JPH0576932B2 - - Google Patents

Info

Publication number
JPH0576932B2
JPH0576932B2 JP63058205A JP5820588A JPH0576932B2 JP H0576932 B2 JPH0576932 B2 JP H0576932B2 JP 63058205 A JP63058205 A JP 63058205A JP 5820588 A JP5820588 A JP 5820588A JP H0576932 B2 JPH0576932 B2 JP H0576932B2
Authority
JP
Japan
Prior art keywords
ethanol
hydrogenation
catalyst
hydrogen
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63058205A
Other languages
Japanese (ja)
Other versions
JPH01233236A (en
Inventor
Takao Takinami
Koji Tamura
Tsutomu Toida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP63058205A priority Critical patent/JPH01233236A/en
Priority to IN93/CAL/89A priority patent/IN171095B/en
Publication of JPH01233236A publication Critical patent/JPH01233236A/en
Publication of JPH0576932B2 publication Critical patent/JPH0576932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の目的 産業上の利用分野 本発明は、エタノールを原料として脱水反応に
よりエチレンを製造する方法に関するもので、特
にアルデヒドを含有するエタノールを原料とする
場合に適している。 従来の技術 エタノールを脱水してエチレンを製造すること
は公知であるが、エタノールの脱水反応をアルミ
ナ触媒上で行うとエチレン以外にブテン類その他
の副生物が生成するばかりでなく、触媒上に徐々
に炭素質が折出し活性が低下する。特にアルデビ
ドを添加して変性したエタノールを原料とする場
合は、副生物が増加し炭素質折出も増加するため
活性劣化が大きく、長時間の連続運転が困難であ
つた。 発明が解決しようとする問題点 本発明はアルデヒドを含有するエタノール、特
にアルデヒド変性エタノールを原料としても長時
間の連続運転ができるエチレン製造法を提供する
ことを目的とする。 ロ 発明の構成 問題点を解決するための手段 本発明のエチレン製造法は、エタノールを原料
として脱水反応によりエチレンを製造する方法に
おいて、予め原料を水素添加処理してから脱水反
応を行うことを特徴とする。 本発明方法の実施態様の一例を第1図により説
明すると、アルデヒドを含有する原料エタノール
1とライン2からの水素とを混合し予熱器3で予
熱して水素添加反応器4に供給し、原料中のアル
デヒドを水素添加する。 水素添加反応器4出口の流体を冷却器5で冷却
し、気液分離器6でエタノールと水素とを分離す
る。分離された水素は新規に供給される水素7と
共にコンプレツサー8で原料の水素添加用に循環
する。 水素添加処理したエタノールは熱交換器9で予
熱し、脱水反応器10に送り脱水反応を行わせた
後、熱交換器9、冷却器11で冷却し、気液分離
器12でエチレンと水とを分離しエチレン13を
得る。 水素添加触媒としては、一般に水素添加に使用
される触媒、例えば、Ni、Cu、Pt、Pd等を
Al2O3、SiO2/Al2O3、活性炭等に担持した触媒
などが使用できるが、水素添加反応はできるだけ
低温で行うことが予熱/冷却による熱損失が少な
く経済的なので、低温で活性を有する触媒、例え
ば、Ni或は貴金属をAl2O3或は活性炭に担持した
触媒などが特に好ましい。 また当然のことながら、アルデヒドのみを選択
的に水素添加し、エタノールの水素添加を生じな
い触媒及び条件で行うことが必要である。 アルデヒドの水素添加率を高めるためには過剰
の水素を加えることが望ましいが、それをそのま
ま脱水反応器に送つたのではエチレンにH2が混
入してしまうと共に水素の利用率が低下してしま
うので、第1図に示すように水素添加反応後冷却
してエタノールと水素とを分離してから脱水反応
器に送る。 しかし、含有アルデヒド量に対して水素を量論
比以下で供給し、水素添加反応後水素が実質的に
0になつてしまう場合、又は水素が残留しても良
い場合は水素循環系統を省略することができる。 その場合は、水素添加反応器4を設置せずに、
水素添加触媒を脱水反応器の上部に充填しても良
い。 脱水反応で使用する触媒としては、一般に使用
されている公知の脱水触媒はいずれも使用可能で
ある。具体的にはアルミナ触媒が挙げられる。 作 用 アルデヒドを含有するエタノールを予め水素添
加処理すると、脱水反応工程における触媒上の炭
素質の折出が減少し、活性の劣化が抑制され、長
時間の連続運転が可能になる。またエチレン収率
も向上する。 実施例 1 アセトアルデヒドの0.5重量%を含有する工業
用エタノール1.2Kg/hrに、水素ガス137Nl/hrを
加えて水素添加触媒(Ni/Al2O3)0.14Kgを充填
した反応器に送り、温度80℃、圧力2.0Kg/cm2
に保ち水素添加反応を行い、40℃に冷却し気液分
離して得たエタノール0.2Kg/hrを、アルミナ触
媒1.0Kgを充填した反応器に送り、温度33℃、圧
力2.0Kg/cm2Gち保ち反応させた。 生成ガス分析の結果及び500時間反応後の廃触
媒上の炭素分析の結果を第1表に示す。なお、水
素添加処理後のエタノール中のアセトアルデヒド
は0.01重量%以下になつていた。 比較例 1 実施例1で使用したのと同じアセトアルデヒド
0.5重量%を含有する工業用エタノール0.2Kg/hr
を直接、アルミナ触媒1.0Kgを充填した反応器に
