JPH0577480B2 - - Google Patents

Info

Publication number
JPH0577480B2
JPH0577480B2 JP61184935A JP18493586A JPH0577480B2 JP H0577480 B2 JPH0577480 B2 JP H0577480B2 JP 61184935 A JP61184935 A JP 61184935A JP 18493586 A JP18493586 A JP 18493586A JP H0577480 B2 JPH0577480 B2 JP H0577480B2
Authority
JP
Japan
Prior art keywords
activated sludge
sewage
treatment
tank
cassette
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61184935A
Other languages
Japanese (ja)
Other versions
JPS6362594A (en
Inventor
Masahiro Fujii
Eiichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61184935A priority Critical patent/JPS6362594A/en
Priority to CA 543748 priority patent/CA1332007C/en
Priority to US07/082,356 priority patent/US4832847A/en
Priority to CN87105407A priority patent/CN1010854B/en
Priority to FR8711209A priority patent/FR2606397B1/en
Priority to DE3726201A priority patent/DE3726201C2/en
Priority to GB8718676A priority patent/GB2195625B/en
Publication of JPS6362594A publication Critical patent/JPS6362594A/en
Publication of JPH0577480B2 publication Critical patent/JPH0577480B2/ja
Priority to CA000616790A priority patent/CA1335004C/en
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は下水の活性汚泥処理方法に関するもの
で、さらに詳述すると下水の活性汚泥処理方法に
おいて活性汚泥の固定化担体を用いて活性汚泥処
理する方法に関するものである。 (従来の技術) 一般に、下水の活性汚泥処理は、次のように行
なわれている。下水処理場に集水した下水は沈砂
池、スクリーン等によつて土砂、粗大な浮遊物質
等の大部分を除去した後、曝気槽において、活性
汚泥処理を行うことにより汚濁物を分解し、次の
汚泥沈降槽において、活性汚泥の沈降分離を行な
い、上澄水は、塩素消毒等を行なつた後、放流さ
れている。一方汚泥沈降槽において沈降した活性
汚泥は返送汚泥として曝気槽に戻し、また、一部
は、余剰汚泥として抜取り、メタン醗酵、焼却処
理等によつて処分されている。 この様な下水の活性汚泥処理方法においては多
くの問題点が存在している。例えば、この下水処
理の活性汚泥は、沈降性の指標であるSVI
(Sludge Volume Index)が高く、汚泥沈降槽に
おいて圧密性の良好な沈降汚泥が得られ難く、ま
た、高負荷処理、負荷変動が大きい処理を行なつ
たり、或いは、活性汚泥に糸状菌が発生すると汚
性汚泥がバルキング状態になり沈降不良になると
いう欠点がある。 従つて、従来の下水の活性汚泥処理において
は、曝気槽の活性汚泥を高濃度に維持するのが困
難であり、このため、処理時間の短縮、処理設備
のコンパクト化等、処理効率のアツプに限界があ
り、また、バルキングが発生すると活性汚泥が汚
泥沈降槽より流出し、処理水質の低下を招き易
い。この他に、前述の沈降分離した汚泥のうち曝
気槽へ返送されない余剰汚泥処理プロセスにおい
ても汚泥の脱水処理工程、メタン醗酵工程及びメ
タン醗酵後の汚泥処理工程等にも多くの問題点が
存在している。 このため、従来の活性汚泥処理法では、下水処
理場を建設する場合、広い土地を必要とし、ま
た、処理プロセスの簡略化、処理設備のコンパク
ト化が困難なため下水処理場の建設にかなりの建
設費が必要である。 このような下水処理の問題点を解決する一つの
手段として高効率の活性汚泥処理技術の開発が要
望されている。従来下水の活性汚泥処理を高効率
に行なう方法として曝気槽の活性汚泥を高濃度に
維持する方法があり、この方法には流動床方式と
固定床方式とがある。 流動床方式は、活性汚泥を珪藻土等の土砂の微
粒子あるいは活性炭の粒子、又は、多孔質の有機
高分子化合物の粒子を曝気槽に添加し、これらの
粒子を曝気により曝気槽内を流動させて、これに
活性汚泥を付着させ、活性汚泥の沈降性を改善し
て活性汚泥を高濃度に維持する方法である。 固定床方式は、有機高分子化合物よりなるハニ
カムチユーブあるいは多層板を曝気層に浸漬し、
これに活性汚泥を付着させて固定化する方法であ
る。 しかし、これらの従来の方法には多くの問題点
があつた。 まず、珪藻土等の土砂の微粒子を用いた流動床
方式は、活性汚泥とこれらの無機系微粒子との親
和性が十分でないため、活性汚泥が安定して付着
するのに長期間を要する。また、この担体に付着
した活性汚泥を余剰汚泥として処理する方法が十
分に確立していない。 また、粉末活性炭、有機系高分子化合物の粒子
を用いた流動床方式の場合、これらの粒子と活性
汚泥との親和性は非常に良く、活性汚泥が安定し
て付着する。しかし、この方法で処理した後の余
剰汚泥をメタン醗酵法により処理する場合、メタ
ン醗酵後、これらの粒子を再生利用する技術が十
分に確立していない。また、余剰汚泥を焼却処理
する場合、これらの担体粒子は、無機系担体粒子
に比べてコスト的に高く、再生利用が不可能であ
ると下水処理のコストを高める原因となる。 一方、有機高分子化合物のハニカムチユーブ、
積層板等を活性汚泥の固定床型担体に用いた固定
床方式の場合、活性汚泥とこれらの担体との親和
性が良好なため、汚泥が容易に付着するが増殖し
た活性汚泥によつて担体の閉塞が起りやすく、こ
のため、これらの担体を曝気槽より取り出し、水
洗等による洗浄を度々行なつて再生する必要があ
る。しかし、これらの固定床型担体に付着した活
性汚泥は、固定床の構造が複雑であり、また、担
