JPH0574692A - Exposing method - Google Patents

Exposing method

Info

Publication number
JPH0574692A
JPH0574692A JP23750291A JP23750291A JPH0574692A JP H0574692 A JPH0574692 A JP H0574692A JP 23750291 A JP23750291 A JP 23750291A JP 23750291 A JP23750291 A JP 23750291A JP H0574692 A JPH0574692 A JP H0574692A
Authority
JP
Japan
Prior art keywords
pattern
exposure
resist
area
acceleration voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23750291A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kaneda
博幸 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23750291A priority Critical patent/JPH0574692A/en
Publication of JPH0574692A publication Critical patent/JPH0574692A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To suppress the shape deterioration of a fine pattern and the decline in exposure throughput of a resist pattern plotting method using an electron beam. CONSTITUTION:At the time of plotting a resist pattern using an electron beam, the exposure is performed by dividing a plurality of patterns to be plotted into pattern groups in accordance with their areas and setting the acceleration voltage of each pattern group larger than values inversely proportional to the average area of each pattern group and, at the same time, smaller than the value of the acceleration voltage of the pattern group having the smallest average area. Or, the exposure is performed in such a way that, after a large pattern is divided into a central pattern area and small peripheral pattern areas, each area is exposed as individual patterns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は露光方法に係り, 特に電
子ビームを用いたレジストパターンの描画方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method, and more particularly to a resist pattern drawing method using an electron beam.

【0002】近年, 半導体装置の微細化, 高密度化に伴
い,電子ビーム露光は半導体装置の製造工程において広
く利用されている。
In recent years, electron beam exposure has been widely used in the manufacturing process of semiconductor devices with the miniaturization and higher density of semiconductor devices.

【0003】[0003]

【従来の技術】図2(A),(B) は露光の従来例の説明図で
ある。図において,11はレジスト膜,12は基板,1
3は電子ビームである。
2. Description of the Related Art FIGS. 2A and 2B are explanatory views of a conventional example of exposure. In the figure, 11 is a resist film, 12 is a substrate, 1
3 is an electron beam.

【0004】図2(A) はレジスト膜及び基板中での電子
の挙動を模式的に示す断面図,図2(B) は現像後のレジ
ストパターンの断面図である。加速された電子をレジス
ト中に入射させることによりレジストを感光させて,パ
ターンを描画する電子ビーム露光法は, 入射電子がレジ
ストを構成する原子と多重散乱することにより,電子の
入射方向に対し横方向へもレジストの感光が進むという
性質がある。
FIG. 2A is a sectional view schematically showing the behavior of electrons in the resist film and the substrate, and FIG. 2B is a sectional view of the resist pattern after development. In the electron beam exposure method, in which a resist is exposed by injecting accelerated electrons into the resist and a pattern is drawn, the incident electrons are transversely scattered with respect to the incident direction of electrons by multiple scattering with the atoms constituting the resist. The resist also has the property of being exposed in the direction.

【0005】このため,描画されたレジストパターンの
形成寸法が設計寸法より大きくなってしまい, またレジ
ストパターンの断面形状がテーパ状になる傾向がある。
このような傾向は,ハーフミクロン,サブハーフミクロ
ン領域の微細パターンを描画する場合に顕著になってき
ている。
Therefore, the formation dimension of the drawn resist pattern tends to be larger than the design dimension, and the cross-sectional shape of the resist pattern tends to be tapered.
Such a tendency has become remarkable when a fine pattern in a half-micron or sub-half-micron region is drawn.

【0006】図3(A),(B) は近接効果の説明図である。
図3(A) は近接したパターン中での電子の挙動を模式的
に示す断面図,図3(B) は現像後のレジストパターンの
断面図で近接パターンの解像不良を示す図である。
FIGS. 3A and 3B are explanatory views of the proximity effect.
FIG. 3 (A) is a cross-sectional view schematically showing the behavior of electrons in adjacent patterns, and FIG. 3 (B) is a cross-sectional view of a resist pattern after development, showing a poor resolution of the adjacent pattern.

