JPH0575702B2 - - Google Patents

Info

Publication number
JPH0575702B2
JPH0575702B2 JP18579286A JP18579286A JPH0575702B2 JP H0575702 B2 JPH0575702 B2 JP H0575702B2 JP 18579286 A JP18579286 A JP 18579286A JP 18579286 A JP18579286 A JP 18579286A JP H0575702 B2 JPH0575702 B2 JP H0575702B2
Authority
JP
Japan
Prior art keywords
less
glass
particles
colored
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18579286A
Other languages
Japanese (ja)
Other versions
JPS6340736A (en
Inventor
Yoshihiro Nakagawa
Yoshito Seto
Akitoshi Okabayashi
Hiroyuki Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18579286A priority Critical patent/JPS6340736A/en
Publication of JPS6340736A publication Critical patent/JPS6340736A/en
Publication of JPH0575702B2 publication Critical patent/JPH0575702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は色模様を有する結晶化ガラスの製造方
法に関する。 (従来の技術) 従来の結晶化ガラスは一般に核形成剤を含むガ
ラス原料を溶融し、各種の成形手段で成形して
後、結晶化熱処理を施し結晶を析出させており、
結晶析出による白色を呈している。着色の結晶化
ガラスとするには上記製造原料にガラス着色剤を
加えることによつて可能である。 他に結晶化ガラスを得る方法としては溶融した
ガラスを水冷等により破砕してガラス小体を得、
同小体を型枠に集積して熱処理を施し、各ガラス
小体を融着一体化する一方、結晶化する方法(以
下、集積法と称す)が「特開昭48−78217号」に
開示されており、同方法による結晶化ガラスは不
均一な結晶の成長による模様の現われた白色であ
る。なおこの集積法においても原料となるガラス
にガラス着色剤含有の着色ガラスを用いて着色の
結晶化ガラスとすることができる。 (発明が解決しようとする問題点) 一般にガラスは強度的に問題のある材質でその
向上は常に希求されているところであり、また装
飾材、建築材等における多様化は色付きガラスに
おいても均一な着色でなく変化のあるガラス、例
えば斑模様を呈するようなガラスの出現が期待さ
れ、こう言つた観点からすれば前記核形成剤及び
ガラス着色剤を含むガラス原料を溶融、成形して
後結晶化熱処理により結晶化ガラスとする方法
は、均一な着色であると共に原料に比し核形成剤
が高価な場合のあることが問題である。 次の集積法の場合は既述のように不均一な結晶
の成長による模様化は行われるものゝ、集積のガ
ラス小体を加熱して行つた場合、結晶の析出する
温度で各ガラス小体が互いに融着一体化できるよ
うな充分低い粘性をもつものでなければ適されな
い。というように原料ガラスに制限があり、従つ
て核形成剤や核形成剤として作用する着色剤、例
えばFeS+MnS、FeO+Fe2O3などを含むガラス
小体を使用することができないのである。 つまり加熱されたガラス小体において、軟化温
度で析出している結晶核の成長速度が速く、融着
する前に結晶が成長するような組成や上記のよう
に核形成剤を含むような場合は、結晶の成長によ
つて粘度を増し、各ガラス小体は融着一体化でき
ず、更に温度を上げて一体化を図ろうとすれば、
逆に結晶が破壊若しくは転移して結晶化ガラスに
ならないのである。 なおこの集積法では、核形成剤として作用しな
い着色剤を用いた原料に依る場合も色が鮮明に出
ないという問題点や、更に製品内部に比較的大き
な気泡(径0.5mm程度)を含むという問題点も有
しているのである。 (問題点を解決するための手段) 本発明は以上のような従来技術の有する問題点
を特別な成分を必要とすることなく解決して、斑
状の色模様付きの結晶化ガラスの提供を可能とし
たものであり、そのための手段として、 必須成分として重量百分率で、SiO2:45〜75
%、Al2O3:20%以下、CaO:5〜40%、Na2O
+K2O:2〜20%を、SiO2+Al2O3+CaO+K2O
>85%であるように含有して成るガラス状原料を
粉砕して、200mesh以下の粒子が70%以下を占め
るようにした粉体と、前記組成範囲の各成分及び
10%以下の着色剤を含有して成る有色のガラス状
原料を粉砕して、10〜200mesh若しくは10〜
200mesh及び200mesh以下の粒子を含むようにし
た粉体を、200mesh以下の粒子が70%以上を占め
る範囲で所望割合に混合すると共に、主成分がモ
ンモリロナイトで、SiO2:60〜80%、Al2O3:5
〜20%含有の粘結剤若しくは同粘結剤及びポリビ