体と活性汚泥との親和力が高いため簡単な水洗等
では再生が困難であり、再生に煩雑な処理を必要
とする。 以上述べたように従来の活性汚泥を固定化する
担体及び固定床は、活性汚泥との親和性、再利用
性、取り扱い性、コスト等に問題があり下水のよ
うな大規模な活性汚泥処理に適用するのが困難で
ある。 (本発明が解決しようとする問題点) 本発明は前述した従来の下水の活性汚泥処理に
おいて用いられる活性汚泥の固定用担体の問題点
を解決するために新規な固定床方式の担体を用い
る高効率活性汚泥処理方法を提供することを目的
としている。 (問題点を解決するための手段と作用) 本発明は下水の活性汚泥処理において汚泥の固
定化担体としてセラミツクスからなる固定床を用
いることに特徴があり、さらにはセラミツクス固
定床として用いると同時に曝気槽の酸化還元電位
を一定の範囲に管理することに特徴がある。 前記セラミツクスは多孔性の板状のカセツトま
たはセラミツクスからなる充填材を充填したカセ
ツトとして使用するのが最も望ましい。 以下、本発明の方法について詳細に説明する。 本発明者等は下水の活性汚泥処理方法について
研究する過程で活性汚泥が存在する曝気槽中に多
孔性のセラミツクスを浸漬すると活性汚泥がセラ
ミツクス内部に積極的に入り込むことを知見し
た。そこでこの知見を基にセラミツクスを下水の
活性汚泥処理における汚泥の担体として利用する
ことを試みたところ有効なことを見い出した。 本発明はこのような知見に基づいて完成された
発明であるが、セラミツクスが活性汚泥に及ぼす
作用機構については明らかでない。 本発明においてセラミツクスを活性汚泥の担体
として利用する場合は多孔性のセラミツクスから
なるカセツトを用いるか、あるいはセラミツクス
を充填材として充填したカセツトを用いるのが工
業的には最も望ましいことがわかつた。 そこで前記のセラミツクスで構成されるカセツ
トを下水処理に適用するための処理条件と下水処
理設備における生物化学反応槽の構造等について
第1図によつて説明する。 第1図は第1曝気槽2と第2曝気槽3の中間に
多孔性のセラミツクスからなるカセツト若しくは
セラミツクス(例えばチツプ状)の充填材を充填
したカセツト等のセラミツクスカセツト1(以降
同様に称する)を配置した下水の生物化学処理装
置で、第1曝気槽2と第2曝気槽3の下部には曝
気用の散気管11がパイプを介して曝気用ブロア
ー9に接続されて設けられている。また処理水1
2を排出する側の第2曝気槽3にはORPセンサ
ー4が配置されこのセンサー4はORP制御装置
5に接続されるとともに、このORP制御装置5
には曝気量調整用電磁弁10が導線を介して接続
され、該電磁弁10は前記の曝気用散気管11と
曝気用はブロワー9の間に配置され、ORP制御
装置5の指示により作動して曝気量を制御できる
ようになつている。なお、6は記録計、7は下水
供給用ポンプ、8は下水調整タンクである。 この第1図に示す曝気槽に種汚泥として下水の
活性汚泥の混合液(活性汚泥濃度1000〜5000mg/
)を入れると活性汚泥がセラミツクスの孔、或
いは空隙に入り込み第1曝気槽2と第2曝気槽3
は一定の時間を経過するとほぼ透明になる。そこ
で空気、または酸素富化空気、または酸素(以後
酸素含有曝気用気体と称する)を曝気用散気管1
1より吹込み第1,第2曝気槽の曝気を行う。 次に下水を通水し、下水が第1曝気槽2、B槽
(セラミツクスカセツト配置部)及び第2曝気槽
3を通過する見かけの通過時間(処理時間に相当
する)が16時間になるように調整し、その後、処
理時間を逐次短縮して活性汚泥の馴養を行ない、
定常は2〜4時間で処理を行なう。この馴養は約
10〜30日間程度で良い。 また、第1曝気槽2及び第2曝気槽3に吹き込
む酸素含有曝気用気体の曝気量は、第1図に示す
第2曝気槽3に配置された酸化還元電位(ORP)
センサー4により第2曝気槽3のORPを計測し
ながらORPが0〜100mV(金・アンチモン合金−
塩化銀/銀複合電極による測定値)になるように
ORP制御装置により電磁弁10を介してコント
ロールする。 下水の活性汚泥処理の曝気槽のORPと処理水
との関係は本発明者らの研究から曝気槽出口の
ORPを0〜+100mVに管理すれば処理水の生物
化学的酸素要求量(BOD)を20mg/以下に維
持できることが明らかになつている。 このことから、第2曝気槽3は、従来の活性汚
泥処理の曝気槽の出口に相当するので、該槽3の
ORPを管理することによつて良好な水質を有す
る処理水が得られる。 本発明法では下水に含まれている汚濁物の分解
は、第1図の第1曝気槽2において流入した下水
に酸素含有曝気用気体を吹き込むことにより酸素
を溶解させ、次のB槽のセラミツクスのカセツト
1に通水するとカセツトに付着している活性汚泥
が溶存酸素を利用して下水の汚濁物を分解する。
更に、第2曝気槽3において酸素を溶解させるこ
とによりB槽において分解しなかつた汚濁物を分
解したり、或いは、悪臭の原因物質の除去を行な
い、また、処理水を好気状態にする。その結果後
述するように従来法に比べてすぐれた効果が得ら
れる。 次に本発明に使用されるセラミツクスについて
説明する。まず多孔性セラミツクスは、例えば発
泡ウレタン等の有機高分子化合物の粒子にセラミ
ツクスの微粉末を被覆して焼成する方法により製
造したものなどが良く、この時に使用されるセラ
ミツクスの原料は、製鉄所の副産物である高炉水
滓スラグにバインダーとしてアルミナ、シリカを
含むカオリン族粘土鉱物、例えば、木節粘土、蛙
目粘土の粉末及び気孔形成剤を混合したものが適
切である。なお、本明細書に於いて述べるセラミ
ツクスは、高炉水滓スラグを主成分としたセラミ
ツクスを指す。 多孔性セラミツクスの孔の形状については、特
に適切な形状はないが、前述のような方法により
多孔性セラミツクスを製造すると、大部分が円形
状の孔を形成する。また、最適な孔の直径は1〜
5mm程度が良く、孔の大きさは、特に揃える必要
がなく、この程度の直径範囲に分布していれば十
分に使用することができる。 また多孔性セラミツクスの孔の構造は、活性汚
泥の付着性、下水処理過程における閉塞性に著し
く影響する。例えば、セラミツクスの孔がハニカ
ムチユーブのように入口と出口とが一気通貫で、
いわゆる二次元構造の場合、下水処理を行なうと
簡単に閉塞するが、この孔が枝分れ、各孔と連結
した、いわゆる三次元構造の孔にすると閉塞が起
り難いことが経験的に明らかになつている。 一方、セラミツクスの充填材を充填したカセツ
トの場合、充填するセラミツクスの形状、大きさ
は、特に限定しないがなるべく簡単な形状のもの
が良い。例えば、充填材の形状としては、板状
形、円筒形、半円形、或いは、粒状のもの等が、
また、充填材の大きさは、外径10〜100mm程度の
ものが最適である。充填材の大きさが10mm未満で
あると閉塞しやすく、一方、100mmを超えると付
着した活性汚泥が流出しやすい等の問題がある。
このようなセラミツクスを用いてカセツトを構成
する場合は、例えば金網で容器を作製しておいて
この中にセラミツクスを充填することによつて準
備できる。 なお、セラミツクスの充填材の代りに波板状の
セラミツクスを充填したカセツトも下水処理に使
用することができる。 次に本発明で使用するセラミツクスカセツトの
設置方法について説明する。 まず、多孔性セラミツクスの場合、製造方法に
よつては1〜2mの厚さを有する1体の多孔性セ
ラミツクスを製造するのが困難な場合がある。こ
のような場合には、例えば、厚さ2〜10cmの板状
セラミツクスを集成して使用すれば良い。その場
合、これを単に第1図のB槽に並べてセツトする
のではなく、B槽の下水の流れ方向に対して5〜
25等分の厚さを有するカセツトを作り、このカセ
ツト別に板状の多孔性セラミツクスをセツトする
のが良く、また、このカセツトの場合、多孔性セ
ラミツクスの平面(厚さ方向でない)は、下水の
流れに対して直角になるようにセツトするのが良
い。 また、セラミツクスの充填材を充填したカセツ
トを第1図のB槽に設置する場合も、B槽に1カ
セツトのみを設置するのではなく、多孔性セラミ
ツクスの場合と同様にB槽の下水の流れ方向に対
して5〜25等分の厚さを有する複数のカセツトを
設置するのが好ましい。 これらのカセツトの設置方法は、下水がこのカ
セツトを効率良く通過するように、例えばカセツ
トの両サイド及び底部、或いはB槽の側壁、底部
などにシールをして下水がセラミツクスカセツト
面だけから通過するようにするのが好ましい。 次に、カセツトの閉塞及び閉塞した場合の再生
利用方法につてい説明する。 セラミツクスのカセツトに活性汚泥を付着させ
て下水を生物化学的に処理を行なう場合、長期間
処理を行なつていると下水に含まれている浮遊性
汚濁物質或いは活性汚泥の増殖によつてセラミツ
クスのカセツトが閉塞することがある。 この閉塞は、第1図に示すB槽の1番最初のカ
セツト(第1曝気槽2に最も近い部分)が起り易
く、カセツトの閉塞が起つた場合、或いは、閉塞
に近い状態になつたらこのカセツトを取り出し、
2番目のカセツトを1番目の位置に、3番目のカ
セツトを2番目の位置にと水平方向に順次移動さ
せ、一番最後のカセツト(第2曝気槽3に近い部
分)に新しいカセツト又は閉塞したカセツトを再
生したものを設置する。このようにセラミツクス
カセツトを循環交換する方式は、下水処理を行な
いながらカセツトの交換が可能で、しかも、処理
効率及び処理水質の低下を招くこともないので最
適な方法である。 次に閉塞した、または閉塞に近い状態のセラミ
ツクスカセツトの再生方法について説明する。B
槽より引上げたカセツトは、静止しておくと内部
に含くまれている水が流出し、かなりの水分を除
去することができる。また、内部に付着している
活性汚泥は、高圧水による水洗いにより容易に除
去することができ、この水洗したカセツトは、直
ちに再使用することができる。 また、水洗だけで付着汚泥の除去ができない場
合には静置により水切りしたカセツトあるいは水
洗後水切りしたカセツトを500〜800℃の焼却炉に
入れると付着している汚泥は、燃焼除去すること
ができる。 このような方法により再生したカセツトは、活
性汚泥の付着機能が損われないので、再使用が可
能である。 また、活性汚泥が付着したカセツトをそのまま
メタン醗酵槽に入れるとメタン醗酵が起りメタン
を回収することができ、更に、メタン醗酵後のカ
セツトは、高圧水により水洗、或いは、燃焼する
ことにより再使用が可能になる。 次に、第1図の第1曝気槽2、B槽及び第2曝
気槽3の容積の比率は、経験的にB槽の1.0に対
して第1曝気槽2、第2曝気槽3が各々0.25〜
1.0の範囲が良く、最適な比率は、第1曝気槽2
が0.5、B槽が1.0、第2曝気槽3が0.5である。 なお、下水を活性汚泥法により処理を行なつた
後、処理水より活性汚泥を分離する汚泥沈降槽
は、本発明の場合、活性汚泥がB槽のセラミツク
スの内にほぼ完全に保持され、第2曝気槽3にほ
とんど流出しないため、一般の下水の活性汚泥処
理に存在している活性沈降槽は、本発明の場合、
省略できるか、又は、簡略化することができる。 (実施例) 次に、本発明の実施例について説明する。 実施例 1 第1図の実験装置の生物学的反応槽(第1曝気
槽2:10、セラミツクスを設置したB槽:20
、第2曝気槽3:10)に都市下水の活性汚泥
処理の曝気槽より採取した活性汚泥混合液30を
入れ、次に、B槽に半弧円形の高炉水滓スラグを
主原料とするセラミツクス(直径:約20mm)を充
填したカセツトをセツトする。そして、第1曝気
槽及び第2曝気槽を曝気すると約16〜24時間後に
両曝気槽がほぼ透明になり、活性汚泥がセラミツ
クス層に固定化される。 活性汚泥が固定化されたら、第1表に示す人工
下水を第1曝気槽2から第2曝気槽3までの通過
時間が16時間、12時間、8時間、6時間、4時
間、3時間、2時間になるように通水し、固定化
した活性汚泥を人工下水に馴養しながら、人工下
水の処理を行う。このとき、第2曝気槽3の酸化
還元電位(ORP)は、+100mv(銀一塩化銀電極
基準)になるように第1曝気槽2及び第2曝気槽
3に吹き込む空気量をコントロールした。この処
理性能を第2表に示す。
(Industrial Application Field) The present invention relates to a method for treating sewage with activated sludge, and more specifically, to a method for treating sewage with activated sludge using an immobilized carrier for activated sludge. (Prior Art) Generally, activated sludge treatment of sewage is performed as follows. The sewage collected at the sewage treatment plant is filtered through settling basins, screens, etc. to remove most of the sediment, coarse suspended solids, etc., and then decomposed by activated sludge treatment in the aeration tank. Activated sludge is sedimented and separated in the sludge settling