送り、温度33℃、圧力2.0Kg/cm2Gに保ち反応さ
せた。 生成ガス分析の結果及び500時間反応後の廃触
媒上の炭素分析の結果を第1表に示す。
B. Object of the Invention Industrial Application Field The present invention relates to a method for producing ethylene by dehydration reaction using ethanol as a raw material, and is particularly suitable for using ethanol containing aldehyde as a raw material. PRIOR TECHNOLOGY It is known to produce ethylene by dehydrating ethanol, but when the ethanol dehydration reaction is carried out on an alumina catalyst, not only butenes and other by-products are produced in addition to ethylene, but they are gradually deposited on the catalyst. Carbonaceous matter is precipitated and the activity decreases. In particular, when using ethanol denatured by the addition of aldebide as a raw material, by-products increase and carbonaceous precipitation increases, resulting in significant activity deterioration and long-term continuous operation is difficult. Problems to be Solved by the Invention The object of the present invention is to provide a method for producing ethylene that can be operated continuously for a long time using aldehyde-containing ethanol, particularly aldehyde-denatured ethanol, as a raw material. B. Means for Solving the Constituent Problems of the Invention The ethylene production method of the present invention is characterized in that in the method of producing ethylene by dehydration reaction using ethanol as a raw material, the raw material is subjected to a hydrogenation treatment in advance and then the dehydration reaction is performed. shall be. An example of an embodiment of the method of the present invention will be explained with reference to FIG. 1. Raw material ethanol 1 containing aldehyde and hydrogen from line 2 are mixed, preheated in a preheater 3, and supplied to a hydrogenation reactor 4. The aldehyde inside is hydrogenated. The fluid at the outlet of the hydrogenation reactor 4 is cooled by a cooler 5, and ethanol and hydrogen are separated by a gas-liquid separator 6. The separated hydrogen is circulated together with newly supplied hydrogen 7 in a compressor 8 for hydrogenation of raw materials. The hydrogenated ethanol is preheated in a heat exchanger 9, sent to a dehydration reactor 10 for a dehydration reaction, cooled in a heat exchanger 9 and a cooler 11, and separated into ethylene and water in a gas-liquid separator 12. is separated to obtain ethylene 13. As the hydrogenation catalyst, catalysts commonly used for hydrogenation, such as Ni, Cu, Pt, Pd, etc.
