with FGL and CC Spirals o
n Heavy Mineral Sands"Vickers Fine Minerals Engine
ering, Internal Report No.61) 。
On the other hand, the above spiral beneficiation machine is usually
It is used in a one-step process, but it is generally known that spiral coal processing is performed once again to recover clean coal from an intermediate product. In addition, a method of treating the concentrate in two stages has been proposed when recovering heavy minerals such as chromite, rutile, zircon, and ilmenite (Ritchie, IC, and
Glen, J., 1983 "Testwork with FGL and CC Spirals o
n Heavy Mineral Sands "Vickers Fine Minerals Engine
ering, Internal Report No. 61).

【0005】しかしながら、スパイラル選鉱機を複数段
用いて選鉱処理を行っても、各段のスラリー濃度,スラ
リー流量を同一として行う通常の多段処理では、精炭品
位の向上には寄与するが、スパイラルの設置基数が多く
なるのが問題であった。
However, even if a plurality of stages of the spiral beneficiation machine are used for the beneficiation treatment, the ordinary multi-stage treatment in which the slurry concentration and the slurry flow rate at each stage are the same contributes to the improvement of clean coal quality, but the spiral It was a problem that the number of installed bases increased.

【0006】そこで本発明者は、上記従来技術の問題点
を解消し、簡単な装置構成で選別精度を向上することが
でき、高灰分の石炭が供給された場合でも、低灰分の精
炭を安定して生産できる石炭の選別方法を開発すべく鋭
意研究を重ねた。その結果、スパイラル選鉱機の二段処
理において、供給する原料炭のスラリー流量及びスラリ
ー濃度を制御することにより、上記目的を達成できるこ
とを見出した。本発明はかかる知見に基づいて完成され
たものである。
Therefore, the inventor of the present invention can solve the above-mentioned problems of the prior art and improve the sorting accuracy with a simple apparatus configuration. Even when high ash content coal is supplied, low ash content clean coal can be obtained. We have conducted intensive research to develop a method for selecting coal that can be stably produced. As a result, it has been found that the above object can be achieved by controlling the slurry flow rate and slurry concentration of the feed coal to be supplied in the two-stage treatment of the spiral beneficiation machine. The present invention has been completed based on such findings.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、粒
径2mm以下の高灰分の微粉炭をスパイラル選鉱機で処理
して選別するにあたり、スパイラル選鉱処理を二段で行
い、その1段目におけるスパイラル単位長さあたりのス
ラリー流量を15〜25トン/時・m,スラリー濃度を
20〜50重量%に、2段目におけるスパイラル単位長
さあたりのスラリー流量を20〜30トン/時・m,ス
ラリー濃度を5〜30重量%にするとともに、1段目の
スラリー流量を2段目のスラリー流量より少なくするこ
とを特徴とするスパイラル選鉱機を用いた石炭の選別方
法を提供するものである。
[Means for Solving the Problems] That is, according to the present invention, when a fine ash coal with a high ash content having a particle diameter of 2 mm or less is processed and sorted by a spiral beneficiation machine, a spiral beneficiation treatment is performed in two stages, and the first stage thereof. The slurry flow rate per spiral unit length is 15 to 25 tons / hour · m, the slurry concentration is 20 to 50% by weight, and the slurry flow rate per spiral unit length in the second stage is 20 to 30 tons / hour · m. And a slurry concentration of 5 to 30% by weight and a slurry flow rate of the first stage lower than the slurry flow rate of the second stage. .

【0008】本発明の対象となる石炭は、通常の炭鉱か
ら採掘された原炭である。この原炭には、一般に炭質分
以外に土砂をはじめとする鉱物質(ボタ)が含まれてい
るが、このようなボタが多量に含まれていると、分離除
去するのが困難である。本発明は、比重2.0以上の高比
重物が20重量%以上含まれ、灰分の高い石炭に対して
特に有効である。
The coal that is the subject of the present invention is raw coal mined from ordinary coal mines. Generally, this raw coal contains mineral substances (bottoms) such as earth and sand in addition to the carbonaceous matter, but if a large amount of such botts is contained, it is difficult to separate and remove them. INDUSTRIAL APPLICABILITY The present invention contains 20% by weight or more of a high specific gravity material having a specific gravity of 2.0 or more and is particularly effective for coal having a high ash content.

【0009】図1は本発明の選別方法を示す工程図であ
る。まず高灰分の原炭は、適当な粉砕装置で粒径2mm以
下の微粉炭に粉砕され、低濃度の水スラリーとしてサイ
クロン1に供給される。サイクロン1では、次の第1ス
パイラル選鉱機2における選鉱処理に適したスラリー濃
度に調節される。すなわち、サイクロン1に供給する水
スラリーの流入圧力を調整することにより、過剰の水を
サイクロン上部から系外に排出し、適度なスラリー濃度
として次の第1スパイラル選鉱機2に原料を供給するこ
とができる。
FIG. 1 is a process diagram showing the selection method of the present invention. First, raw coal with a high ash content is pulverized by a suitable pulverizing device into pulverized coal having a particle size of 2 mm or less, and is supplied to the cyclone 1 as a low-concentration water slurry. In the cyclone 1, the slurry concentration is adjusted to be suitable for the beneficiation process in the next first spiral beneficiation machine 2. That is, by adjusting the inflow pressure of the water slurry supplied to the cyclone 1, the excess water is discharged from the upper part of the cyclone to the outside of the system, and the raw material is supplied to the next first spiral beneficiation machine 2 as an appropriate slurry concentration. You can

【0010】ここで、スパイラル選鉱機は、図2に示す
ように、螺旋状の流路10にスラリー状の原料混合物を
流下させ、そのときの遠心力により外側に低比重の石炭
を濃縮し、内側に灰分の高い高比重の粒子を濃縮して分
離するように形成されている。螺旋状の流路10の途中
には、流路の幅方向を仕切る分離板(スプリッター)1
1,12が設けられており、外側の精炭Cと、中間部の
中間産物Mと、内側のボタRとの3成分に分離される。
なお、本発明においては、スパイラル選鉱機の形式は特
に限定されるものではなく、各種形式のスパイラル選鉱
機を用いることが可能である。
Here, as shown in FIG. 2, the spiral beneficiation machine causes a slurry-like raw material mixture to flow down in a spiral flow path 10 and concentrates coal having a low specific gravity to the outside by centrifugal force at that time. It is formed to concentrate and separate particles having a high specific gravity and a high ash content inside. A separation plate (splitter) 1 for partitioning the width direction of the flow path 1 is provided in the middle of the spiral flow path 10.
1, 12 are provided, and are separated into three components, an outer clean coal C, an intermediate intermediate product M, and an inner button R.
In the present invention, the type of spiral beneficiation machine is not particularly limited, and various types of spiral beneficiation machine can be used.

【0011】このスパイラル選鉱機におけるスラリー流
量は、スパイラル選鉱機の形式により異なるが、ここで
は、単位長さあたりの流量で規定する。単位長さあたり
の流量とは、スパイラル1巻へのスラリー供給量を、ス
パイラル下端のスプリッター直前の半径(スラリーが流
れる部分のみ)で割った値と定義する。単位はトン/時
・mで表わす。
The slurry flow rate in this spiral beneficiation machine differs depending on the type of the spiral beneficiation machine, but here it is defined by the flow rate per unit length. The flow rate per unit length is defined as a value obtained by dividing the amount of slurry supplied to one spiral by the radius of the lower end of the spiral immediately before the splitter (only the portion where the slurry flows). The unit is ton / hour · m.

【0012】前記第1スパイラル選鉱機2にスラリー流
量は、単位長さあたり15〜25トン/時・m、好まし
くは15〜20トン/時・mである。このスラリー流量
は、高比重物の紛れ込みに大きく影響するので、正常な
流れを保てる範囲でできるだけ低い方が好ましい。スラ
リー流量が15トン/時・m未満だと、スラリー層の厚
さが薄くなりすぎて流れが不安定になる。
The flow rate of the slurry in the first spiral beveling machine 2 is 15 to 25 tons / hour · m, preferably 15 to 20 tons / hour · m per unit length. Since the flow rate of the slurry has a great influence on the mixing of the high specific gravity material, it is preferable that the flow rate of the slurry is as low as possible within a range in which a normal flow can be maintained. When the slurry flow rate is less than 15 tons / hour · m, the thickness of the slurry layer becomes too thin and the flow becomes unstable.

【0013】また、スラリー濃度は、20〜50重量
%、好ましくは40〜50重量%の範囲とする。スラリ
ー濃度は50重量%を超えると、スラリーの粘度が増し
てスパイラル表面を正常に流れなくなり、また20重量
%未満では水が多すぎて効率が低下する。
The slurry concentration is in the range of 20 to 50% by weight, preferably 40 to 50% by weight. If the slurry concentration exceeds 50% by weight, the viscosity of the slurry will increase and the slurry will not flow normally on the spiral surface, and if it is less than 20% by weight, the amount of water will be too much and the efficiency will decrease.

【0014】第1スパイラル選鉱機2で選別された精炭
Cは、一旦タンク3に貯留される。また、ボタRは廃石
として廃棄され、中間産物Mは品位により精炭として回
収するか除去するかが決定される。タンク3では、次工
程の第2スパイラル選鉱機4における選鉱処理に適した
スラリー濃度に調節される。すなわち、第2スパイラル
選鉱機4の運転条件であるスラリー流量20〜30トン
/時・m、好ましくは25〜30トン/時・mと、スラ
リー濃度5〜30重量%、好ましくは5〜20重量%に
調整するために、通常は水が注入される。
The clean coal C selected by the first spiral beveling machine 2 is temporarily stored in the tank 3. Further, the button R is discarded as a waste stone, and the intermediate product M is determined to be recovered or removed as clean coal depending on the quality. In the tank 3, the slurry concentration is adjusted to be suitable for the beneficiation process in the second spiral beneficiation machine 4 in the next step. That is, a slurry flow rate of 20 to 30 tons / hour · m, preferably 25 to 30 tons / hour · m, which is the operating condition of the second spiral beveling machine 4, and a slurry concentration of 5 to 30% by weight, preferably 5 to 20% by weight. Water is usually injected to adjust to%.

【0015】第2スパイラル選鉱機4では、原炭処理量
を上げるためにスラリー流量を1段目より大きくすると
ともに、シャープな分離を行うためにスラリー濃度を極
力下げることが必要である。したがって、スラリー流量
及びスラリー濃度の上限値は第1スパイラル選鉱機2の
運転条件により定まる。またスラリー流量が低すぎる
と、前述のようにスラリー層の厚さが薄くなりすぎて流
れが不安定になり、スラリー濃度が低すぎると効率が低
下する。このようにして第2スパイラル選鉱機4で選別
することにより、低灰分の精炭を高収率で得ることがで
きる。
In the second spiral beneficiation machine 4, it is necessary to increase the slurry flow rate from the first stage in order to increase the amount of raw coal to be processed, and to reduce the slurry concentration as much as possible in order to perform sharp separation. Therefore, the upper limits of the slurry flow rate and the slurry concentration are determined by the operating conditions of the first spiral beneficiation machine 2. Further, if the slurry flow rate is too low, the thickness of the slurry layer becomes too thin as described above to make the flow unstable, and if the slurry concentration is too low, the efficiency will decrease. In this way, by sorting with the second spiral beneficiation machine 4, low ash content clean coal can be obtained in high yield.

【0016】すなわち、本発明は、スパイラル選鉱機を
二段とし、1段目におけるスラリー流量を小さくするこ
とで紛れ込みの原因となる高比重物を効果的に除去し、
2段目ではスラリー濃度を下げることでシャープな分離
を行うようにしたものである。このように、1段目と2
段目とのスパイラル選鉱機の選別目的を分けたことによ
り、従来法よりも選別効率を大幅に向上させ、より低灰
分の精炭を得ることができる。
That is, according to the present invention, the spiral beneficiation machine is provided in two stages, and the slurry flow rate in the first stage is reduced to effectively remove the high specific gravity substance which causes the mixing,
In the second stage, the slurry concentration is reduced to achieve sharp separation. In this way,
By separating the sorting purpose of the spiral beneficiation machine from the stage, the sorting efficiency can be greatly improved as compared with the conventional method, and clean coal with a lower ash content can be obtained.

【0017】なお、第1,第2スパイラル選鉱機は、同
一のものでも異なる形式のものを組み合わせてもよく、
1段目と2段目とを上下に設置すれば、タンク3を省略
することもできる。
The first and second spiral beneficiation machines may be the same or different types may be combined,
The tank 3 can be omitted by installing the first stage and the second stage up and down.

【0018】[0018]

【実施例】次に、本発明を実施例及び比較例によりさら
に詳しく説明する。 実施例1 (1)実験用試料の調製 エベネザ炭(豪州クイーンズランド州産)をロータービ
ーターミルで2.0mm以下に粉砕した後、0.125mm以下
の微粉をふるい分けて除去した。JIS−M−8812
に従い分析した結果、灰分は20.7重量%(無水ベー
ス)であった。なお、以後灰分はすべて無水ベースで表
記する。また、JIS−M−8801に従い浮沈試験を
行った結果、比重構成は第1表に示す通りであった。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 (1) Preparation of Experimental Sample Eveneza charcoal (made in Queensland, Australia) was crushed to 2.0 mm or less by a rotor beater mill, and then fine powder of 0.125 mm or less was removed by sieving. JIS-M-8812
The ash content was 20.7% by weight (anhydrous basis). In addition, hereinafter, all the ash content will be described on an anhydrous basis. In addition, as a result of a floating-sink test according to JIS-M-8801, the specific gravity constitution was as shown in Table 1.

【表1】 [Table 1]

【0019】このエベネザ炭143.4kgに市販の砂(灰
分96.4重量%)6.6kgを混合して、灰分24.0重量%
の実験用原炭(低灰分原灰)を調製した。比重構成を図
3に示す。
143.4 kg of this Ebeneza charcoal was mixed with 6.6 kg of commercially available sand (ash content: 96.4% by weight) to obtain an ash content of 24.0% by weight.
An experimental raw coal (low ash raw ash) was prepared. The specific gravity structure is shown in FIG.

【0020】(2)選鉱処理 実験に用いたスパイラル選鉱機は MINERAL DEPOSIT社製
LD2型である。1段目では(1)で得られた実験用原
炭150kgに水200kgを加えてスラリー濃度43重量
%とし、スラリー流量4.0トン/時(単位長さあたりの
流量18.2トン/時・m)でスパイラル選別を行った。
次に得られた1段目精炭 121.2kgと中間産物20.6kg
に水646kgを加え、スラリー濃度18重量%とし、ス
ラリー流量6.0トン/時(単位長さあたりの流量27.3
トン/時・m)で2段目の選別を行った。その結果、2
段の選鉱処理で得られた精炭の灰分は13.7重量%,収
率は79.1重量%であった。得られた精炭の比重構成を
図4に示す。
(2) The spiral beneficiation machine used for the beneficiation treatment experiment is LD2 type manufactured by MINERAL DEPOSIT. In the first step, 200 kg of water was added to 150 kg of the experimental raw coal obtained in (1) to make the slurry concentration 43% by weight, and the slurry flow rate was 4.0 tons / hour (flow rate per unit length was 18.2 tons / hour). • Spiral selection was performed in m).
Next obtained 1st stage clean coal 121.2kg and intermediate product 20.6kg
Add 646 kg of water to make the slurry concentration 18% by weight, slurry flow rate 6.0 tons / hour (flow rate per unit length 27.3
The second stage of sorting was performed at ton / hour / m). As a result, 2
The ash content of the clean coal obtained by the beneficiation treatment was 13.7% by weight, and the yield was 79.1% by weight. The specific gravity composition of the obtained clean coal is shown in FIG.

【0021】実施例2 実施例1と同様の方法で粉砕、ふるい分けされたエベネ
ザ炭(灰分20.7重量%)123.8kgに市販の砂(灰分
96.4重量%)26.2kgを混合して灰分33.9重量%
の実験用原炭(中灰分原炭)を調製した。比重構成を図
5に示す。この原炭を、実施例1と同様の条件で2段階
のスパイラル選別を行った。なお2段目には、1段目で
得られた精炭100kgと中間産物17.4kgに水535kg
を加えて供給した。得られた精炭の灰分は14.0重量
%,収率は68.3重量%であった。得られた精炭の比重
構成を図6に示す。
Example 2 123.8 kg of Ebeneza charcoal (ash content: 20.7% by weight) pulverized and sieved in the same manner as in Example 1 was mixed with 26.2 kg of commercially available sand (ash content: 96.4% by weight). Ash content 33.9% by weight
An experimental raw coal (medium ash raw coal) was prepared. The specific gravity structure is shown in FIG. This raw coal was subjected to two-step spiral screening under the same conditions as in Example 1. In the second stage, 100 kg of clean coal obtained in the first stage, 17.4 kg of intermediate product and 535 kg of water.
Was added and supplied. The ash content of the obtained clean coal was 14.0% by weight, and the yield was 68.3% by weight. The specific gravity structure of the obtained clean coal is shown in FIG.

【0022】実施例3 実施例1と同様の方法で粉砕,ふるい分けされたエベネ
ザ炭(灰分20.7重量%)98.6kgに市販の砂(灰分9
6.4重量%)51.4kgを混合して灰分46.7重量%の実
験用原炭(中灰分原炭)を調製した。比重構成を図7に
示す。この原炭を、実施例1と同様の条件で2段階のス
パイラル選別を行った。なお2段目には、1段目で得ら
れた精炭77.9kgと中間産物14.4kgに水420kgを加
えて供給した。得られた精炭の灰分は14.4重量%,収
率は54.7重量%であった。得られた精炭の比重構成を
図8に示す。
Example 3 Eveneza charcoal (ash content 20.7% by weight) pulverized and sieved in the same manner as in Example 1 was added to 98.6 kg of commercially available sand (ash content 9
(6.4 wt%) 51.4 kg was mixed to prepare an experimental raw coal (medium ash raw coal) having an ash content of 46.7 wt%. The specific gravity structure is shown in FIG. This raw coal was subjected to two-step spiral screening under the same conditions as in Example 1. In addition, in the second stage, the clean coal 77.9 kg obtained in the first stage and the intermediate product 14.4 kg were added with 420 kg of water and supplied. The ash content of the obtained clean coal was 14.4% by weight, and the yield was 54.7% by weight. The specific gravity structure of the obtained clean coal is shown in FIG.

【0023】比較例1 実施例1に用いた実験用原炭(低灰分原炭)150kgに
水722kgを加えてスラリー濃度17.2重量%とし、ス
ラリー流量5.0トン/時(単位長さあたりの流量22.7
トン/時・m)でスパイラル選別を行った。2基のスパ
イラル選鉱機に同時にスラリーを供給し、実施例1と供
給量が同じになるようにした。得られた精炭の灰分は1
5.8重量%,収率は79.6重量%であった。精炭の比重
構成を図9に示す。
Comparative Example 1 150 kg of the experimental raw coal (low ash raw coal) used in Example 1 was mixed with 722 kg of water to obtain a slurry concentration of 17.2% by weight, and the slurry flow rate was 5.0 tons / hour (unit length: Flow rate per 22.7
Spiral selection was performed at ton / hour / m). The slurry was simultaneously supplied to the two spiral beneficiation machines so that the supply amount was the same as in Example 1. The ash content of the obtained clean coal is 1
It was 5.8% by weight and the yield was 79.6% by weight. The specific gravity composition of clean coal is shown in FIG.

【0024】比較例2 実施例2に用いた実験用原炭(中灰分原炭)を、比較例
1と同様の方法でスパイラル選別を行った。得られた精
炭の灰分は17.0重量%,収率は69.7重量%であっ
た。精炭の比重構成を図10に示す。
Comparative Example 2 The experimental raw coal (medium ash raw coal) used in Example 2 was subjected to spiral screening in the same manner as in Comparative Example 1. The ash content of the obtained clean coal was 17.0% by weight, and the yield was 69.7% by weight. The specific gravity structure of clean coal is shown in FIG.

【0025】比較例3 実施例3に用いた実験用原炭(高灰分原炭)を、比較例
1と同様の方法でスパイラル選別を行った。得られた精
炭の灰分は19.2重量%,収率は57.0重量%であっ
た。精炭の比重構成を図11に示す。
Comparative Example 3 The experimental raw coal (high ash raw coal) used in Example 3 was subjected to spiral screening in the same manner as in Comparative Example 1. The ash content of the obtained clean coal was 19.2% by weight, and the yield was 57.0% by weight. The specific gravity structure of clean coal is shown in FIG.

【0026】以上の結果から、各比較例に示す1段処理
では、特に高灰分の原炭において比重2.0以上の高比重
分が除去されずに残ってしまい、精炭品位を悪化させて
いることがわかる。一方、各実施例では比重2.0以上の
高比重分が殆ど分離除去されていることが分かる。
From the above results, in the one-step treatment shown in each comparative example, particularly in the high ash content raw coal, the high specific gravity of 2.0 or more remains without being removed, which deteriorates the quality of clean coal. You can see that On the other hand, in each of the examples, it can be seen that the high specific gravity components having a specific gravity of 2.0 or more are almost separated and removed.

【0027】比較例4 実施例3に用いた実験用原炭(高灰分原炭)150kgに
水303kgを加えてスラリー濃度を33.1重量%とし、
スラリー流量5.2トン/時(単位長さあたりの流量23.
6トン/時・m)で1段目のスパイラル選別を行った。
次に得られた1段目の精炭118.5kgと中間産物14.1
kgに水268kgを加え、スラリー濃度33.1重量%と
し、スラリー流量5.2トン/時(単位長さあたりの流量
23.6トン/時・m)で2段目の選別を行った。なお、
1段目のスラリー供給量は実施例1と同じである。得ら
れた2段目精炭の灰分は16.9重量%,収率は56.3重
量%であった。精炭の比重構成を図12に示す。
Comparative Example 4 To 150 kg of the experimental raw coal (high ash raw coal) used in Example 3, 303 kg of water was added to make a slurry concentration 33.1% by weight,
Slurry flow rate 5.2 tons / hour (flow rate per unit length 23.
The first stage of spiral sorting was performed at 6 tons / hour / m).
Next, the obtained first-stage clean coal 118.5 kg and intermediate product 14.1
268 kg of water was added to kg to make the slurry concentration 33.1% by weight, and the second stage selection was performed at a slurry flow rate of 5.2 tons / hour (flow rate per unit length of 23.6 tons / hour · m). In addition,
The amount of slurry supplied in the first stage is the same as in Example 1. The ash content of the obtained second-stage clean coal was 16.9% by weight, and the yield was 56.3% by weight. The specific gravity composition of clean coal is shown in FIG.

【0028】実施例1〜3及び比較例1〜4の結果を第
2表にまとめて示す。
The results of Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 2.

【表2】 [Table 2]

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
選別精度を大幅に向上させることができるので、通常の
2段処理に比べて少ないスパイラル選鉱機の設置基数
で、収率を下げることなく、より低灰分の精炭を生産す
ることができる。
As described above, according to the present invention,
Since the sorting accuracy can be significantly improved, it is possible to produce a clean coal with a lower ash content without lowering the yield with a smaller number of spiral beneficiation machines installed as compared with the normal two-stage treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の処理工程の概略図である。FIG. 1 is a schematic view of the processing steps of the present invention.

【図2】 スパイラル選鉱機の要部を示す斜視図であ
る。
FIG. 2 is a perspective view showing a main part of a spiral beneficiation machine.

【図3】 実施例1における実験用原炭の比重構成を示
す図である。
FIG. 3 is a diagram showing a specific gravity structure of an experimental raw coal in Example 1.

【図4】 実施例1で得られた精炭の比重構成を示す図
である。
FIG. 4 is a diagram showing a specific gravity structure of the clean coal obtained in Example 1.

【図5】 実施例2における実験用原炭の比重構成を示
す図である。
FIG. 5 is a diagram showing a specific gravity structure of an experimental raw coal in Example 2.

【図6】 実施例2で得られた精炭の比重構成を示す図
である。
FIG. 6 is a view showing a specific gravity structure of clean coal obtained in Example 2.

【図7】 実施例3における実験用原炭の比重構成を示
す図である。
FIG. 7 is a diagram showing a specific gravity structure of an experimental raw coal in Example 3.

【図8】 実施例3で得られた精炭の比重構成を示す図
である。
FIG. 8 is a diagram showing a specific gravity structure of clean coal obtained in Example 3.

【図9】 比較例1で得られた精炭の比重構成を示す図
である。
FIG. 9 is a view showing a specific gravity structure of clean coal obtained in Comparative Example 1.

【図10】 比較例2で得られた精炭の比重構成を示す
図である。
FIG. 10 is a diagram showing a specific gravity structure of clean coal obtained in Comparative Example 2.

【図11】 比較例3で得られた精炭の比重構成を示す
図である。
FIG. 11 is a diagram showing a specific gravity structure of clean coal obtained in Comparative Example 3.

【図12】 比較例4で得られた精炭の比重構成を示す
図である。
FIG. 12 is a view showing a specific gravity structure of clean coal obtained in Comparative Example 4.

【符号の説明】[Explanation of symbols]

1:サイクロン 2:第1スパイラル選鉱機 3:タンク 4:第2スパイラル選鉱機 10:螺旋状の流路 11,12:分離板(スプリッター) C:精炭 M:中間産物 R:ボタ 1: Cyclone 2: 1st spiral beneficiation machine 3: Tank 4: Second spiral beneficiation machine 10: spiral flow path 11, 12: Separation plate (splitter) C: clean coal M: Intermediate product R: Bota

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径2mm以下の高灰分の微粉炭をスパイ
ラル選鉱機で処理して選別するにあたり、スパイラル選
鉱処理を二段で行い、その1段目におけるスパイラル単
位長さあたりのスラリー流量を15〜25トン/時・
m,スラリー濃度を20〜50重量%に、2段目におけ
るスパイラル単位長さあたりのスラリー流量を20〜3
0トン/時・m,スラリー濃度を5〜30重量%にする
とともに、1段目のスラリー流量を2段目のスラリー流
量より少なくすることを特徴とするスパイラル選鉱機を
用いた石炭の選別方法。
1. When treating a high ash pulverized coal having a particle size of 2 mm or less with a spiral beneficiation machine for selection, a spiral beneficiation process is performed in two stages, and the slurry flow rate per spiral unit length in the first stage is 15-25 tons / hour
m, the slurry concentration is 20 to 50% by weight, and the slurry flow rate per spiral unit length in the second stage is 20 to 3
Coal sorting method using a spiral beneficiation machine, characterized in that the tonnage is 0 ton / hour · m, the slurry concentration is 5 to 30% by weight, and the first stage slurry flow rate is lower than the second stage slurry flow rate. .
【請求項2】 前記2段目のスラリー濃度を1段目のス
ラリー濃度より低くすることを特徴とする請求項1記載
の石炭の選別方法。
2. The method for selecting coal according to claim 1, wherein the second stage slurry concentration is lower than the first stage slurry concentration.
JP16465391A 1991-07-04 1991-07-04 Coal grade discrimination using spiral discriminator Pending JPH057795A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16465391A JPH057795A (en) 1991-07-04 1991-07-04 Coal grade discrimination using spiral discriminator
AU17235/92A AU638376B2 (en) 1991-07-04 1992-05-29 Coal preparation method for producing high quality clean coal with spiral separators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16465391A JPH057795A (en) 1991-07-04 1991-07-04 Coal grade discrimination using spiral discriminator

Publications (1)

Publication Number Publication Date
JPH057795A true JPH057795A (en) 1993-01-19

Family

ID=15797270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16465391A Pending JPH057795A (en) 1991-07-04 1991-07-04 Coal grade discrimination using spiral discriminator

Country Status (2)

Country Link
JP (1) JPH057795A (en)
AU (1) AU638376B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470691A (en) * 1993-04-10 1995-11-28 Taiyo Yuden, Co., Ltd. Optical information medium
US5549952A (en) * 1992-06-13 1996-08-27 Sony Corporation Optical information medium and method for printing on the surface of the medium
JP2008137003A (en) * 2006-11-30 2008-06-19 Palo Alto Research Center Inc Method for treating particle in liquid and method for forming spiral separation device
JP2009274066A (en) * 2008-05-13 2009-11-26 Palo Alto Research Center Inc Particle separation system
CN102410745A (en) * 2011-10-31 2012-04-11 天津三泰晟驰科技股份有限公司 Protecting sheath for high-temperature-resistant camera shooting device in heating furnace
US8276760B2 (en) 2006-11-30 2012-10-02 Palo Alto Research Center Incorporated Serpentine structures for continuous flow particle separations
US9862624B2 (en) 2007-11-07 2018-01-09 Palo Alto Research Center Incorporated Device and method for dynamic processing in water purification
US10052571B2 (en) 2007-11-07 2018-08-21 Palo Alto Research Center Incorporated Fluidic device and method for separation of neutrally buoyant particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113769884B (en) * 2021-08-27 2023-10-03 杨高灵 Coal washing and dressing process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549952A (en) * 1992-06-13 1996-08-27 Sony Corporation Optical information medium and method for printing on the surface of the medium
US5470691A (en) * 1993-04-10 1995-11-28 Taiyo Yuden, Co., Ltd. Optical information medium
JP2008137003A (en) * 2006-11-30 2008-06-19 Palo Alto Research Center Inc Method for treating particle in liquid and method for forming spiral separation device
US8276760B2 (en) 2006-11-30 2012-10-02 Palo Alto Research Center Incorporated Serpentine structures for continuous flow particle separations
US9486812B2 (en) 2006-11-30 2016-11-08 Palo Alto Research Center Incorporated Fluidic structures for membraneless particle separation
US9862624B2 (en) 2007-11-07 2018-01-09 Palo Alto Research Center Incorporated Device and method for dynamic processing in water purification
US10052571B2 (en) 2007-11-07 2018-08-21 Palo Alto Research Center Incorporated Fluidic device and method for separation of neutrally buoyant particles
JP2009274066A (en) * 2008-05-13 2009-11-26 Palo Alto Research Center Inc Particle separation system
CN102410745A (en) * 2011-10-31 2012-04-11 天津三泰晟驰科技股份有限公司 Protecting sheath for high-temperature-resistant camera shooting device in heating furnace

Also Published As

Publication number Publication date
AU1723592A (en) 1993-01-07
AU638376B2 (en) 1993-06-24

Similar Documents

Publication Publication Date Title
US20220184633A1 (en) System and method for recovery of valuable constituents from steel-making slag fines
RU2432207C1 (en) Method of dressing composite iron ores
WO2013019618A2 (en) Ore beneficiation
CN108514949B (en) Recovery method of fine-grain ilmenite
JPH057795A (en) Coal grade discrimination using spiral discriminator
CN109127109B (en) Reselection combined recovery process for uranium, niobium and lead polymetallic ore
CN113631739B (en) Recovery of chromite fines
AU2020101235A4 (en) Method for the Beneficiation of Iron Ore Streams
EP0267170B1 (en) Treatment of middlings
US2514958A (en) Concentration of oolitic iron ores
CN110227603B (en) Tungsten ore sorting method
CN105964390B (en) Cupric < 0.2%, molybdenum < 0.01%, cobalt < 0.01% a kind of copper mine barren rock method of comprehensive utilization
US4860957A (en) Treatment of middlings
Balasubramanian Overview of mineral processing methods
CN111495578A (en) Method for recovering heavy sand containing monomer gold from middling and/or tailings of gold ore shaking table
RU2310512C2 (en) Sulfide concentration process
Bath, MD, Duncan, AJ & Rudolph Some factors influencing gold recovery by gravity concentration
CA2418020C (en) Steel slag processing jig system
CN109499748B (en) Method for separating cassiterite and gangue in ore grinding circuit by selecting ore
CN108283988A (en) Stage grinding magnetic weight flow processing mixed type iron ore technique
CN116943856B (en) Method for effectively recovering chromite
US2571835A (en) Separation of mineral mixtures
RU2111795C1 (en) Continuous production line for processing schlich materials
AU2023203473A1 (en) A process and plant
CN117732584A (en) Method for selecting radioactive qualified tailings from rare earth-containing niobium-zirconium polymetallic rock ore