ニルアルコールから成る粘結剤を重量百分率5%
以下で加え混練し、該混合物を真密度の50%以上
の圧粉体に圧縮成形して後、熱処理することによ
り該圧粉体の構成粒子を軟化融着させ一体化及び
緻密化する一方結晶化を図り、主としてウオラス
トナイト結晶を析出させるようにしたのである。 (作用) 本発明の最も特徴とする技術的手段は、ガラス
状原料の微粉末を緻密圧縮成形体としてこれを熱
処理するところにあり、ガラス状原料の微粉末化
と、それを緻密圧縮体としたことは、ガラス粉末
間の軟化融着が比較的低温で容易に行われるよう
に作用しているものである。 すなわちガラス粒子が粗粒で単に集積された状
態のものを加熱した場合、軟化点に到達しても各
粒子は直ちに融着一体化しない。まず各粒子の鋭
角部分等から軟化しはじめ、粒子体の略全体が軟
化しかつ融着一体が進行するためには、粒子間の
距離の関係もあつて軟化点以上の相当高温に加熱
されなければならない。 しかるに微粉末の緻密圧縮体の場合は、各粒子
が質量に比し広い面積で互いに緻密に接触してお
り、軟化点をあまり上回らない低い温度で容易に
融着一体化し緻密化が進むのである。 このようにガラス粒子の一体緻密化が比較的低
温で行えるようになつたことは、その成分組成の
如何にかゝわらず一体緻密化の後に結晶の成長化
が図れるということであり、従来の集積法の問題
点を見事に解決しているのである。核形成剤や核
形成作用を有する着色剤を含む場合も勿論一体緻
密化の後に結晶化が図れ、結晶化に際してはその
含有の核形成剤が有効に働くのである。 第1図はガラス微粉の圧粉体を加熱したときの
温度と核形成速度及び結晶成長速度との関係を概
念的に示したグラフであり、縦軸に核形成速度及
び結晶成長速度をとり、横軸に温度をつている。
破線グラフが「核形成速度−温度」曲線、実線グ
ラフが「結晶の成長速度−温度」曲線である。な
おS.P.は軟化点、M.P.は融点である。 軟化点をあまり越えない比較的低温の時期、す
なわち軟化融着時期に核が発生しその数を増して
ゆくことをグラフを示しており、その後の昇温に
おいて結晶の成長が盛んになつている。 次に微粉末の緻密圧縮体としたことにより今一
つの作用を挙げると、結晶化し難いような組成の
ガラス、すなわち通常では核の発生が少ないとか
結晶の成長速度が遅いようなガラスであつても比
較的容易に結晶化が進むようになることである。 すなわち結晶化速度は (結晶化速度)=(結晶核数)×(結
晶成長速度) のように表わされ、結晶核はガラス粒子間の融着
界面に発生しやすく、微粉末の圧粉体においては
融着界面が多くかつ広く、従つて発生の核も多く
たとえ結晶の成長速度が大きくなくとも結果的に
は結晶化速度を大ならしめるのである。 本発明における今一つの大きな特徴とする手段
は、無色ガラス粉末と有色ガラス粉末を混合する
のであり、その際、有色ガラス粉末粒子を無色の
ガラス粉末粒子より粗粒としている点である。 つまり粗粒であることが作用して斑模様が形成
されるのである。 若し無色、有色の原料共200mesh以下の微粒子
として混合し、これを結晶化ガラスとした場合、
製品は一様な着色地のようになつてを呈して斑模
様とならない。これでは有色、無色の原料を別々
に製造し、各粉末を混合するという工程が無意味
となるのである。 第3の特徴は、微粉末の緻密圧縮体の成形に際
してモンモリロナイト系の粘結剤を使用している
ことである。勿論粘結剤の作用はガラス粉末に粘
性を付与して圧粉体(白地)の曲げ強度を増加さ
せるのであるが、上記モンモリロナイト系粘結剤
は少量で焼結時の収縮並びに運搬等における割れ
や欠け等の損傷を防止し得るような曲げ強さ、す
なわち7Kgf/cm2以上を付与できるのであり、し
かも同粘結剤の成分系がガラスの成分系と類似し
ている点で、更に添加量が少量である点で熱処理
においても、又製品の材質においても支障を招来
しないのである。 なおPVA(ポリビニルアルコール)併用の粘結
剤では、熱処理時に前記PVAが燃焼して製品に
残らず悪影響はないのである。 (実施例) 先ず必須成分の限定理由から述べる。なお必須
成分は、無色、有色のガラス状原料において共通
である。 SiO2:45〜75%(重量百分率以下同じ) 45%以下では熱処理中の圧縮成形体の形状保
持が難しく、75%以上ではガラスの粘性が高く
なり、圧縮成形体の緻密欠が遅くなる。 Al2O3:20%以下 20%以上ではガラスの粘性が高くなり、圧縮
成形体の緻密化が遅くなる。 CaO:5〜40% 5%以下ではウオラストナイト、アノルサイ
トなどの結晶が析出し難くなる。また40%以上
では耐水、耐酸性など物性値に影響を及ぼすよ
うになる。 Na2O+K2O:2〜20% 2%以下ではガラスの粘性が高くなり、圧縮
成形体の緻密化が遅くなる。また20%以上では
熱処理中の圧縮成形体の形状保持が難しい。 なお上記必須成分は、その合計が85%以下とな
るように含有させるのであり、その理由はガラス
としての物性を適正に保つためである。 次に有色ガラス状原料における必須成分の着色
剤(CaO、FeO+Fe2O3、Cr2O3、NiO、CuO、
MnO2など)を10%以下とした理由については、
着色という観点からすると10%以上は不必要であ
るばかりでなく、10%以上の含有によつて無色の
ガラス状原料との物性値の差が大きくなるためで
ある。 次に必須外成分について述べると、無色及び有
色のガラス原料共に、 MgO、ZnO、BaO、PbO、B2O3等の各2%ま
での添加は支障なく、またSb2O3は清澄剤として
作用するので溶解時に1%以下を添化してもよ
い。また核形成剤を含有させることも可能であ
る。 次に製造方法について詳述する。 無色及び有色のガラス状原料の製造は、前記成
分の原料をそれぞれ所定の組成になるように調合
融解し、これを水砕などの方法で急冷破砕してガ
ラス状の小体を得てこれを原料とする。 勿論限定範囲の成分組成を有して既にガラス状
になつているものを原料として用いて差支えな
く、これを適宜の手段で破砕して小体とする。 このようにして得られたガラス小体を、たとえ
ばボールミルなどにより更に粉砕するのであり、
このとき無色のガラス状原料(以下無色原料と称
す)は200mesh以下の微粒子が70%以上含まれる
ようにし、有色のガラス状原料(以下有色原料と
称す)は10〜200meshの粉末か、若しくは10〜
200meshの粉末を必ず含み更に200mesh以下の微
粉末も含むような粉体とするのである。 つまり有色原料には200meshより大きい粗粒を
必ず含むようにするのであり、この場合10mesh
より大きい粒子の存在は圧縮成形体(白地)の強
度低下、製品中に大きな気泡を含むなどの支障を
来すのである。 以上のようにして得た有色及び無色原料の粉末
は、混合物中において200mesh以下の微粒子が70
%以上を占める範囲で所望割合に混合する。 すなわちこのように200mesh以下の微粒子を70
%以上存在させることによつて圧縮成形体の緻密
成形、ひいては低温での融着一体化、緻密化を確
実とするためである。 上記両者の混合に際しては重量百分率で5%以
下のモンモリロナイト系粘結剤、すなわち主成分
がモンモリロナイトでSiO2:60〜80%、Al2O3
5〜20%含有の粘結剤、若しくはモンモリロナイ
ト系粘結剤+PVA(ポリビニルアルコール)<5
%(たとえばモンモリロナイト系粘結剤2%+
PVA3%以下)を加えてよく混練して後、所望形
状の圧縮成形枠に入れ加圧してその密度が真密度
の55%以上の緻密圧縮成形体(白地)とするので
ある。 上記のモンモリロナイト系粘結剤の添加量を5
%以下と限定したのは、既に触れたように白地の
曲げ強さとして7Kgf/cm2以上を付与し得る量と
しての限定であり、同強さは粉体の成形圧縮力に
も関係するが粘結剤としてはモンモリロナイト系
単独あるいはPVAの併用の場合共に5%以下で
十分である。若しモンモリロナイト系を5%以上
とすると成分系に影響がある。 圧縮成形体の密度について、真密度の50%以上
と限定したのは熱処理時の形状保持と粒子の融着
緻密化が低温で行われることを確実にするためで
あり、上記粘度のガラス粉末を真密度の50%以上
に圧縮成形するためには20Kgf/mm2以上で行う。 以上のようにして得られた圧縮成形体はガラス
粒子の融着一体化及び緻密化のために軟化点以上
(実際は軟化点+100℃以上が好ましい。)で結晶
の成長速度が速くなる温度以下の温度で熱処理を
行う。この処理によつて各ガラス粉末は融着一体
化及び緻密化し、それと同時に粒子間の融着界面
では核の形成が進行しているのである。 なおモンモリロナイト系粘結剤はガラス成分と
して吸収同化されており、PVAは燃焼消失して
いる。 一体緻密化を了えた成形体は更に温度を上げて
結晶の成長を促進し結晶化を図るのであるが、既
に述べたように場合の有色原料粉末は無色原料粉
末に比し、その組成において10%以下の着色剤を
添加したに過ぎない組成であるから、量原料粉末
の軟化点その他の特性は大差なく、上述の熱処理
において粉末の一体緻密化及び結晶化は支障なく
進行するのである。 第2図は上記圧縮成形体の熱処理曲線で、aa
間がガラス粒子の一体緻密化区間、bb間が結晶
化区間であり、S.P.が軟化点、M.P.が融点であ
る。 以上の工程によつて得られる結晶化ガラスは着
色の斑模様を分布したものであり、斑模様も細か
い斑点模様の一様分布、あるいは塊状斑模様、ま
たその濃淡等も混合の有色ガラス粒子の量、粘
度、混合状態等によつて変化をつける事が可能で
あり、地は結晶析出による白色であるが、有色の
ガラス粉末の200mesh以下の微粒子量の調整で着
色地のようにすることもできる。また色の異なる
有色原料を複数種用いることによつて多色の斑模
様とすることも可能である。 次に本発明の具体的実施例を示す。 実施例に共した無色及び有色原料は次表のよう
な組成を有するものである。それぞれの成分を配
合した配合原料を1500℃で溶解し、次いでこれを
水中に投入してそれぞれ無色及び有色のガラス状
小体を得た。
(Industrial Application Field) The present invention relates to a method for producing crystallized glass having a color pattern. (Prior art) Conventional crystallized glass is generally produced by melting a glass raw material containing a nucleating agent, shaping it using various shaping means, and then subjecting it to crystallization heat treatment to precipitate crystals.
