JPH0577152B2 - - Google Patents

Info

Publication number
JPH0577152B2
JPH0577152B2 JP61201441A JP20144186A JPH0577152B2 JP H0577152 B2 JPH0577152 B2 JP H0577152B2 JP 61201441 A JP61201441 A JP 61201441A JP 20144186 A JP20144186 A JP 20144186A JP H0577152 B2 JPH0577152 B2 JP H0577152B2
Authority
JP
Japan
Prior art keywords
electrolyte
gas
fuel cell
plate
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61201441A
Other languages
Japanese (ja)
Other versions
JPS6358768A (en
Inventor
Yasutaka Komatsu
Akio Soma
Keizo Ootsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201441A priority Critical patent/JPS6358768A/en
Publication of JPS6358768A publication Critical patent/JPS6358768A/en
Publication of JPH0577152B2 publication Critical patent/JPH0577152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に係り、特に長寿命化及び高
性能化に好適な燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and particularly to a fuel cell suitable for extending life and improving performance.

〔従来の技術〕[Conventional technology]

燃料電池は従来は第7図に示すように構成され
ていた。すなわち、マトリツクスに形成された細
孔に電解質を保持させてなる電解質板1と、この
電解質板1を挟持して対向する1対の電極、すな
わちアノード2及びカソード3とによつて構成さ
れた単位電池が、セパレータ4を介して複数個積
層されている。このセパレータ4にはアノード2
に燃料ガス5を供給するための燃料流路6及びカ
ソード3に酸化剤ガス7を供給するための酸化剤
流路8が、それぞれ両面に直交した状態で設けら
れている。しかし上記の従来の構造によると、電
解質板1中の電解質が反応ガスなどによつて持ち
去られて不足状態となつても、電解質の補給がで
きず寿命が短いという問題があつた。
Conventionally, a fuel cell has been constructed as shown in FIG. That is, it is a unit composed of an electrolyte plate 1 in which an electrolyte is held in pores formed in a matrix, and a pair of electrodes, an anode 2 and a cathode 3, facing each other with the electrolyte plate 1 sandwiched therebetween. A plurality of batteries are stacked with separators 4 in between. This separator 4 has an anode 2
A fuel flow path 6 for supplying fuel gas 5 to the cathode 3 and an oxidant flow path 8 for supplying oxidant gas 7 to the cathode 3 are provided perpendicularly to both surfaces. However, according to the above-mentioned conventional structure, even if the electrolyte in the electrolyte plate 1 becomes insufficient due to being carried away by the reaction gas or the like, the electrolyte cannot be replenished, resulting in a short life.

この問題を解決するために、特開昭57−157469
号公報及び特開昭57−63775号公報に記載された
ような提案が知られている。前者はセパレータの
周辺部に電解質をリザーブし、電解質を電解質板
の周辺部から補給する構造となつており、後者は
ガス供給用の溝に電解液保持部材を挿入してこの
保持部材に電解液を含浸させ、マトリツクスの電
解液が不足した場合には毛管現象で保持部材から
電解液が自動的に補充されるようにしたものであ
る。
In order to solve this problem, Japanese Patent Application Laid-Open No. 57-157469
Proposals such as those described in Japanese Patent Application Laid-Open No. 57-63775 are known. The former has a structure in which electrolyte is reserved around the separator and refilled from the periphery of the electrolyte plate, while the latter has an electrolyte holding member inserted into the gas supply groove and the electrolyte is supplied to this holding member. When the matrix runs out of electrolyte, the electrolyte is automatically replenished from the holding member by capillary action.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら前者の提案によると電解質のリザ
ーブ量によつて電池の大ききさが大きくなり、さ
らに電解質板の外周部への補給性はよいが、中央
部まで均等に補給することは困難であるという問
題があつた。また後者ではガス供給用の溝にリザ
ーブされる電解質の量を多くすると電極の無効面
積が増え、同等の出力を得るためには電池サイズ
を拡大する必要があり、製造コストが高くなると
いう問題があつた。また熱容量が大きいことによ
る起動時の供給熱量が増大し、さらに放熱損失の
増大に伴う熱効率の低下という問題があつた。
However, according to the former proposal, the size of the battery increases depending on the amount of electrolyte reserved, and although replenishment to the outer periphery of the electrolyte plate is good, it is difficult to replenish evenly to the center. It was hot. In addition, in the latter case, increasing the amount of electrolyte reserved in the gas supply groove increases the effective area of the electrode, and in order to obtain the same output, it is necessary to increase the battery size, which increases manufacturing costs. It was hot. Further, due to the large heat capacity, the amount of heat supplied at startup increases, and there is also the problem of a decrease in thermal efficiency due to an increase in heat dissipation loss.