tank, and the supernatant water is chlorinated and then discharged. On the other hand, the activated sludge that has settled in the sludge settling tank is returned to the aeration tank as return sludge, and a portion is removed as surplus sludge and disposed of by methane fermentation, incineration, etc. Many problems exist in such activated sludge treatment methods for sewage. For example, this activated sludge from sewage treatment has SVI, an indicator of sedimentation.
(Sludge Volume Index) is high, it is difficult to obtain settled sludge with good compaction in the sludge settling tank, and high-load processing or processing with large load fluctuations is performed, or when filamentous bacteria occur in activated sludge. There is a drawback that the dirty sludge becomes bulky and settles poorly. Therefore, in conventional activated sludge treatment of sewage, it is difficult to maintain a high concentration of activated sludge in the aeration tank, and for this reason, it is necessary to improve treatment efficiency by shortening treatment time and making treatment equipment more compact. There is a limit, and when bulking occurs, activated sludge flows out of the sludge settling tank, which tends to cause a decline in the quality of treated water. In addition, there are many problems in the above-mentioned treatment process for excess sludge that is not returned to the aeration tank from the sedimentation and separation, as well as in the sludge dehydration treatment process, methane fermentation process, and sludge treatment process after methane fermentation. ing. For this reason, the conventional activated sludge treatment method requires a large area of land when constructing a sewage treatment plant, and it is difficult to simplify the treatment process and make the treatment equipment more compact, so it takes a considerable amount of time to construct a sewage treatment plant. Construction costs are required. As a means to solve these problems in sewage treatment, there is a demand for the development of highly efficient activated sludge treatment technology. Conventionally, as a method for highly efficient activated sludge treatment of sewage, there is a method of maintaining activated sludge in an aeration tank at a high concentration, and this method includes a fluidized bed method and a fixed bed method. In the fluidized bed method, activated sludge is added to an aeration tank with fine particles of earth and sand such as diatomaceous earth, particles of activated carbon, or particles of porous organic polymer compounds, and these particles are made to flow in the aeration tank by aeration. In this method, activated sludge is attached to the activated sludge to improve the sedimentation properties of the activated sludge and maintain the activated sludge at a high concentration. In the fixed bed method, honeycomb tubes or multilayer plates made of organic polymer compounds are immersed in an aeration layer.