【0007】図のように,複数個のパターンが近接して
いる場合は,多重散乱の相乗効果によりパターンの近接
部分が解像しないという近接効果と呼ばれる現象が起き
る。これらの電子ビーム露光法に固有の欠点を低減する
ために,図4の結果より,電子ビームの加速電圧を上げ
て電子の運動エネルギーを増し,多重散乱による電子の
横方向への広がりを抑える方法が考えられている。
As shown in the figure, when a plurality of patterns are close to each other, a phenomenon called a proximity effect occurs in which the adjacent portions of the pattern are not resolved due to the synergistic effect of multiple scattering. In order to reduce the defects inherent in these electron beam exposure methods, from the results of FIG. 4, a method of increasing the accelerating voltage of the electron beam to increase the kinetic energy of the electrons and suppressing the lateral spread of the electrons due to multiple scattering Is being considered.

【0008】図4 (A)〜(D) はレジスト中での吸収エネ
ルギーの加速電圧依存性を示す図である。図は,応物学
会1983年秋の予稿集より引用したもので, 加速電圧ごと
にレジスト中での照射時間(min)に対する吸収エネルギ
ーの等エネルギー面を示す。
FIGS. 4A to 4D are graphs showing the acceleration voltage dependence of the absorbed energy in the resist. The figure is taken from the proceedings of the Autumn Meeting of the Society of Biological Sciences, 1983, and shows the isoenergy surface of the absorbed energy with respect to the irradiation time (min) in the resist for each accelerating voltage.

【0009】[0009]

【発明が解決しようとする課題】電子ビームの持つエネ
ルギーEと,レジストの感度(レジストを感光させるた
めに必要な単位体積当たりの蓄積エネルギー量)Iとの
間に次の関係が近似的に成立する。
The following relationship is approximately established between the energy E of the electron beam and the sensitivity of the resist (amount of stored energy per unit volume required to expose the resist) I. To do.

【0010】 I=K/E (K:任意定数)・・・・・・・・・・(1) 従って,近接効果の低減を目的として電子ビームの加速
電圧を,例えば通常の値(20〜30 KeV) の2倍に上げて
すべてのパターンを描画した場合,図4より分かるよう
にパターン形状が向上するが,その反面必要とする露光
時間は2倍に増加し,レジストの実効的な感度の低下に
よるスループットの減少を引き起こすという問題を生ず
る。
I = K / E (K: arbitrary constant) (1) Therefore, for the purpose of reducing the proximity effect, the acceleration voltage of the electron beam is, for example, a normal value (20 to When all patterns are drawn with a voltage of 30 KeV), the pattern shape is improved as shown in Fig. 4, but the required exposure time is doubled, and the effective sensitivity of the resist is increased. The problem of causing a decrease in throughput due to the decrease of

【0011】すなわち,スループットを向上させるため
に加速電圧を下げると,微細パターンの形状劣化を招
き,パターン形状向上のために加速電圧を上げると,大
面積パターンの露光のスループットの低下を招くことに
なる。
That is, if the accelerating voltage is lowered to improve the throughput, the shape of the fine pattern is deteriorated, and if the accelerating voltage is raised to improve the pattern shape, the throughput of exposure of a large area pattern is lowered. Become.

【0012】本発明は微細パターンの形状劣化および露
光のスループットの低下を抑制することを目的とする。
An object of the present invention is to suppress the deterioration of the shape of a fine pattern and the reduction of exposure throughput.