本発明は上記事情に鑑みてなされたものであ
り、小形で寿命の長い高性能な燃料電池を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a compact, high-performance fuel cell with a long life.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、アノード及びカソードの少くと
も一方の対向していない波形集電板の面とセパレ
ータとの間に形成された空間に、電解質を保持し
た導電性の多穴質体を充填し、前記波形集電板の
電極との接触面に複数個の孔部を設けて燃料電池
を構成することによつて達成される。
The above object is to fill the space formed between the separator and the surface of the corrugated current collector plate of at least one of the anode and the cathode that is not opposed to each other with a conductive porous body holding an electrolyte, This is achieved by configuring a fuel cell by providing a plurality of holes in the surface of the corrugated current collector plate that contacts the electrodes.

〔作用〕[Effect]

本発明は上記のように、反応ガスが流れても電
池に関与しない部分、即ち波形集電板の電極と対
向しない面とセパレータとの間に形成された空間
全面に、リザーブ用電解質を保持した導電性の多
穴質体を充填したので、新たにリザーブ空間を設
けることなく、電解質板の全ての部分に均質に電
解質を補給することができるとともに、電極とセ
パレータとを電気的に接続する集電板の働きを補
うことができる。また電解質は多穴質体に保持さ
れているため、リザーブされた電解質の流出が防
止でき、リザーブ空間に反応ガスが流れることも
防止できる。さらに電解質が毛管力によつて移動
するための重力を利用するものと異なり、リザー
バを電解質板の上下いずれにも設けることがで
き、リザーブ量を多くして長寿命化を図ることが
できる。
As described above, the present invention maintains a reserve electrolyte in a portion that does not interact with the battery even when the reaction gas flows, that is, in the entire space formed between the surface of the corrugated current collector plate that does not face the electrode and the separator. Since it is filled with a conductive porous material, all parts of the electrolyte plate can be uniformly replenished with electrolyte without creating a new reserve space. It can supplement the function of the electric board. Furthermore, since the electrolyte is held in a porous body, it is possible to prevent the reserved electrolyte from flowing out, and it is also possible to prevent the reaction gas from flowing into the reserve space. Furthermore, unlike those that utilize gravity to move the electrolyte by capillary force, reservoirs can be provided both above and below the electrolyte plate, making it possible to increase the amount of reserve and extend the lifespan.

〔実施例〕 以下、本発明に係る燃料電池の一実施例を図面
を参照して説明する。
[Example] Hereinafter, an example of the fuel cell according to the present invention will be described with reference to the drawings.