Catalysts supported on Al 2 O 3 , SiO 2 /Al 2 O 3 , activated carbon, etc. can be used, but it is economical to perform the hydrogenation reaction at as low a temperature as possible because there is less heat loss due to preheating/cooling. For example, a catalyst having Ni or a noble metal supported on Al 2 O 3 or activated carbon is particularly preferred. Naturally, it is also necessary to selectively hydrogenate only the aldehyde, using a catalyst and conditions that do not cause hydrogenation of ethanol. In order to increase the hydrogenation rate of aldehyde, it is desirable to add excess hydrogen, but if it is sent directly to the dehydration reactor, H 2 will be mixed into the ethylene and the hydrogen utilization rate will decrease. As shown in FIG. 1, after the hydrogenation reaction, ethanol and hydrogen are separated by cooling and then sent to a dehydration reactor. However, if hydrogen is supplied at a less than stoichiometric ratio to the amount of aldehyde contained, and the hydrogen becomes virtually zero after the hydrogenation reaction, or if it is acceptable for hydrogen to remain, the hydrogen circulation system may be omitted. be able to. In that case, without installing the hydrogenation reactor 4,
The hydrogenation catalyst may be packed in the upper part of the dehydration reactor. As the catalyst used in the dehydration reaction, any of the commonly used and known dehydration catalysts can be used. A specific example is an alumina catalyst. Effect Preliminary hydrogenation treatment of ethanol containing aldehyde reduces precipitation of carbonaceous matter on the catalyst during the dehydration reaction process, suppresses deterioration of activity, and enables continuous operation for a long time. Moreover, the ethylene yield is also improved. Example 1 137 Nl/hr of hydrogen gas was added to 1.2 kg/hr of industrial ethanol containing 0.5% by weight of acetaldehyde, and the mixture was sent to a reactor filled with 0.14 kg of hydrogenation catalyst (Ni/Al 2 O 3 ), and the temperature 80℃, pressure 2.0Kg/ cm2G
The ethanol 0.2Kg/hr obtained by cooling to 40℃ and gas-liquid separation was sent to a reactor filled with 1.0Kg of alumina catalyst, at a temperature of 33℃ and a pressure of 2.0Kg/cm 2 G. I made a quick reaction. Table 1 shows the results of the produced gas analysis and the carbon analysis on the spent catalyst after 500 hours of reaction. Note that the acetaldehyde content in the ethanol after the hydrogenation treatment was 0.01% by weight or less. Comparative Example 1 Same acetaldehyde as used in Example 1
Industrial ethanol 0.2Kg/hr containing 0.5% by weight
was directly sent to a reactor filled with 1.0 kg of alumina catalyst and reacted while maintaining the temperature at 33° C. and the pressure at 2.0 kg/cm 2 G. Table 1 shows the results of the produced gas analysis and the carbon analysis on the spent catalyst after 500 hours of reaction.