【0013】[0013]

【課題を解決するための手段】上記課題の解決は,1)
電子ビームを用いたレジストパターンの描画に際し,描
画しようとする複数のパターンをその面積に応じてパタ
ーン群に分けて,各パターン群の加速電圧を各パターン
群の平均面積に反比例した値以上に且つ最小平均面積の
パターン群の加速電圧の値未満に設定して露光を行う露
光方法,あるいは2)大パターンを中央部領域と周辺部
の小パターン領域に分割し,各々の領域を別個のパター
ンとして露光を行う前記1)記載の露光方法により達成
される。
[Means for Solving the Problems] 1)
When drawing a resist pattern using an electron beam, the plurality of patterns to be drawn are divided into pattern groups according to their areas, and the acceleration voltage of each pattern group is set to a value that is inversely proportional to the average area of each pattern group and An exposure method in which exposure is performed by setting the acceleration voltage to a value less than the minimum average area pattern group, or 2) a large pattern is divided into a central pattern area and a peripheral small pattern area, and each area is treated as a separate pattern. It is achieved by the exposure method described in 1) above, in which exposure is performed.

【0014】[0014]

【作用】本発明では,描画しようとするパターンを,そ
の面積に応じてパターン群に分けて,各パターン群の加
速電圧を各パターン群の平均面積に反比例した値として
いる。
In the present invention, the pattern to be drawn is divided into pattern groups according to the area thereof, and the acceleration voltage of each pattern group is set to a value inversely proportional to the average area of each pattern group.

【0015】いま,パターン群の平均面積が最小の値S
0 のパターン群に属するパターンの断面形状が,所望の
残膜率になるような電子ビームの照射量において垂直と
なるような加速電圧V0 とすると,その他のパターン群
(平均面積S)に属するパターンを露光する場合の加速
電圧Vは次式で表される。
Now, the average area S of the pattern groups is the minimum value S.
If the accelerating voltage V 0 is such that the cross-sectional shape of the pattern belonging to the pattern group of 0 becomes vertical at the electron beam irradiation amount so as to obtain a desired residual film rate, it belongs to the other pattern group (average area S). The accelerating voltage V when exposing the pattern is expressed by the following equation.

【0016】 V0 >V≧(S/S0 )V0 ・・・・・・・・・・・(2) このようにすれば,露光時間は(1) 式より加速電圧に反
比例するから, 大きいパターンを露光する場合でも(2)
式よりスループットの低下を引き起こすことなく露光で
きることが分かる。
V 0 > V ≧ (S / S 0 ) V 0 (2) By doing so, the exposure time is inversely proportional to the acceleration voltage according to the equation (1). , Even when exposing a large pattern (2)
From the equation, it can be seen that the exposure can be performed without causing a decrease in throughput.

【0017】更に,パターン群の分割を次のように行っ
て露光してもよい。分割を行ったパターン群の内, ミク
ロンまたは更に大きい領域のパターンに対し, パターン
の中央部とハーフミクロンあるいはサブハーフミクロン
の周辺領域に再分割を行い, 中央部と周辺部をそれぞれ
の面積に応じた加速電圧により加速さた電子ビームを用
いて露光する。
Further, the pattern group may be divided as follows for exposure. Within the divided pattern group, the pattern in the area of micron or larger is subdivided into the central area of the pattern and the peripheral area of half micron or sub-half micron, and the central area and the peripheral area are divided according to their respective areas. Exposure is performed using an electron beam accelerated by the acceleration voltage.

【0018】[0018]

【実施例】図1(A),(B) は本発明の実施例を説明する平
面図である。図1(A) は請求項1に対応する実施例であ
る。
1 (A) and 1 (B) are plan views illustrating an embodiment of the present invention. FIG. 1A shows an embodiment corresponding to claim 1.

【0019】図において,パターン群1は0.04μm2
下のパターン, パターン群2は0.04〜1.00μm2 のパタ
ーン, パターン群3は1.00μm2 以上のパターンを示
す。この場合, 例えば, パターン群1の平均面積S0 = 0.04 μm2 パターン群2の平均面積S1 = 0.10 μm2 パターン群3の平均面積S2 = 1.00 μm2 とし,所望の残膜率になるような電子ビームの照射量に
おいて断面形状が垂直となるようなパターン群1の加速
電圧をV0 , パターン群1の加速電圧V0 = 80 KeV であり,(2) 式より, パターン群2の加速電圧V1 = 32 KeV パターン群3の加速電圧V2 = 3.2 KeV が得られる。
In the figure, pattern group 1 shows a pattern of 0.04 μm 2 or less, pattern group 2 shows a pattern of 0.04 to 1.00 μm 2 , and pattern group 3 shows a pattern of 1.00 μm 2 or more. In this case, for example , the average area of pattern group 1 is S 0 = 0.04 μm 2 The average area of pattern group 2 is S 1 = 0.10 μm 2 The average area of pattern group 3 is S 2 = 1.00 μm 2 , and the desired residual film rate is obtained. The acceleration voltage V 0 of the pattern group 1 which makes the cross-sectional shape vertical at such an electron beam irradiation amount is the acceleration voltage V 0 = 80 KeV of the pattern group 1, and from the equation (2) , the pattern group 2 accelerating voltage V 2 = 3.2 KeV of accelerating voltage V 1 = 32 KeV pattern group 3 can be obtained.

【0020】図1(B) は請求項2に対応する実施例であ
る。図において,一番大きいパターン群に属するパター
ンの周辺部を更に 0.2μm幅のパターン1’に分割して
高加速電圧で露光することにより, 大パターンにおいて
も微細パターンと同様にパターン形状の向上を図ってい
る。
FIG. 1B shows an embodiment corresponding to claim 2. In the figure, the peripheral portion of the pattern belonging to the largest pattern group is further divided into 0.2 μm-wide pattern 1 ′ and exposed at a high acceleration voltage, so that the pattern shape can be improved in the large pattern as well as the fine pattern. I am trying.

【0021】いずれの実施例においても,微細パターン
の露光を行う場合には加速電圧を上げてレジストの実効
感度と電子の多重散乱による露光部の横方向の広がりを
抑制して寸法精度と断面形状の良好なパターンを得るこ
とができ,また大パターンの露光の際には加速電圧を下
げてレジストの実効感度を上げることにより, 広い領域
の塗り潰しに要する露光時間の短縮を図ることができ
る。
In any of the embodiments, when exposing a fine pattern, the accelerating voltage is increased to suppress the effective sensitivity of the resist and the lateral spread of the exposed portion due to multiple scattering of electrons, thereby achieving dimensional accuracy and cross-sectional shape. A good pattern can be obtained, and the exposure time required to fill a wide area can be shortened by lowering the acceleration voltage and increasing the effective sensitivity of the resist when exposing a large pattern.

【0022】[0022]

【発明の効果】本発明によれば,微細パターンの形状劣
化および露光のスループットの低下を両立して抑制する
ことができた。
According to the present invention, the deterioration of the shape of the fine pattern and the decrease of the exposure throughput can be suppressed at the same time.

【0023】この結果, 近接効果による描画パターンの
設計寸法からのずれを抑え, 垂直な断面形状の描画パタ
ーンが得られると同時に, 高速描画が可能となった。
As a result, it is possible to suppress the deviation of the drawing pattern from the design dimension due to the proximity effect, obtain a drawing pattern having a vertical cross-sectional shape, and at the same time, enable high-speed drawing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を説明する平面図FIG. 1 is a plan view illustrating an embodiment of the present invention.

【図2】 露光の従来例の説明図FIG. 2 is an explanatory diagram of a conventional example of exposure.

【図3】 近接効果の説明図FIG. 3 is an explanatory diagram of a proximity effect.

【図4】 レジスト中での吸収エネルギーの加速電圧依
存性を示す図
FIG. 4 is a diagram showing the acceleration voltage dependence of absorbed energy in a resist.

【符号の説明】[Explanation of symbols]

1 パターン群1に属し0.04μm2 以下のパターン 2 パターン群2に属し0.04〜1.00μm2 のパターン 3 パターン群3はに属し1.00μm2 以上のパターン1 pattern group 1 with a pattern of 0.04 μm 2 or less 2 pattern group 2 with a pattern of 0.04 to 1.00 μm 2 pattern 3 pattern group 3 with a pattern of 1.00 μm 2 or more

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを用いたレジストパターンの
描画に際し,描画しようとする複数のパターンをその面
積に応じてパターン群に分けて,各パターン群の加速電
圧を各パターン群の平均面積に反比例した値以上に且つ
最小平均面積のパターン群の加速電圧の値未満に設定し
て露光を行うことを特徴とする露光方法。
1. When drawing a resist pattern using an electron beam, a plurality of patterns to be drawn are divided into pattern groups according to their areas, and the acceleration voltage of each pattern group is inversely proportional to the average area of each pattern group. The exposure method is characterized in that exposure is performed by setting the value to be equal to or more than the value and less than the value of the acceleration voltage of the pattern group having the minimum average area.
【請求項2】 大パターンを中央部領域と周辺部の小パ
ターン領域に分割し,各々の領域を別個のパターンとし
て露光を行うことを特徴とする請求項1記載の露光方
法。
2. The exposure method according to claim 1, wherein the large pattern is divided into a central region and a peripheral small pattern region, and each region is exposed as a separate pattern.
JP23750291A 1991-09-18 1991-09-18 Exposing method Withdrawn JPH0574692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23750291A JPH0574692A (en) 1991-09-18 1991-09-18 Exposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23750291A JPH0574692A (en) 1991-09-18 1991-09-18 Exposing method

Publications (1)

Publication Number Publication Date
JPH0574692A true JPH0574692A (en) 1993-03-26

Family

ID=17016271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23750291A Withdrawn JPH0574692A (en) 1991-09-18 1991-09-18 Exposing method

Country Status (1)

Country Link
JP (1) JPH0574692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376347B1 (en) * 1999-09-07 2003-03-17 엔이씨 일렉트로닉스 코포레이션 Method of forming an image of device pattern by electron beam exposure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376347B1 (en) * 1999-09-07 2003-03-17 엔이씨 일렉트로닉스 코포레이션 Method of forming an image of device pattern by electron beam exposure

Similar Documents

Publication Publication Date Title
US5667923A (en) Charged particle beam exposure compensating proximity effect
US5424173A (en) Electron beam lithography system and method
EP0391636A2 (en) Method of correcting proximity effects
JPH04137520A (en) Device and method for electron beam lithography
EP0126786A1 (en) Process for pattern transfer onto a light-sensitive layer
JPH0620931A (en) Method for electron beam exposure
DE112015006873B4 (en) Mold, method of making same and method of making molded products
JP2906658B2 (en) Pattern formation method
JP2914264B2 (en) Electron beam writing method
DE69729905T2 (en) Thyristor with reduced minority carrier lifetime and method of making the same
JP2647000B2 (en) Electron beam exposure method
DE60308770T2 (en) Semiconductor laser diode with current limiting layer and manufacturing method thereof
JPH0574692A (en) Exposing method
KR100264191B1 (en) Charged particle beam writing method and apparatus therefor
US7897308B2 (en) Method for transferring a predetermined pattern reducing proximity effects
JPH0653106A (en) Formation of fine resist pattern
KR100548532B1 (en) Stencil mask and method of manufacturing the same
JPH06101422B2 (en) Resist pattern formation method
JPS6314866B2 (en)
KR19980070537A (en) EV mask manufacturing method and electron mask manufacturing apparatus for electron beam drawing
KR100437817B1 (en) A method of exposure for making of a semiconductor device
JP3458628B2 (en) Electron beam lithography system
JPS6218712A (en) Pattern forming method
JPH03159044A (en) Deflection electromagnet
JP3086238B2 (en) Charged particle beam exposure system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203