It has a white color due to crystal precipitation. Colored crystallized glass can be produced by adding a glass colorant to the above-mentioned raw materials. Another method for obtaining crystallized glass is to crush molten glass by water cooling, etc. to obtain glass bodies.
``Japanese Unexamined Patent Publication No. 78217/1989'' discloses a method of accumulating the same glass bodies in a mold and subjecting them to heat treatment to fuse and integrate the glass bodies while crystallizing them (hereinafter referred to as the accumulation method). The crystallized glass produced by this method is white with patterns due to non-uniform crystal growth. In this accumulation method as well, colored crystallized glass can be obtained by using colored glass containing a glass colorant as the raw material glass. (Problems to be solved by the invention) Generally, glass is a material that has problems with its strength, and improvements in its strength are always sought after.Also, the diversification of decorative materials, construction materials, etc. has led to uniform coloring even in colored glass. It is expected that a glass with a change in shape, for example a glass with a mottled pattern, will appear.From this perspective, it is possible to melt and shape the glass raw material containing the nucleating agent and the glass coloring agent, and then heat-process it for crystallization. The problem with this method of producing crystallized glass is that it requires uniform coloring and that the nucleating agent may be more expensive than the raw materials. In the case of the following accumulation method, patterns are created by the non-uniform growth of crystals as mentioned above.If the accumulation is carried out by heating the glass bodies, each glass body is heated at the temperature at which the crystals precipitate. It is not suitable unless it has a sufficiently low viscosity that it can be fused and integrated with each other. As such, there are limitations on the raw material glass, and therefore glass bodies containing a nucleating agent or a coloring agent that acts as a nucleating agent, such as FeS+MnS, FeO+Fe 2 O 3 , etc., cannot be used. In other words, in a heated glass body, the growth rate of the crystal nuclei precipitated at the softening temperature is fast, and if the composition is such that the crystals grow before fusion, or if it contains a nucleating agent as described above, As the crystals grow, the viscosity increases, and the individual glass bodies cannot be fused and integrated, and if you try to integrate them by increasing the temperature further,
On the contrary, the crystals do not break or metastasize and become crystallized glass. In addition, this accumulation method has the problem that the color does not come out clearly even if the raw material uses a coloring agent that does not act as a nucleating agent, and that the product contains relatively large bubbles (about 0.5 mm in diameter). It also has its problems. (Means for Solving the Problems) The present invention solves the problems of the prior art as described above without requiring any special ingredients, and makes it possible to provide crystallized glass with a mottled color pattern. As a means for that purpose, SiO 2 is added as an essential component in weight percentage, from 45 to 75.
%, Al2O3 : 20% or less, CaO: 5-40 % , Na2O
+ K2O : 2-20%, SiO2 + Al2O3 + CaO + K2O
>85% of the glass-like raw material is pulverized so that particles of 200 mesh or less account for 70% or less, and each component in the above composition range and
A colored glassy raw material containing 10% or less of a coloring agent is crushed to produce 10~200mesh or 10~200mesh.
Powder containing particles of 200 mesh and 200 mesh or less is mixed in a desired ratio within a range where particles of 200 mesh or less account for 70% or more, and the main component is montmorillonite, SiO 2 : 60 to 80%, Al 2 O3 :5
~20% of a binder or a binder consisting of the same binder and polyvinyl alcohol at a weight percentage of 5%
The mixture is added and kneaded below, and the mixture is compression-molded into a green compact with a true density of 50% or more, and then heat-treated to soften and fuse the constituent particles of the green compact, making them integrated and densified while crystallizing. In order to achieve this, the main method was to precipitate wollastonite crystals. (Function) The most characteristic technical means of the present invention is to heat-treat the fine powder of the glassy raw material as a dense compacted body. This is because the softening and fusion between the glass powders is facilitated at a relatively low temperature. That is, when glass particles that are coarse and simply aggregated are heated, even when the softening point is reached, the particles do not immediately fuse and integrate. First, the sharp corners of each particle begin to soften, and in order for almost the entire particle to soften and fusion to proceed, it must be heated to a considerably high temperature above the softening point, due to the relationship between the distances between the particles. Must be. However, in the case of a dense compacted body of fine powder, each particle is in close contact with each other over a large area relative to its mass, and the particles are easily fused and integrated at low temperatures that do not exceed the softening point, and densification progresses. . The fact that it has become possible to integrally densify glass particles at a relatively low temperature means that crystal growth can be achieved after integrally densifying regardless of the component composition, which is different from the conventional method. This method successfully solves the problems of the accumulation method. Of course, even when a nucleating agent or a coloring agent having a nucleating effect is contained, crystallization can be achieved after integral densification, and the nucleating agent contained effectively works during crystallization. FIG. 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when a compact of glass fine powder is heated, and the nucleation rate and crystal growth rate are plotted on the vertical axis. Temperature is plotted on the horizontal axis.
The broken line graph is the "nucleation rate-temperature" curve, and the solid line graph is the "crystal growth rate-temperature" curve. Note that SP is the softening point and MP is the melting point. The graph shows that nuclei are generated and increase in number during a relatively low temperature period that does not exceed the softening point, that is, during the softening and fusion period, and as the temperature increases thereafter, crystal growth becomes more active. . Next, another effect of forming a densely compressed body of fine powder is that even if the composition of the glass is difficult to crystallize, that is, the glass that normally generates few nuclei or has a slow crystal growth rate, Crystallization progresses relatively easily. In other words, the crystallization rate is expressed as (crystallization rate) = (number of crystal nuclei) × (crystal growth rate), and crystal nuclei are likely to occur at the fused interface between glass particles, and are In this case, the number of fused interfaces is large and wide, and therefore many nuclei are generated, and even if the crystal growth rate is not high, the crystallization rate is increased as a result. Another major feature of the present invention is that colorless glass powder and colored glass powder are mixed, and in this case, the colored glass powder particles are made coarser than the colorless glass powder particles. In other words, the coarse grains act to form a mottled pattern. If colorless and colored raw materials are mixed as fine particles of 200 mesh or less and this is made into crystallized glass,
The product appears like a uniformly colored ground and does not have a mottled pattern. This makes the process of separately manufacturing colored and colorless raw materials and mixing the powders of each powder meaningless. The third feature is that a montmorillonite-based binder is used when molding the compact compact of fine powder. Of course, the action of the binder is to add viscosity to the glass powder and increase the bending strength of the compact (white background), but the montmorillonite binder mentioned above can cause shrinkage during sintering and cracking during transportation, etc. in small amounts. It is possible to provide a bending strength of 7 kgf/cm 2 or more that can prevent damage such as cracking or chipping, and since the component system of the same binder is similar to that of glass, it is possible to add more. Since the amount is small, it does not cause any problems in heat treatment or in the quality of the product. When using a binder that uses PVA (polyvinyl alcohol), the PVA burns during heat treatment and does not remain in the product, causing no adverse effects. (Example) First, the reason for limiting the essential components will be described. Note that the essential components are common to colorless and colored glassy raw materials. SiO2 : 45 to 75% (weight percentages and below are the same) If it is less than 45%, it is difficult to maintain the shape of the compression molded product during heat treatment, and if it is more than 75%, the viscosity of the glass increases and the compaction of the compression molded product is delayed. Al 2 O 3 : 20% or less If it is 20% or more, the viscosity of the glass becomes high and the densification of the compression molded product becomes slow. CaO: 5-40% If it is less than 5%, crystals such as wollastonite and anorsite will be difficult to precipitate. Moreover, if it exceeds 40%, physical properties such as water resistance and acid resistance will be affected. Na 2 O + K 2 O: 2 to 20% If it is less than 2%, the viscosity of the glass becomes high and the densification of the compression molded product becomes slow. Moreover, if it exceeds 20%, it is difficult to maintain the shape of the compression molded product during heat treatment. The above-mentioned essential components are contained in such a way that the total amount is 85% or less, and the reason for this is to maintain appropriate physical properties as a glass. Next, coloring agents (CaO, FeO + Fe 2 O 3 , Cr 2 O 3 , NiO, CuO,
Regarding the reason why MnO 2 etc.) was set to 10% or less,
From the viewpoint of coloring, a content of 10% or more is not only unnecessary, but also a content of 10% or more increases the difference in physical properties from a colorless glassy raw material. Next, regarding non-essential components, up to 2% of each of MgO, ZnO, BaO, PbO, B 2 O 3 , etc. can be added to both colorless and colored glass raw materials without any problem, and Sb 2 O 3 can be used as a fining agent. 1% or less may be added at the time of dissolution. It is also possible to contain a nucleating agent. Next, the manufacturing method will be explained in detail. Colorless and colored glassy raw materials are produced by mixing and melting the raw materials for each of the above components to a predetermined composition, and then quenching and crushing this by a method such as water pulverization to obtain glassy bodies. Use as raw material. Of course, a material having a limited range of component compositions and already in the form of glass may be used as the raw material, and this may be crushed into small bodies by appropriate means. The glass corpuscles obtained in this way are further crushed using, for example, a ball mill.
At this time, the colorless glassy raw material (hereinafter referred to as colorless raw material) should contain 70% or more of fine particles of 200 mesh or less, and the colored glassy raw material (hereinafter referred to as colored raw material) should be a powder of 10 to 200 mesh or 10 to 200 mesh. ~
The powder must contain 200 mesh powder and also contain fine powder of 200 mesh or less. In other words, the colored raw material must contain coarse particles larger than 200mesh, in this case 10mesh
The presence of larger particles causes problems such as a reduction in the strength of the compression molded product (white background) and the inclusion of large air bubbles in the product. The colored and colorless raw material powders obtained as described above contain 70% of fine particles of 200mesh or less in the mixture.