第1図及び第2図に本発明の第1の実施例を示
す。これらの図において、第7図に示す従来例と
同一または同等部分または同一符号を付して示
し、説明を省略する。セパレータ4の上面と下面
にはそれぞれ波形集電板9,10が設けられてお
り、アノード2に接する波形集電板9にはアノー
ド2に燃料ガス5を供給するための燃料流路6
が、またカソード3に接する波形集電板10には
カソード3に酸化剤ガスを供給するための酸化剤
流路8が、それぞれ互に直交するように形成され
ている。さらに波形集電板9,10の電極と対向
しない面とセパレータ4とによつて形成された空
間全面には、補給用の電解質を貯蔵している電解
質リザーバ11が設けられ、波形集電板9,10
の電極2,3と接する面には多数の電解質補給孔
12が形成されている。この電解質リザーバ11
はNi,Cu,Alなどの電解質に対して化学的に安
定な金属の多穴質体で形成され、この多穴質体の
細孔中に電解質が保持されている。また電解質リ
ザーバ11に形成された細孔径は電極2,3及び
電解質板1に形成された細孔径より大きくなつて
おり、電解質板中の電解質が不足した場合、毛管
現象で自動的にリザーバから電極2,3を介して
電解質板1に電解質が補給されるようになつてい
る。さらに電解質リザーバ11は導電性を有して
おり、アノード2及びカソード3の両電極とセパ
レータ4を電気的に接続する働きも併せ持つてい
る。
A first embodiment of the present invention is shown in FIGS. 1 and 2. FIG. In these figures, the same or equivalent parts or the same reference numerals as those in the conventional example shown in FIG. 7 are shown, and their explanation will be omitted. Corrugated current collector plates 9 and 10 are provided on the upper and lower surfaces of the separator 4, respectively, and the corrugated current collector plate 9 in contact with the anode 2 has a fuel flow path 6 for supplying fuel gas 5 to the anode 2.
However, in the corrugated current collector plate 10 in contact with the cathode 3, oxidizing agent channels 8 for supplying oxidizing gas to the cathode 3 are formed so as to be orthogonal to each other. Further, an electrolyte reservoir 11 storing electrolyte for replenishment is provided in the entire space formed by the surfaces of the corrugated current collector plates 9 and 10 that do not face the electrodes and the separator 4. ,10
A large number of electrolyte replenishment holes 12 are formed on the surface in contact with the electrodes 2 and 3. This electrolyte reservoir 11
is made of a porous body of metal such as Ni, Cu, Al, etc. that is chemically stable to electrolytes, and the electrolyte is held in the pores of this porous body. In addition, the pore diameter formed in the electrolyte reservoir 11 is larger than the pore diameter formed in the electrodes 2 and 3 and the electrolyte plate 1, so that when the electrolyte in the electrolyte plate becomes insufficient, capillary action automatically removes the electrode from the reservoir. Electrolyte is replenished to the electrolyte plate 1 via 2 and 3. Further, the electrolyte reservoir 11 has conductivity and also has the function of electrically connecting both the anode 2 and cathode 3 and the separator 4.

本実施例によれば、電解質板1中の電解質が不
足すると電解質リザーバ11中の電解質が電解質
補給孔12を通り、さらにアノード2またはカソ
ード3を通つて上下方向より電解質板1に供給さ
れ、電解質板1の中の電解質の消耗を補うことが
でき、電池寿命を延す効果がある。また電解質リ
ザーバ11は導電性を有するため、電極2,3と
セパレータ4とを電気的に接続する波形集電板
9,10の働きも補い、電池内部抵抗を減少させ
て電池性能を向上させる効果もある。さらに電解
質リザーバ11を構成している空間は、反応ガス
が流れても電池反応に関与しないためガスが流れ
ないように閉止板などを設けて塞ぐべき空間であ
るので、電解質リザーバ11はこの空間のガス流
を止める閉止板の働きもしている。その上リザー
ブ空間を設けることによる電池寸法の拡大もな
く、コンパクトとなり、製造コストの低減及び熱
放散低減による熱効率向上の効果もある。
According to this embodiment, when the electrolyte in the electrolyte plate 1 is insufficient, the electrolyte in the electrolyte reservoir 11 is supplied to the electrolyte plate 1 from above and below through the electrolyte replenishment hole 12 and further through the anode 2 or the cathode 3. It is possible to compensate for the consumption of electrolyte in the plate 1, and has the effect of extending the battery life. In addition, since the electrolyte reservoir 11 has conductivity, it also supplements the function of the corrugated current collector plates 9 and 10 that electrically connect the electrodes 2 and 3 and the separator 4, and has the effect of reducing battery internal resistance and improving battery performance. There is also. Furthermore, the space constituting the electrolyte reservoir 11 is a space that should be closed with a closing plate or the like to prevent the gas from flowing, since it does not participate in the cell reaction even if the reaction gas flows. It also acts as a closing plate to stop the gas flow. Furthermore, the battery size is not increased due to the provision of a reserve space, and the battery is compact, reducing manufacturing costs and improving thermal efficiency by reducing heat dissipation.