This is a method of attaching activated sludge to it and fixing it. However, these conventional methods have many problems. First, in the fluidized bed method using fine particles of earth and sand such as diatomaceous earth, the affinity between activated sludge and these inorganic fine particles is not sufficient, so it takes a long time for the activated sludge to stably adhere. Furthermore, a method for treating activated sludge adhering to this carrier as surplus sludge has not been sufficiently established. In addition, in the case of a fluidized bed method using particles of powdered activated carbon or an organic polymer compound, the affinity between these particles and activated sludge is very good, and the activated sludge adheres stably. However, when surplus sludge treated by this method is treated by methane fermentation, a technology for recycling these particles after methane fermentation has not been sufficiently established. Furthermore, when surplus sludge is incinerated, these carrier particles are more expensive than inorganic carrier particles, and if they cannot be recycled, they will increase the cost of sewage treatment. On the other hand, honeycomb tubes made of organic polymer compounds,
In the case of a fixed bed system using a laminate plate or the like as a fixed bed carrier for activated sludge, activated sludge has good affinity with these carriers, so sludge easily adheres to the carrier, but the activated sludge that has proliferated will cause the carrier to Therefore, it is necessary to take out these carriers from the aeration tank and wash them with water or the like frequently to regenerate them. However, the activated sludge adhering to these fixed bed carriers is difficult to regenerate by simple washing with water because the fixed bed structure is complex and the affinity between the carrier and activated sludge is high. requires additional processing. As mentioned above, conventional carriers and fixed beds that immobilize activated sludge have problems with compatibility with activated sludge, reusability, ease of handling, cost, etc., and are not suitable for large-scale activated sludge treatment such as sewage. Difficult to apply. (Problems to be Solved by the Present Invention) The present invention aims to solve the above-mentioned problems with the carrier for immobilizing activated sludge used in the conventional activated sludge treatment of sewage. The purpose is to provide an efficient activated sludge treatment method. (Means and effects for solving the problems) The present invention is characterized in that a fixed bed made of ceramics is used as a sludge immobilization carrier in activated sludge treatment of sewage, and furthermore, it is used as a fixed bed of ceramics and at the same time it is aerated. It is characterized by controlling the redox potential of the tank within a certain range. The ceramic is most preferably used in the form of a porous plate-shaped cassette or a cassette filled with a ceramic filler. The method of the present invention will be explained in detail below. In the process of researching methods for treating sewage with activated sludge, the present inventors discovered that when porous ceramics are immersed in an aeration tank containing activated sludge, the activated sludge actively enters inside the ceramics. Based on this knowledge, we attempted to use ceramics as a sludge carrier in activated sludge treatment of sewage and found that it was effective. Although the present invention was completed based on such knowledge, the mechanism of action of ceramics on activated sludge is not clear. When ceramics are used as a carrier for activated sludge in the present invention, it has been found that industrially it is most desirable to use a cassette made of porous ceramics or a cassette filled with ceramics as a filler. The treatment conditions for applying the above-mentioned ceramic cassette to sewage treatment and the structure of a biochemical reaction tank in sewage treatment equipment will be explained with reference to FIG. FIG. 1 shows a ceramic cassette 1 (hereinafter referred to similarly), such as a cassette made of porous ceramics or a cassette filled with a ceramic (for example, chip-shaped) filler between a first aeration tank 2 and a second aeration tank 3. This is a biochemical treatment device for sewage in which a first aeration tank 2 and a second aeration tank 3 are provided with a diffuser pipe 11 connected to an aeration blower 9 via a pipe at the bottom of the first aeration tank 2 and the second aeration tank 3. In addition, treated water 1
An ORP sensor 4 is disposed in the second aeration tank 3 on the side that discharges CO2, and this sensor 4 is connected to an ORP control device 5.
A solenoid valve 10 for adjusting the amount of aeration is connected to the solenoid valve 10 via a conductive wire, and the solenoid valve 10 is arranged between the aeration diffuser pipe 11 and the aeration blower 9, and is operated according to instructions from the ORP control device 5. It is now possible to control the amount of aeration. Note that 6 is a recorder, 7 is a sewage supply pump, and 8 is a sewage adjustment tank. A mixed solution of activated sludge from sewage (activated sludge concentration 1000 to 5000 mg/
), activated sludge enters the pores or voids of the ceramics and flows into the first aeration tank 2 and the second aeration tank 3.
becomes almost transparent after a certain period of time. Therefore, air, oxygen-enriched air, or oxygen (hereinafter referred to as oxygen-containing aeration gas) is supplied to the aeration diffuser pipe 1.
Aerate the first and second aeration tanks by blowing from step 1. Next, the sewage is passed through the first aeration tank 2, tank B (ceramics cassette placement part), and second aeration tank 3 so that the apparent transit time (corresponding to treatment time) is 16 hours. After that, the treatment time is gradually shortened to acclimatize the activated sludge.
The steady state treatment is carried out for 2 to 4 hours. This familiarization is approximately
Approximately 10 to 30 days is sufficient. In addition, the amount of aeration of the oxygen-containing aeration gas blown into the first aeration tank 2 and the second aeration tank 3 is determined by the oxidation-reduction potential (ORP) arranged in the second aeration tank 3 shown in FIG.
While measuring the ORP of the second aeration tank 3 using the sensor 4, the ORP is 0 to 100 mV (gold/antimony alloy).
measured using a silver chloride/silver composite electrode).
It is controlled via a solenoid valve 10 by an ORP control device. The relationship between the ORP of the aeration tank for activated sludge treatment of sewage and the treated water was determined from the research conducted by the present inventors.
It has been revealed that the biochemical oxygen demand (BOD) of treated water can be maintained below 20 mg/by controlling ORP between 0 and +100 mV. From this, the second aeration tank 3 corresponds to the outlet of the aeration tank in conventional activated sludge treatment, so the second aeration tank 3
By managing ORP, treated water with good water quality can be obtained. In the method of the present invention, pollutants contained in sewage are decomposed by dissolving oxygen by blowing oxygen-containing aeration gas into the sewage flowing into the first aeration tank 2 in Fig. When water is passed through the cassette 1, the activated sludge adhering to the cassette decomposes sewage pollutants using dissolved oxygen.
Furthermore, by dissolving oxygen in the second aeration tank 3, pollutants that were not decomposed in tank B are decomposed, or substances that cause bad odors are removed, and the treated water is brought into an aerobic state. As a result, as will be described later, superior effects can be obtained compared to conventional methods. Next, the ceramics used in the present invention will be explained. First, porous ceramics are preferably manufactured by coating particles of an organic polymer compound such as urethane foam with fine ceramic powder and firing them. It is suitable to mix powders of kaolin group clay minerals containing alumina and silica, such as Kibushi clay and Frog's Eye clay, and a pore-forming agent as a binder to blast furnace water slag, which is a by-product. Note that the ceramics described in this specification refer to ceramics whose main component is blast furnace slag slag. There is no particularly suitable shape for the pores of porous ceramics, but when porous ceramics are produced by the method described above, most of the pores are circular. Also, the optimal hole diameter is 1~
A diameter of about 5 mm is good, and there is no need to make the holes uniform in size; it is sufficient to use the holes as long as they are distributed within this range of diameters. Furthermore, the pore structure of porous ceramics has a significant effect on the adhesion of activated sludge and the clogging properties during the sewage treatment process. For example, the pores of ceramics are like honeycomb tubes, where the entrance and exit are all continuous.
In the case of a so-called two-dimensional structure, it is easily clogged during sewage treatment, but experience has shown that blockage is less likely to occur if the pores are branched and connected to each other, a so-called three-dimensional structure. It's summery. On the other hand, in the case of a cassette filled with a ceramic filler, the shape and size of the ceramics to be filled are not particularly limited, but the shape is preferably as simple as possible. For example, the shape of the filler may be plate-like, cylindrical, semicircular, or granular.
Moreover, the optimal size of the filler is one with an outer diameter of about 10 to 100 mm. If the size of the filler is less than 10 mm, it tends to clog, while if it exceeds 100 mm, there are problems such as the activated sludge that adheres to it tends to flow out.
When constructing a cassette using such ceramics, it can be prepared by, for example, making a container out of wire mesh and filling the container with ceramics. Incidentally, a cassette filled with corrugated ceramic instead of ceramic filler can also be used for sewage treatment. Next, a method for installing the ceramic cassette used in the present invention will be explained. First, in the case of porous ceramics, depending on the manufacturing method, it may be difficult to manufacture a single piece of porous ceramic with a thickness of 1 to 2 m. In such a case, for example, plate-shaped ceramics having a thickness of 2 to 10 cm may be assembled and used. In that case, instead of simply setting them side by side in tank B in Figure 1, it is necessary to set the
It is best to make a cassette with a thickness of 25 equal parts and set a plate-shaped porous ceramic in each cassette.In addition, in the case of this cassette, the plane of the porous ceramic (not in the thickness direction) It is best to set it perpendicular to the flow. Also, when installing a cassette filled with ceramic filler in tank B in Figure 1, instead of installing only one cassette in tank B, the sewage flow in tank B should be adjusted in the same way as in the case of porous ceramics. Preferably, a plurality of cassettes having a thickness of 5 to 25 equal parts in the direction are installed. The method for installing these cassettes is to seal the sides and bottom of the cassette, or the side walls and bottom of tank B, so that the sewage can pass through the cassette efficiently, so that the sewage can pass through only from the ceramic cassette surface. It is preferable to do so. Next, the blockage of the cassette and the recycling method in the case of blockage will be explained. When sewage is biochemically treated by attaching activated sludge to ceramic cassettes, if the treatment is continued for a long time, the ceramics will grow due to floating pollutants contained in the sewage or the proliferation of activated sludge. The cassette may become blocked. This blockage is most likely to occur in the first cassette (the part closest to the first aeration tank 2) of tank B shown in Fig. Take out the cassette and
The second cassette is moved horizontally to the first position, the third cassette is moved to the second position, and the last cassette (the part near the second aeration tank 3) is filled with a new or blocked cassette. Install a recycled cassette. This method of circulating and exchanging ceramic cassettes is an optimal method because it allows the cassettes to be exchanged while sewage treatment is being carried out, and it does not cause a decrease in treatment efficiency or quality of treated water. Next, a method for regenerating a ceramic cassette that is blocked or nearly blocked will be explained. B
When the cassette is pulled out of the tank and kept stationary, the water contained inside will flow out and a considerable amount of water can be removed. Further, the activated sludge adhering to the inside can be easily removed by washing with high-pressure water, and the washed cassette can be immediately reused. In addition, if the attached sludge cannot be removed by washing with water alone, the attached sludge can be removed by combustion by placing the cassette that has been left to drain or the cassette that has been drained after washing with water in an incinerator at 500 to 800°C. . The cassettes regenerated by this method can be reused because the activated sludge adhesion function is not impaired. Furthermore, if a cassette with activated sludge is placed directly into a methane fermentation tank, methane fermentation will occur and methane can be recovered.Furthermore, the cassette after methane fermentation can be reused by washing it with high-pressure water or burning it. becomes possible. Next, empirically, the volume ratio of the first aeration tank 2, B tank, and second aeration tank 3 in FIG. 0.25~
A range of 1.0 is good, and the optimal ratio is 1st aeration tank 2
is 0.5, tank B is 1.0, and second aeration tank 3 is 0.5. In addition, in the case of the present invention, activated sludge is almost completely retained in the ceramics of tank B, and the sludge settling tank that separates activated sludge from treated water after treating sewage by the activated sludge method 2. Since almost no water flows into the aeration tank 3, in the case of the present invention, the activated sedimentation tank that exists in the activated sludge treatment of general sewage is
It can be omitted or simplified. (Example) Next, an example of the present invention will be described. Example 1 Biological reaction tank of the experimental apparatus shown in Figure 1 (first aeration tank 2:10, B tank installed with ceramics: 20
, the activated sludge mixture 30 collected from the aeration tank for urban sewage activated sludge treatment is poured into the second aeration tank (3:10), and then into tank B, ceramics whose main raw material is half-arc circular blast furnace water slag is poured. (diameter: approx. 20mm). Then, when the first aeration tank and the second aeration tank are aerated, both aeration tanks become almost transparent after about 16 to 24 hours, and the activated sludge is immobilized in the ceramic layer. Once the activated sludge is fixed, the passage time of the artificial sewage shown in Table 1 from the first aeration tank 2 to the second aeration tank 3 is 16 hours, 12 hours, 8 hours, 6 hours, 4 hours, 3 hours, The artificial sewage is treated by passing water for 2 hours and acclimatizing the fixed activated sludge to the artificial sewage. At this time, the amount of air blown into the first aeration tank 2 and the second aeration tank 3 was controlled so that the oxidation-reduction potential (ORP) of the second aeration tank 3 was +100mv (based on a silver monochloride electrode). This processing performance is shown in Table 2.

【表】【table】

【表】 第2表の結果より、高炉水滓スラグセラミツク
スを活性汚泥の固定化担体に用いた、固定床型バ
イオリアクターは、処理時間が2時間、BOD容
積負荷量が2.4Kg/m3・日の高率処理を行つても
処理水質が優れており、また、下水の標準活性汚
泥処理法に比べて処理効率が4〜5倍、処理水質
が優れている。 (発明の効果) (1) 本発明の方法は、下水の活性汚泥処理に多く
用いられている均一混合型に比べて、生物化学
的反応槽(曝気槽に相当する)内に活性汚泥を
均一に混合する必要がなく、単に、下水に酸素
を溶解させるのみで良いので、従来の方法に比
べて曝気用空気に必要な動力が少なくて済む。 (2) セラミツクスは活性汚泥を保持する機能が優
れているため、処理水に活性汚泥がほとんど流
出しないので、一般の活性汚泥処理に用いられ
ている汚泥沈降槽の省略化、又は、汚泥沈降槽
を簡略化することができる。 (3) BOD負荷量を一般の活性汚泥処理の約3倍
以上かけて処理を行なつても処理水質が良好で
ある。従つて、生物化学的反応槽(曝気槽に相
当する)をかなり小型化することができる。 (4) 活性汚泥沈降槽の省略化又は簡略化、さらに
は生物化学的反応槽(曝気槽)の小型化が可能
なので、下水処理設備全体を著しくコンパクト
化することができる。 (5) 活性汚泥がセラミツクス内に固定化されてい
るので、一般の均一混合型活性汚泥処理に発生
しやすい活性汚泥のバルキングが発生しないの
で処理が安定しており、また、良好な処理がで
きる。
[Table] From the results in Table 2, the fixed bed bioreactor using blast furnace water slag ceramics as the activated sludge immobilization carrier has a treatment time of 2 hours and a BOD volumetric load of 2.4 Kg/ m3 . The quality of the treated water is excellent even when treated at a high rate of 1 day, and the treatment efficiency is 4 to 5 times higher than that of the standard activated sludge treatment method for sewage, and the quality of the treated water is excellent. (Effects of the invention) (1) The method of the present invention allows activated sludge to be uniformly mixed in a biochemical reaction tank (corresponding to an aeration tank), compared to the homogeneous mixing type that is often used for activated sludge treatment of sewage. Since there is no need to mix oxygen into the sewage and it is sufficient to simply dissolve oxygen in the sewage, less power is required for the aeration air than in conventional methods. (2) Since ceramics have an excellent ability to retain activated sludge, almost no activated sludge flows out into the treated water, so the sludge settling tank used in general activated sludge treatment can be omitted or the sludge settling tank can be replaced. can be simplified. (3) The quality of the treated water is good even when the BOD load is approximately three times higher than that of general activated sludge treatment. Therefore, the biochemical reaction tank (corresponding to an aeration tank) can be considerably downsized. (4) Since the activated sludge settling tank can be omitted or simplified, and the biochemical reaction tank (aeration tank) can be downsized, the entire sewage treatment facility can be significantly downsized. (5) Since the activated sludge is fixed in ceramics, bulking of the activated sludge that tends to occur in general homogeneous mixed activated sludge treatment does not occur, making the treatment stable and possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に用いた実験用のセラミツク
スカセツトを集成セツトした下水処理の生物化学
処理装置の概略図。
FIG. 1 is a schematic diagram of a biochemical treatment device for sewage treatment in which an assembled set of experimental ceramic cassettes used in the present invention is assembled.

Claims (1)

【特許請求の範囲】[Claims] 1 下水の生物学的浄化処理に於いて、高炉水滓
スラグを原料とするセラミツクスの層に下水の汚
濁物を分解する微生物を固定化させた後、酸素を
溶存させた下水を、このセラミツクス層に供給し
て処理を行い、また、このセラミツクス層を通過
した下水、いわゆる生物学的処理をされた処理水
の酸化還元電位を指標にして曝気量を管理、制御
することを特徴とする高炉水滓スラグを原料とす
るセラミツクスを活性汚泥の固定化担体に用いた
下水の固定床型連続活性汚泥処理方法。
1. In biological purification of sewage, microorganisms that decompose sewage pollutants are immobilized on a layer of ceramics made from blast furnace water slag, and then sewage with dissolved oxygen is transferred to the ceramic layer. The blast furnace water is supplied to the ceramic layer for treatment, and the amount of aeration is managed and controlled using the oxidation-reduction potential of the sewage that has passed through this ceramic layer, so-called biologically treated treated water, as an indicator. A fixed-bed continuous activated sludge treatment method for sewage using ceramics made from tailings slag as an activated sludge immobilization carrier.