【表】 第1表に示された実施例1及び比較例1の結果
から明らかなように、予め原料の水素添加を行つ
た場合は脱水触媒上の炭素質の析出が半減し、エ
タノール転化率、エチレン収率が向上し、副反応
が抑制されている。 ハ 発明の効果 脱水反応工程における触媒上の炭素質の折出が
減少し、活性の劣化が抑制され、長時間の連続運
転が可能になる。またエチレン収率も向上する。
[Table] As is clear from the results of Example 1 and Comparative Example 1 shown in Table 1, when the raw materials were hydrogenated in advance, the precipitation of carbonaceous matter on the dehydration catalyst was halved, and the ethanol conversion rate was , the ethylene yield is improved and side reactions are suppressed. C. Effects of the Invention The precipitation of carbonaceous matter on the catalyst during the dehydration reaction step is reduced, the deterioration of activity is suppressed, and continuous operation for a long period of time becomes possible. Moreover, the ethylene yield is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するプロセスの一例を示
す図である。
FIG. 1 is a diagram showing an example of a process for implementing the present invention.

Claims (1)

【特許請求の範囲】 1 エタノールを原料として脱水反応によりエチ
レンを製造する方法において、予め原料を水素添
加処理してから脱水反応を行うことを特徴とする
エチレン製造法。 2 原料エタノールの水素添加処理時に過剰の水
素を使用し、反応物を気液分離器でエタノールと
水素とに分離し、分離された水素を水素添加工程
に循環して再使用する特許請求の範囲第1項記載
のエチレン製造法。 3 脱水反応触媒の上部に水素添加触媒を充填し
水素添加と脱水とを同一反応器で行う特許請求の
範囲第1項記載のエチレン製造法。
[Scope of Claims] 1. A method for producing ethylene by a dehydration reaction using ethanol as a raw material, characterized in that the raw material is subjected to a hydrogenation treatment in advance and then the dehydration reaction is performed. 2 Claims that use excess hydrogen during the hydrogenation process of raw material ethanol, separate the reactant into ethanol and hydrogen using a gas-liquid separator, and circulate the separated hydrogen to the hydrogenation process for reuse. The method for producing ethylene according to item 1. 3. The ethylene production method according to claim 1, wherein a hydrogenation catalyst is packed above the dehydration reaction catalyst and hydrogenation and dehydration are performed in the same reactor.
JP63058205A 1987-12-21 1988-03-14 Production of ethylene Granted JPH01233236A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63058205A JPH01233236A (en) 1988-03-14 1988-03-14 Production of ethylene
IN93/CAL/89A IN171095B (en) 1987-12-21 1989-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058205A JPH01233236A (en) 1988-03-14 1988-03-14 Production of ethylene

Publications (2)

Publication Number Publication Date
JPH01233236A JPH01233236A (en) 1989-09-19
JPH0576932B2 true JPH0576932B2 (en) 1993-10-25

Family

ID=13077534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058205A Granted JPH01233236A (en) 1987-12-21 1988-03-14 Production of ethylene

Country Status (1)

Country Link
JP (1) JPH01233236A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100030002A1 (en) * 2008-07-31 2010-02-04 Johnston Victor J Ethylene production from acetic acid utilizing dual reaction zone process
US20100030001A1 (en) * 2008-07-31 2010-02-04 Laiyuan Chen Process for catalytically producing ethylene directly from acetic acid in a single reaction zone

Also Published As

Publication number Publication date
JPH01233236A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US3076810A (en) Process for the production of cyclohexanone
EP0754649B1 (en) Process for the preparation of hydrogen rich gas
US4780448A (en) Preparation of a catalyst containing copper and silica
JPS6121603B2 (en)
JP4545855B2 (en) Process for synthesizing methanol / dimethyl ether mixtures from synthesis gas
US4010197A (en) Process for producing diacetoxybutanes and butanediols
JP2001506977A (en) Method and reactor for epoxidation with energy recovery
JP3849077B2 (en) Hydrogenation catalyst and method for hydrogenating benzene using said catalyst
US4695660A (en) Method of producing cyclohexyl compounds
US4058571A (en) Continuous process for the production of d,l'menthol
JPH0576932B2 (en)
JPH03133941A (en) Production of isopropanol and apparatus therefor
JPS6228081B2 (en)
US4599466A (en) Preparation of alkanediols
US5118821A (en) Process for the production of gamma-butyrolactone
US4150239A (en) Process for producing 1,4-glycol diester
JP2528067B2 (en) Method for producing 1,4-cyclohexane dimethanol
JPH0457652B2 (en)
JP5185623B2 (en) Continuous process for the production of phenol from benzene in a fixed bed reactor.
US3923695A (en) Catalyst for manufacturing highly purified 2-hydroxy-diphenyl catalyst and method of preparing catalyst
JP4321838B2 (en) Method for producing isopropyl alcohol
JP3336644B2 (en) Method for hydrogenating diacetoxybutene
US4465853A (en) Method for isomerizing diacetoxybutenes
JP2845528B2 (en) Propylene production method
JPH06321823A (en) Production of 1,3-cyclohexanedimethanol