第3図、第4図及び第5図に本発明の第2の実
施例を示す。この実施例では電解質リザーバ11
と電池外部とを連通させる連通路13,14,1
5を設けて、この連通路に外部から圧力をかける
ことによつて電解質リザーバ11から電解質を押
し出し、電解質板1に電解質を補給するようにし
たものである。この場合、第5図に示すように電
池の4方向の側面には反応ガスの給排用としてそ
れぞれ燃料入口マニホルド16、酸化剤入口マニ
ホルド17、燃料出口マニホルド18、酸化剤出
口マニホルド19が設けられている。それに加え
て電解質補給量をコントロールするための圧力用
のマニホルド20が対向する二辺に設けられてお
り、それぞれ連通路13,14を介して連通路1
5に接続されている。
A second embodiment of the present invention is shown in FIGS. 3, 4, and 5. In this example, the electrolyte reservoir 11
Communication paths 13, 14, 1 that communicate between the battery and the outside of the battery
5 is provided, and the electrolyte is pushed out from the electrolyte reservoir 11 by applying pressure to this communicating path from the outside, thereby replenishing the electrolyte to the electrolyte plate 1. In this case, as shown in FIG. 5, a fuel inlet manifold 16, an oxidizer inlet manifold 17, a fuel outlet manifold 18, and an oxidizer outlet manifold 19 are provided on the four sides of the cell for supplying and discharging the reactant gas, respectively. ing. In addition, pressure manifolds 20 for controlling the amount of electrolyte replenishment are provided on two opposing sides, and are connected to the communication path 1 via communication paths 13 and 14, respectively.
5.

上記第2の実施例によれば、前述したように連
通路13,14,15を介して各電解質リザーバ
11に外部から電解質補給のための圧力が伝達さ
れるとともに、リザーブ用の電解質がなくなつた
場合にマニホルド20から連通路13,14,1
5を介して電解質リザーバ11に電解質を補給す
ることができる。また電解質リザーバ11を形成
する多穴質体の細孔径は電極2,3の細孔径より
小さくなつているので、加圧しない状態でリザー
バの電解質が電極1,2の方に吸い出されること
はない。
According to the second embodiment, as described above, the pressure for electrolyte replenishment is transmitted from the outside to each electrolyte reservoir 11 via the communication passages 13, 14, and 15, and the electrolyte for reserve is exhausted. When the communication passages 13, 14, 1 are connected from the manifold 20
5, the electrolyte reservoir 11 can be replenished with electrolyte. Furthermore, since the pore diameter of the porous body forming the electrolyte reservoir 11 is smaller than the pore diameter of the electrodes 2 and 3, the electrolyte in the reservoir will not be sucked out toward the electrodes 1 and 2 without pressurization. do not have.

第6図に本発明の第3の実施例を示す。この実
施例では電解質リザーバ11をアノード2側にの
み設け、カソード3側には設けずに酸化剤ガスを
流して電池を冷却する冷却ガス流路21を形成し
たものである。一般にガス組成と利用率の関係で
アノード側を流れる燃料ガスに比べて、カソード
側を流れる酸化剤ガスの方が流量が多くなつてい
る。また電池より低い温度の反応ガスを電池に供
給して電池を冷却しようとする冷却方式の場合、
一般に酸化剤ガスの方を利用するため、酸化剤ガ
スの流量はさらに増加してしまう。従つて酸化剤
流路のガス流速が燃料流路のガス流速より大きく
なり、電池内で燃料側と酸化剤側の圧力差が発生
して電解質板1を通して燃料と酸化剤が混合する
ガスクロスオーバの原因となる。このためカソー
ド3側のリザーバ空間を冷却ガス流路21として
用い、そこに酸化剤ガスを流すことにより酸化剤
ガスの流路断面積が倍増し、圧力損失が低減され
て燃料ガスと酸化剤ガスとの圧力差が少くなる。
この結果ガスクロスオーバの危険性が減少し電池
の信頼性が向上した。
FIG. 6 shows a third embodiment of the present invention. In this embodiment, the electrolyte reservoir 11 is provided only on the anode 2 side, and is not provided on the cathode 3 side, and a cooling gas flow path 21 is formed through which oxidizing gas flows to cool the battery. Generally, due to the relationship between gas composition and utilization rate, the flow rate of the oxidant gas flowing through the cathode side is higher than that of the fuel gas flowing through the anode side. In addition, in the case of a cooling method that attempts to cool the battery by supplying a reactive gas with a temperature lower than that of the battery,
Since the oxidant gas is generally used, the flow rate of the oxidant gas increases further. Therefore, the gas flow rate in the oxidizer flow path becomes higher than the gas flow rate in the fuel flow path, and a pressure difference occurs between the fuel side and the oxidizer side within the cell, resulting in a gas crossover in which the fuel and oxidizer mix through the electrolyte plate 1. It causes. Therefore, by using the reservoir space on the cathode 3 side as the cooling gas flow path 21 and flowing the oxidizing gas there, the cross-sectional area of the oxidizing gas flow path is doubled, pressure loss is reduced, and the fuel gas and oxidizing gas are The pressure difference between
As a result, the risk of gas crossover is reduced and battery reliability is improved.