JP61184935A 1986-08-06 1986-08-06 Fixed bed type continuous activated sludge treatment of waste water by using ceramics as carrier for immobilizing activated sludge Granted JPS6362594A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61184935A JPS6362594A (en) 1986-08-06 1986-08-06 Fixed bed type continuous activated sludge treatment of waste water by using ceramics as carrier for immobilizing activated sludge
CA 543748 CA1332007C (en) 1986-08-06 1987-08-05 Process for activated-sludge treatment of sewage or industrial waste water
US07/082,356 US4832847A (en) 1986-08-06 1987-08-06 Process for activated-sludge treatment of sewage or industrial waste water
CN87105407A CN1010854B (en) 1986-08-06 1987-08-06 Treatment method of activated sludge of sewage or industrial waste water
FR8711209A FR2606397B1 (en) 1986-08-06 1987-08-06 PROCESS FOR THE ACTIVATED SLUDGE TREATMENT OF SEWAGE WATER OR INDUSTRIAL WASTEWATER USING BLAST FOUR DAIRY PARTICLES AS FIXATORS
DE3726201A DE3726201C2 (en) 1986-08-06 1987-08-06 Activated sludge treatment process for wastewater or industrial wastewater
GB8718676A GB2195625B (en) 1986-08-06 1987-08-06 Process for activated-sludge treatment of sewage or industrial waste water
CA000616790A CA1335004C (en) 1986-08-06 1994-01-06 Cassette for use in activated-sludge treatment of sewage or industrial waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184935A JPS6362594A (en) 1986-08-06 1986-08-06 Fixed bed type continuous activated sludge treatment of waste water by using ceramics as carrier for immobilizing activated sludge

Publications (2)

Publication Number Publication Date
JPS6362594A JPS6362594A (en) 1988-03-18
JPH0577480B2 true JPH0577480B2 (en) 1993-10-26

Family

ID=16161922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184935A Granted JPS6362594A (en) 1986-08-06 1986-08-06 Fixed bed type continuous activated sludge treatment of waste water by using ceramics as carrier for immobilizing activated sludge

Country Status (1)

Country Link
JP (1) JPS6362594A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239877A (en) * 1988-07-29 1990-02-08 Kirin Brewery Co Ltd Bioreactor containing open-cell ceramic carrier
JPH0677745B2 (en) * 1989-08-14 1994-10-05 伊藤忠セラミックス株式会社 Ceramic wastewater treatment equipment
JP2002028607A (en) * 2000-07-13 2002-01-29 Mitsubishi Rayon Co Ltd Regenerating material and regenerating method of water treating material using coal ash as essential raw material
WO2017212591A1 (en) * 2016-06-08 2017-12-14 株式会社アイエンス Wastewater purifying system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144147A (en) * 1977-05-19 1978-12-15 Seisan Gijiyutsu Kaihatsu Kenk Method of preventing precipitation of excessive sludge in biological treating tank using waste water contacting material and device for automatically conveying excessive sludge utilizing same
JPS5827691A (en) * 1981-08-08 1983-02-18 Yukio Kato Catalytic oxidizer for filthy water
JPS61136490A (en) * 1984-12-07 1986-06-24 Fuiruton Internatl Kk Aeration type waste water treatment apparatus
JPS62201693A (en) * 1986-02-28 1987-09-05 Komatsu Ltd Treatment of liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144147A (en) * 1977-05-19 1978-12-15 Seisan Gijiyutsu Kaihatsu Kenk Method of preventing precipitation of excessive sludge in biological treating tank using waste water contacting material and device for automatically conveying excessive sludge utilizing same
JPS5827691A (en) * 1981-08-08 1983-02-18 Yukio Kato Catalytic oxidizer for filthy water
JPS61136490A (en) * 1984-12-07 1986-06-24 Fuiruton Internatl Kk Aeration type waste water treatment apparatus
JPS62201693A (en) * 1986-02-28 1987-09-05 Komatsu Ltd Treatment of liquid

Also Published As

Publication number Publication date
JPS6362594A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JP3183406B2 (en) Methods and reactors for water purification
US5932099A (en) Installation for biological water treatment for the production of drinkable water
US20100133196A1 (en) Combined gravity separation-filtration for conducting treatment processes in solid-liquid systems
EP0175568A2 (en) Three phase fluidized bed bioreactor process
JP2007313508A (en) Installation for biological water treatment for production of drinking water
JPS5867395A (en) Method and apparatus for biologically purifying waste water
CN106277558A (en) A kind of integrate process for removing nitrogen and phosphor from sewage and the device that physical biochemistry filters
JP2015145006A (en) Method for biological purification of waste water and reactor
KR100443407B1 (en) Water purification device using a microorganism media
JPS63236596A (en) Treatment of waste water with activated sludge
JPH0577480B2 (en)
CN210457847U (en) Sewage full-effect treatment system based on MBBR and magnetic separation
JP2559592B2 (en) Wastewater treatment biofilm carrier
US5395528A (en) Method of biologically purifying liquids contaminated with impurities
JPS6317513B2 (en)
JPH0210717B2 (en)
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
JPH10202280A (en) Biological treatment of organic sewage using light weight activated carbon
CN106673194A (en) Decarburization, denitrification and dephosphorization deep treatment system and method
CN101798158A (en) Advanced treatment method of refractory organic industrial sewage
JPS63287596A (en) Fixed-bed type activated-sludge treatment of waste water
JPH06496A (en) Advanced treatment of sewage
JPH02238835A (en) Filter of breeding water of fishes
WO2003053866A1 (en) Water clarifying system
JPH01151998A (en) Method for purifying water using ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term