% or more in a desired proportion. In other words, in this way, fine particles of 200 mesh or less are
This is to ensure dense molding of the compression-molded product, as well as fusion integration and densification at low temperatures, by making it present in an amount of % or more. When mixing the above two, use a montmorillonite binder with a weight percentage of 5% or less, that is, the main component is montmorillonite, SiO 2 : 60 to 80%, Al 2 O 3 :
Binder containing 5-20% or montmorillonite binder + PVA (polyvinyl alcohol) <5
% (for example, montmorillonite binder 2% +
After adding PVA (3% or less) and kneading thoroughly, it is placed in a compression molding frame of the desired shape and pressurized to form a dense compression molded product (white background) with a density of 55% or more of the true density. The amount of the above montmorillonite binder added is 5
As mentioned above, the limit to % or less is the limit to the amount that can impart a bending strength of 7 kgf/cm 2 or more to the white background, and the same strength is also related to the compaction force of the powder. When using montmorillonite alone or in combination with PVA, 5% or less of the binder is sufficient. If the content of montmorillonite is 5% or more, the composition will be affected. The density of the compression molded product was limited to 50% or more of the true density to ensure that the shape is maintained during heat treatment and the particles are fused and densified at a low temperature. In order to compression mold to 50% or more of the true density, it is carried out at 20Kgf/mm 2 or more. The compression-molded product obtained as described above is heated at a temperature above the softening point (actually, preferably above the softening point +100°C) and below the temperature at which the crystal growth rate increases, in order to fuse and integrate the glass particles and make them densified. Perform heat treatment at temperature. Through this treatment, each glass powder is fused and integrated and densified, and at the same time, the formation of nuclei is progressing at the fused interface between the particles. The montmorillonite binder is absorbed and assimilated as a glass component, and the PVA is burned away. Once the compact has been integrally densified, the temperature is further raised to promote crystal growth and crystallization, but as mentioned above, colored raw material powder has a composition that is 10% higher than that of colorless raw material powder. Since the composition contains only % or less of a coloring agent, there is no significant difference in the softening point or other properties of the raw material powder, and the integral densification and crystallization of the powder proceed without any problem during the heat treatment described above. Figure 2 shows the heat treatment curve of the above compression molded product, aa
The space between them is the integrated densification section of the glass particles, the space between bb and bb is the crystallization section, SP is the softening point, and MP is the melting point. The crystallized glass obtained by the above process has a distributed colored mottled pattern, and the mottled pattern can be a uniform distribution of fine mottled patterns, or a blocky mottled pattern, and its shading can be a mixture of colored glass particles. It is possible to change the color by changing the amount, viscosity, mixing condition, etc. The background is white due to crystal precipitation, but it can also be made to look like a colored background by adjusting the amount of fine particles of 200 mesh or less of colored glass powder. can. It is also possible to create a multicolored mottled pattern by using multiple types of colored raw materials with different colors. Next, specific examples of the present invention will be shown. The colorless and colored raw materials used in the examples have the compositions shown in the table below. The blended raw materials containing the respective components were melted at 1500°C, and then poured into water to obtain colorless and colored glassy bodies, respectively.

【表】 前記ガラス小体はボールミルを用いて粉砕し、
次のような粉末とした。 無色原料は200mesh以下の粉末 有色原料は(40〜200mesh粉末):(200mesh以
下粉末)=1:2の割合で含む粉末。 上記両粉末を1:1の割合で混合し(混合物中
の200mesh以下の微粉は83%)、これにモンモリ
ロナイト系粘結剤(SiO2:71%、Al2O3:14%、
Fe2O3:1.8%、及びCaO、MgO、K2O、その他
よりなる)の3%と水15%を添加してよく混練し
て後、圧縮成形枠を用いて100×100×25(mm)の
圧縮成形体(白地)を得た。なお成形時のプレス
圧は30Kgf/cm2と300Kgf/cm2の2種で行つたが
熱処理品の物性に差異は認められなかつた。 上記圧縮成形体の熱処理は、炉中で150℃/h
の昇温速度で690℃まで上げ、同温度で30分間保
持する熱処理(融着一体緻密化処理)を行い次い
で800℃に昇温、同温度を30分間保持する熱処理
(結晶化処理)を行つた。同処理によつてウオラ
ストナイト(CaO・SiO2)の結晶が析出してい
ることを認めた。 第3図は上記熱処理の熱処理曲線であり、同処
理によつて得られた結晶化ガラスの物性値は、両
者共密度2.5Kg/cm2、吸水率0.02%、曲げ強さ710
Kgf/cm2であつた。 なお斑模様の状態は有、無色原料粉末を十分混
練したもの(圧縮力30Kgf/cm2を加えた実施例)
は斑模様が全般的に均等に分布しているが、他
(圧縮圧力300Kgf/cm2)は前記粉末の混合におい
てやゝむらになるようにしたため塊状斑模様がで
ている。 (発明の効果) 以上のように本発明の方法は、ガラス状原料の
微粉末を圧縮成形体とし熱処理することによつ
て、集積法におけるような結晶の成長に伴う粘性
増大による障害もなく、広い範囲の組成のガラス
(本発明で特定した組成範囲は広く、従来ガラス
もこの範囲に入るものが多い)において容易に結
晶化できるものであり、着色も着色ガラス粉末と
無色ガラス粉末を混じて圧粉体として熱処理する
という手段によるのであるから斑状模様を出現さ
せることが可能となり、同模様の変化も有色ガラ
ス粒子の色、粒度、量、混合程度等により、更に
は結晶化の程度等によつても種々に変化せしめる
ことができる。また形状においても圧粉体として
成形するために容易に所望形状とすることが可能
であり、表面に凹凸をつけるなども容易である。 更には大きな気泡を製品内部に含むことなく製
造できることも材質として大きな利点であり、結
晶化ガラスの強度をより確実にしているのであ
る。 以上に加えて本発明におけるモンモリロナイト
系粘結剤の使用は、白地強度を増大し、曲げ強度
7Kgf/cm2以上を同粘結剤の少量で容易に得るこ
とができ、運搬時等における損傷を防止減少させ
ると共に、熱処理における収縮によく耐える強度
を圧縮成形体に付与して割れ等を防止するもので
あり、経済的効果も大きいのである。 このように多くの利点を有して、優れた装飾
材・建築材として色模様付結晶化ガラスの提供を
可能とした本発明の工業価値は著大である。
[Table] The glass bodies were crushed using a ball mill,
The following powder was prepared. Colorless raw materials are powders with a size of 200 mesh or less. Colored raw materials are powders with a ratio of (40 to 200 mesh powder): (200 mesh powder or less) = 1:2. Both of the above powders were mixed at a ratio of 1:1 (fine powder of 200 mesh or less in the mixture was 83%), and montmorillonite binder (SiO 2 : 71%, Al 2 O 3 : 14%,
Fe 2 O 3 : 1.8%, 3% of CaO, MgO, K 2 O, etc.) and 15% of water were added and kneaded well. A compression molded body (white background) of 1 mm) was obtained. The press pressure during molding was 30 Kgf/cm 2 and 300 Kgf/cm 2 , but no difference was observed in the physical properties of the heat-treated products. The above compression molded body is heat treated in a furnace at 150℃/h.
Heat treatment is carried out by raising the temperature to 690℃ at a rate of 200℃ and holding it at the same temperature for 30 minutes (fused integral densification treatment).Then, heat treatment is carried out by raising the temperature to 800℃ and holding the same temperature for 30 minutes (crystallization treatment). Ivy. It was observed that wollastonite (CaO.SiO 2 ) crystals were precipitated by the same treatment. Figure 3 shows the heat treatment curve of the above heat treatment, and the physical properties of the crystallized glass obtained by the same treatment are a co-density of 2.5 Kg/cm 2 , a water absorption rate of 0.02%, and a bending strength of 710.
It was Kgf/ cm2 . Note that there is a mottled pattern, but the colorless raw material powder is sufficiently kneaded (an example in which a compressive force of 30 Kgf/cm 2 is applied)
The mottled pattern is distributed evenly throughout the sample, but the other cases (compression pressure of 300 Kgf/cm 2 ) have lumpy mottled patterns because the powder is mixed more unevenly. (Effects of the Invention) As described above, the method of the present invention heat-treats a fine powder of a glassy raw material as a compression molded body, thereby eliminating the problem of increased viscosity due to crystal growth unlike in the accumulation method. It can be easily crystallized in glasses with a wide range of compositions (the composition range specified in the present invention is wide, and many conventional glasses fall within this range), and it can be colored by mixing colored glass powder and colorless glass powder. Because it is heat-treated as a compact, it is possible to create a mottled pattern, and changes in the same pattern also depend on the color, particle size, amount, degree of mixing, etc. of the colored glass particles, and also on the degree of crystallization. However, it can be changed in various ways. In addition, since it is molded as a powder compact, it can be easily formed into a desired shape, and it is also easy to form irregularities on the surface. Furthermore, the fact that it can be manufactured without containing large bubbles inside the product is a great advantage as a material, making the strength of crystallized glass even more reliable. In addition to the above, the use of the montmorillonite binder in the present invention increases the strength of the blank surface, making it possible to easily obtain a bending strength of 7 kgf/cm 2 or more with a small amount of the same binder, thereby preventing damage during transportation. In addition to preventing shrinkage during heat treatment, the compression molded product is given strength to withstand shrinkage during heat treatment, thereby preventing cracking, etc., and has great economic effects. The industrial value of the present invention, which has many advantages as described above and makes it possible to provide colored patterned crystallized glass as an excellent decorative material and building material, is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガラス微粉末圧粉体加熱における「温
度−核形成速度曲線」(破線曲線)及び「温度−
結晶成長速度曲線」(実線曲線)を示し、第2図
は本発明の製造方法の熱処理様式線図、第3図は
本発明実施例の熱処理曲線である。
Figure 1 shows the ``temperature-nucleation rate curve'' (dashed line curve) and the ``temperature-nucleation rate curve'' (dotted line curve) in heating a compact of glass fine powder.
FIG. 2 is a heat treatment pattern diagram of the manufacturing method of the present invention, and FIG. 3 is a heat treatment curve of an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 必須成分として重量百分率で、SiO2:45〜
75%、Al2O3:20%以下、CaO:5〜40%、
Na2O+K2O:2〜20%を、SiO2+Al2O3+CaO
+K2O>85%であるように含有して成るガラス状
原料を粉砕して、200mesh以下の粒子が70%以下
を占めるようにした粉体と、前記組成範囲の各成
分及び10%以下の着色剤を含有して成る有色のガ
ラス状原料を粉砕して、10〜200mesh若しくは10
〜200mesh及び200mesh以下の粒子を含むように
した粉体を、200mesh以下の粒子が70%以上を占
める範囲で所望割合に混合すると共に、主成分が
モンモリロナイトで、SiO2:60〜80%、Al2O3
5〜20%含有の粘結剤若しくは同粘結剤及びポリ
ビニルアルコールから成る粘結剤を重量百分率5
%以下で加え混練し、該混合物を真密度の50%以
上の圧粉体に圧縮成形して後、熱処理することに
より該圧粉体の構成粒子を軟化融着させ一体化及
び緻密化する一方結晶化を図り、主としてウオラ
ストナイト結晶を析出させるようにしたことを特
徴とする色模様付結晶化ガラスの製造方法。
1 As an essential component, SiO 2 : 45 to 45% by weight
75%, Al2O3 : 20% or less , CaO: 5-40%,
Na 2 O + K 2 O: 2 to 20%, SiO 2 + Al 2 O 3 + CaO
+ K 2 O > 85% glassy raw material is pulverized so that particles of 200 mesh or less account for 70% or less, each component in the above composition range and 10% or less A colored glassy raw material containing a coloring agent is crushed to form 10 to 200 mesh or 10
Powders containing particles of ~200mesh and 200mesh or less are mixed in a desired ratio within a range where particles of 200mesh or less account for 70% or more, and the main component is montmorillonite, SiO 2 : 60-80%, Al. 2O3 :
A binder containing 5 to 20% or a binder consisting of the same binder and polyvinyl alcohol at a weight percentage of 5 to 20%.
% or less and kneading, and the mixture is compression-molded into a green compact with a true density of 50% or more, and then heat treated to soften and fuse the constituent particles of the green compact, making it integrated and densified. A method for producing crystallized glass with colored patterns, characterized in that crystallization is performed to precipitate mainly wollastonite crystals.
JP18579286A 1986-08-07 1986-08-07 Production of crystallized glass with color pattern Granted JPS6340736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18579286A JPS6340736A (en) 1986-08-07 1986-08-07 Production of crystallized glass with color pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18579286A JPS6340736A (en) 1986-08-07 1986-08-07 Production of crystallized glass with color pattern

Publications (2)

Publication Number Publication Date
JPS6340736A JPS6340736A (en) 1988-02-22
JPH0575702B2 true JPH0575702B2 (en) 1993-10-21

Family

ID=16176974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18579286A Granted JPS6340736A (en) 1986-08-07 1986-08-07 Production of crystallized glass with color pattern

Country Status (1)

Country Link
JP (1) JPS6340736A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510139B2 (en) * 1988-09-27 1996-06-26 日本電気硝子株式会社 Method for producing patterned crystallized glass
DE102004060625A1 (en) * 2004-12-16 2006-06-29 Siltronic Ag Coated semiconductor wafer and method and apparatus for producing the semiconductor wafer

Also Published As

Publication number Publication date
JPS6340736A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
JPH0575702B2 (en)
US3057741A (en) Method of making ceramoplastic material
JPH0575701B2 (en)
US3516810A (en) Glass-bonded crystalline minerals and method of production
JPS6224365B2 (en)
JPS6317238A (en) Production of crystallized glass
CN101851066A (en) Pot-shaped glass-ceramic panel and manufacturing method thereof
JPH0444622B2 (en)
DE1471337B2 (en) Process for the production of porcelain-like objects
JPS62143842A (en) Crystallized glass and production thereof
JPS62235230A (en) Production of crystallized glass with colored pattern
JPS6374936A (en) Crystallized glass and production thereof
JP3127256B2 (en) Method for producing crystallized glass
JPH0416421B2 (en)
JPS63144142A (en) Crystallized glass and production thereof
JPH0436098B2 (en)
JPS5924100B2 (en) Method for manufacturing crystallized glass using aluminum red mud as the main raw material
JPH0193441A (en) Production of crystallized glass building material
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPS63129025A (en) Production of glass ceramic article
JPH01252551A (en) Production of crystallized glass containing dot pattern
JPS62235229A (en) Production of crystallized glass
DE1471163C (en) Process for the production of a material consisting of a homogeneous microcrystalline glass mass
DE1471337C (en) Process for the production of porcelain-like objects
JPH01201044A (en) Production of crystallized glass building material with mottled pattern