この実施例によると、前記第1及び第2の実施
例より電解質のリザーブ量は減少する欠点はある
が、燃料ガスと酸化剤ガスとの差圧を少くするこ
とができ、ガスクロスオーバを防止して電池を安
全に運転することができる。
According to this embodiment, although there is a drawback that the amount of electrolyte reserve is reduced compared to the first and second embodiments, it is possible to reduce the differential pressure between the fuel gas and the oxidant gas, and prevent gas crossover. The battery can be operated safely.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、燃料電池のア
ノード及びカソードの少くとも一方の対向してい
ない波形集電板の面とセパレータとの間に形成さ
れた空間に、電解質を保持した導電性の多穴質体
を充填し、前記波形集電板の電極との接触面に複
数個の孔部を設けたので、新たにリザーブ空間を
設けることなく、電解質板の全ての部分に均質に
電解質を補給することができるとともに、電極と
セパレータとを電気的に接続する集電板の働きを
補うことができ、小形で寿命の長い高性能な燃料
電池を提供することができる。
As described above, according to the present invention, a conductive material containing an electrolyte is provided in the space formed between the separator and the non-opposed corrugated current collector surface of at least one of the anode and cathode of the fuel cell. Since the porous material is filled and a plurality of holes are provided on the contact surface of the corrugated current collector plate with the electrode, the electrolyte can be uniformly applied to all parts of the electrolyte plate without creating a new reserve space. In addition to being able to supplement the function of the current collector plate that electrically connects the electrode and the separator, it is possible to provide a compact, long-life, high-performance fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料電池の第1の実施例
を示す分解斜視図、第2図は第1図の縦断面図、
第3図は本発明の第2の実施例を示す縦断面図、
第4図は第3図の波形集電極と電解質リザーバを
示す斜視図、第5図は第3図の平面図、第6図は
本発明の第3の実施例を示す縦断面図、第7図は
従来の燃料電池を示す分解斜視図である。 1……電解質板、2……アノード、3……カソ
ード、4……セパレータ、5……燃料ガス、6…
…燃料流路、7……酸化剤ガス、8……酸化剤流
路、9,10……波形集電板、11……電解質リ
ザーバ(多孔質体)、12……電解質補給孔(孔
部)、13,14,15……連通路。
FIG. 1 is an exploded perspective view showing a first embodiment of a fuel cell according to the present invention, FIG. 2 is a longitudinal sectional view of FIG. 1,
FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention;
4 is a perspective view showing the corrugated collector electrode and electrolyte reservoir of FIG. 3, FIG. 5 is a plan view of FIG. 3, FIG. 6 is a longitudinal sectional view showing the third embodiment of the present invention, and FIG. The figure is an exploded perspective view showing a conventional fuel cell. DESCRIPTION OF SYMBOLS 1... Electrolyte plate, 2... Anode, 3... Cathode, 4... Separator, 5... Fuel gas, 6...
...Fuel channel, 7...Oxidant gas, 8...Oxidant channel, 9, 10...Corrugated current collector plate, 11...Electrolyte reservoir (porous body), 12...Electrolyte replenishment hole (hole ), 13, 14, 15... communication path.

Claims (1)

【特許請求の範囲】 1 電解質板を挟持して相対向するアノード及び
カソードの2つの電極と、これらの電極に反応ガ
スを供給するためのガス流路がそれぞれ形成され
た波形集電板とからなる単位電池を、セパレータ
を介して積層してなる燃料電池において、 前記アノード及びカソード電極の少なくとも一
方と対向していない前記波形集電板の面と前記セ
パレータとの間に形成された空間に、電解質を保
持した導電性の多孔質体を充填するとともに、前
記波形集電板の前記電極との接触面に複数個の孔
部を設けたことを特徴とする燃料電池。 2 特許請求の範囲第1項において、電解質を保
持する多孔質体の細孔径は電極の細孔径より大き
く形成されたことを特徴とする燃料電池。 3 特許請求の範囲第1項または第2項におい
て、前記多孔質体が充填された空間は連通路を介
して電池外部と連通されたことを特徴とする燃料
電池。
[Scope of Claims] 1. Two electrodes, an anode and a cathode, facing each other with an electrolyte plate sandwiched therebetween, and a corrugated current collector plate each having a gas flow path for supplying a reaction gas to these electrodes. In a fuel cell formed by stacking unit cells such as 1. A fuel cell characterized in that a conductive porous body holding an electrolyte is filled and a plurality of holes are provided in a contact surface of the corrugated current collector plate with the electrode. 2. The fuel cell according to claim 1, wherein the pore diameter of the porous body holding the electrolyte is larger than the pore diameter of the electrode. 3. The fuel cell according to claim 1 or 2, wherein the space filled with the porous material is communicated with the outside of the cell via a communication path.
JP61201441A 1986-08-29 1986-08-29 Fuel cell Granted JPS6358768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201441A JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201441A JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6358768A JPS6358768A (en) 1988-03-14
JPH0577152B2 true JPH0577152B2 (en) 1993-10-26

Family

ID=16441139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201441A Granted JPS6358768A (en) 1986-08-29 1986-08-29 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6358768A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652656B2 (en) * 1987-09-30 1994-07-06 株式会社日立製作所 Molten carbonate fuel cell
JP2501169B2 (en) * 1993-03-18 1996-05-29 株式会社日立製作所 Fuel cell, electrolyte supply container, and electrolyte supply method
JP4019554B2 (en) * 1998-08-03 2007-12-12 トヨタ自動車株式会社 Method for producing multiple uneven plate for fuel cell separator
GB2515994A (en) * 2013-04-08 2015-01-14 Acal Energy Ltd Fuel cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165866A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Electrolyte supply construction of fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165866A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Electrolyte supply construction of fuel cell

Also Published As

Publication number Publication date
JPS6358768A (en) 1988-03-14

Similar Documents

Publication Publication Date Title
US4678724A (en) Fuel cell battery with improved membrane cooling
US4649091A (en) Fuel cell battery with improved membrane cooling
JPS6130385B2 (en)
JP2001506399A (en) Integrated Reactant and Coolant Fluid Region Layer for Fuel Cell with Membrane Electrode Assembly
JPS5837669B2 (en) Fuel cell and its manufacturing method
JP3553245B2 (en) Direct methanol fuel cell
JPS5931568A (en) Film cooling type fuel battery
WO2001015257A2 (en) Combined fuel cell flow plate and gas diffusion layer
JP3706090B2 (en) Multi-element thin film fuel cell
JPS61227370A (en) Fuel battery assembly
CA2693522C (en) Fuel cell with non-uniform catalyst
JPH0756807B2 (en) Fuel cell
JPH0577152B2 (en)
US11811104B2 (en) Bipolar plate with undulating channels
KR101160979B1 (en) Fuel cell
JPS6352751B2 (en)
JP3603871B2 (en) Polymer electrolyte fuel cell
JPS58166636A (en) Fuel cell
JP3029416B2 (en) Polymer electrolyte fuel cell
JPH0992309A (en) Solid polymer electrolyte fuel cell
JP3774443B2 (en) Fuel cell container and fuel cell
JP2003272698A (en) Fuel cell
JP3004593B2 (en) Molten carbonate fuel cell
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JP3046859B2 (en) Phosphoric acid fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees