JPH057462B2 - - Google Patents

Info

Publication number
JPH057462B2
JPH057462B2 JP1820084A JP1820084A JPH057462B2 JP H057462 B2 JPH057462 B2 JP H057462B2 JP 1820084 A JP1820084 A JP 1820084A JP 1820084 A JP1820084 A JP 1820084A JP H057462 B2 JPH057462 B2 JP H057462B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
raw material
film
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1820084A
Other languages
Japanese (ja)
Other versions
JPS60162777A (en
Inventor
Osamu Kamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1820084A priority Critical patent/JPS60162777A/en
Publication of JPS60162777A publication Critical patent/JPS60162777A/en
Publication of JPH057462B2 publication Critical patent/JPH057462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (1) 技術分野 本発明は、プラズマCVD(Chemical Vapor
Deposition)装置に関する。
[Detailed Description of the Invention] (1) Technical Field The present invention relates to plasma CVD (Chemical Vapor CVD)
Deposition) device.

(2) 背景技術 近年、堆積膜、例えば非晶質珪素(アモルフア
スシリコン、以下a−Siと称する)等の薄膜等の
形成方法としてプラズマCVD法が注目されてい
る。
(2) Background Art In recent years, plasma CVD has attracted attention as a method for forming deposited films, such as thin films of amorphous silicon (hereinafter referred to as a-Si).

この方法は一般には、真空槽内を高真空に減圧
し、原料ガスを真空槽に供給した後、グロー放電
又はアーク放電により原料ガスを分解し、真空槽
内に配置された基体上に堆積膜を形成するもので
ある。例えばこの方法によりシラン(SiH4)ガ
スを原料ガスとして形成したa−Si膜は、a−Si
の禁止帯中に存在する局在準位が比較的少なく、
置換型不純物のドーピングにより価電子制御可能
となり、薄膜太陽電池、電子写真感光体の他、光
センサー等に使用されている。
In general, this method reduces the pressure inside the vacuum chamber to a high vacuum, supplies raw material gas to the vacuum chamber, decomposes the raw material gas by glow discharge or arc discharge, and deposits a film on a substrate placed in the vacuum chamber. It forms the For example, an a-Si film formed using silane (SiH 4 ) gas as a raw material gas by this method is
There are relatively few localized levels in the forbidden band of
Doping with substitutional impurities makes it possible to control valence electrons, and it is used in thin-film solar cells, electrophotographic photoreceptors, and optical sensors.

このようなプラズマCVD法に使用される装置
は、誘導結合型と容量結合型とに大別される。以
下、容量結合型のプラズマCVD装置を例として、
図面も参照しながらこの種の技術について説明す
る。
Devices used in such plasma CVD methods are broadly classified into inductively coupled types and capacitively coupled types. Below, we will take a capacitively coupled plasma CVD device as an example.
This type of technology will be explained with reference to the drawings.

第1図は、いわゆる容量結合型プラズマCVD
装置の典型的な例であり、その概略の構成を説明
するための縦断面図である。第1図のプラズマ
CVD装置は、真空ポンプ(不図示)等の排気系
により所望の圧力に保持することが可能な真空槽
3の中に平行に配置された1対の電極2,6を有
する。その一方の電極2には高周波が加えられ、
カソード電極2となる。他方の電極6は通常接地
されており、アノード電極6を形成する。シラン
等の原料ガスは、この二つの電極間の放電により
分解され、アノード電極6上に設置された基体5
の上にa−Si膜を形成する。このようなプラズマ
CVD装置における原料ガスは、通常第1図又は
第2図の装置に示すような方法により真空槽内に
導かれるのが一般的である。第1図の装置では、
その電極側の面に多数の小孔9′が開けられてい
るパイプ製の輪9をカソード電極2とアノード電
極6の間に設ける。原料ガスは、真空槽3の外部
に設けられたボンベ8より輪9に供給され、プラ
ズマ反応部(すなわち、対向する電極2,6が形
成する空間)に輪9の小孔9′から放出される。
この場合には、原料ガスがプラズマ反応部の外部
から中心部の方向(矢印方向)に吹き出される
為、両電極2,6間に反応ガスのよどみを生じ易
い。このことにより一部ガスの異常分解等が発生
するため、この方法で作つたa−Si膜は、膜の電
気的特性が劣る。又、反応ガスの濃度も不均一と
なる為膜厚の均一性も悪い。
Figure 1 shows the so-called capacitively coupled plasma CVD
It is a typical example of an apparatus, and is a longitudinal cross-sectional view for explaining the outline structure. Figure 1 plasma
The CVD apparatus has a pair of electrodes 2 and 6 arranged in parallel in a vacuum chamber 3 that can be maintained at a desired pressure by an exhaust system such as a vacuum pump (not shown). A high frequency is applied to one electrode 2,
This becomes the cathode electrode 2. The other electrode 6 is normally grounded and forms the anode electrode 6. The raw material gas such as silane is decomposed by the discharge between these two electrodes, and the substrate 5 placed on the anode electrode 6 is decomposed by the discharge between these two electrodes.
Form an a-Si film thereon. plasma like this
Raw material gas in a CVD apparatus is generally introduced into a vacuum chamber by a method as shown in the apparatus shown in FIG. 1 or 2. In the device shown in Figure 1,
A pipe ring 9 having a large number of small holes 9' formed on its electrode side surface is provided between the cathode electrode 2 and the anode electrode 6. The raw material gas is supplied to the ring 9 from a cylinder 8 provided outside the vacuum chamber 3, and is released from the small hole 9' of the ring 9 into the plasma reaction area (that is, the space formed by the opposing electrodes 2 and 6). Ru.
In this case, since the source gas is blown out from the outside of the plasma reaction section toward the center (in the direction of the arrow), stagnation of the reaction gas is likely to occur between the electrodes 2 and 6. This causes abnormal decomposition of some gases, so the a-Si film produced by this method has poor electrical properties. Furthermore, since the concentration of the reactant gas is also non-uniform, the uniformity of the film thickness is also poor.

一方、第2図のプラズマCVD装置では、カソ
ード電極12そのものを中空構造とし、これと対
向するアノード電極16側の面に多数の小孔29
を設け、これら小孔29より基体15が設置され
ているアノード電極16側に原料ガスを放出す
る。この場合には、原料ガスは、図の矢印の様に
流れる為、よどみがなく、かつ膜厚の均一性に優
れる特徴を有する。しかし、この方法では、プラ
ズマ中に供給される原料ガスがアノード電極16
上に設置された成膜されるべき基体16に向つて
直接吹出される。その為、この方法で作られたa
−Si膜には、未分解のシランガスが取り込まれて
おり、太陽電池や光センサー用等の半導体膜とし
ての電気的性質が損われる欠点を有する。
On the other hand, in the plasma CVD apparatus shown in FIG. 2, the cathode electrode 12 itself has a hollow structure, and the surface facing the anode electrode 16 has many small holes 29.
are provided, and raw material gas is released from these small holes 29 to the anode electrode 16 side where the base 15 is installed. In this case, since the raw material gas flows as shown by the arrow in the figure, there is no stagnation and the film has excellent uniformity in thickness. However, in this method, the raw material gas supplied into the plasma is
It is blown directly toward the substrate 16 placed above and on which a film is to be formed. Therefore, a made using this method
The -Si film has the disadvantage that undecomposed silane gas is incorporated, which impairs its electrical properties as a semiconductor film for use in solar cells, optical sensors, and the like.

(3) 発明の開示 本発明は、上記の事実に鑑み成されたものであ
つて、本発明の目的は上記の問題点を解消し、良
質な堆積膜を形成し得る新規なプラズマCVD装
置を提供することにある。
(3) Disclosure of the Invention The present invention has been made in view of the above facts, and an object of the present invention is to solve the above problems and provide a new plasma CVD apparatus capable of forming a deposited film of high quality. It is about providing.

本発明の上記目的は、以下の本発明によつて達
成される。
The above objects of the present invention are achieved by the following present invention.

減圧にし得る真空槽内に原料ガスを導入し、該
真空槽内に設けられた一対の電極間に放電を生じ
させ、該放電により該電極の一方に保持された基
体上に堆積膜を形成させるプラズマCVD装置に
おいて、前記基体が保持される電極を中空構造と
し且つ該電極の該基体が保持される面に1個以上
の孔を設け、該孔(以下、ガス放出孔と称する)
から前記原料ガスを前記真空槽内に放出するよう
にした事を特徴とするプラズマCVD装置。
A raw material gas is introduced into a vacuum chamber that can be reduced in pressure, a discharge is generated between a pair of electrodes provided in the vacuum chamber, and the discharge forms a deposited film on a substrate held by one of the electrodes. In a plasma CVD apparatus, the electrode on which the substrate is held has a hollow structure, and one or more holes are provided on the surface of the electrode on which the substrate is held, and the holes (hereinafter referred to as gas release holes) are provided.
A plasma CVD apparatus characterized in that the raw material gas is discharged into the vacuum chamber.

すなわち本発明の特長とするところは、上記の
如く基体の保持される電極から原料ガスを放出す
ることで、原料ガスのよどみや基体に原料ガスが
直接吹付けられる等の問題を解消し、膜質や膜厚
等の均一な良質な堆積膜を形成できるようにした
ことにある。
In other words, the feature of the present invention is that, as mentioned above, by releasing the raw material gas from the electrode on which the substrate is held, problems such as stagnation of the raw material gas and raw material gas being directly blown onto the substrate can be solved, and the film quality can be improved. The purpose of the present invention is to form a high-quality deposited film with uniform thickness and film thickness.

(4) 発明を実施するための最良の形態 以下、図面に基いて本発明を詳細に説明する。
尚、以下の説明では容量結合型の場合を示すが、
誘動結合型でも同様のことが言える。
(4) Best Mode for Carrying Out the Invention The present invention will be explained in detail below based on the drawings.
In addition, although the following explanation shows the case of capacitive coupling type,
The same can be said for the inductively coupled type.

第3図は、本発明に係るプラズマCVD装置の
一例であり、その概要を説明するための縦断面図
である。第3図において、真空槽23内には、一
対の電極22,26が設けられており、その形状
は平行円盤状とされている。電極22は、高周波
電源21に接続されており、カソード電極22と
なる。もう一方の電極26は、基体25(本例で
はドーナツ状)を保持する電極であり、接地され
てアノード電極26となる。基体25の保持用と
されたアノード電極26は、その内部が図の如く
中空構造とされており、原料ガスボンベ28に配
管されている。アノード電極26のカソード電極
22に対向する面の所望の部分、本例では基体2
5で覆われていない部分には複数のガス放出孔3
0が開けられており、原料ガスはこれらガス放出
孔30からカソード電極22に向つて放出され
る。カソード電極22に向つて矢印の如く拡散し
た原料ガスは、両電極間に生じているプラズマに
より十分に活性化され、基体25上に堆積膜を形
成する。加熱ヒーター27は、必ずしも設ける必
要はないが、本例における加熱ヒーター27は基
体25を加熱するという通常の目的の他に、原料
ガスを予熱する役目も成し、加熱ヒーター27を
設けることで基体25に堆積膜を形成する際の成
膜速度を高めることができる。
FIG. 3 is an example of a plasma CVD apparatus according to the present invention, and is a longitudinal cross-sectional view for explaining the outline thereof. In FIG. 3, a pair of electrodes 22 and 26 are provided in a vacuum chamber 23, and have a parallel disk shape. The electrode 22 is connected to the high frequency power source 21 and serves as a cathode electrode 22. The other electrode 26 is an electrode that holds the base 25 (donut-shaped in this example), and is grounded to become an anode electrode 26. The anode electrode 26 used to hold the base body 25 has a hollow structure inside as shown in the figure, and is piped to a source gas cylinder 28. A desired portion of the surface of the anode electrode 26 facing the cathode electrode 22, in this example, the base 2
There are multiple gas release holes 3 in the part not covered by 5.
0 are opened, and the source gas is discharged from these gas discharge holes 30 toward the cathode electrode 22. The raw material gas diffused toward the cathode electrode 22 as shown by the arrow is sufficiently activated by the plasma generated between the two electrodes, and forms a deposited film on the substrate 25. The heating heater 27 is not necessarily provided, but in addition to the normal purpose of heating the substrate 25, the heating heater 27 in this example also serves to preheat the raw material gas. The film formation rate when forming the deposited film on the film 25 can be increased.

本発明においては基体を保持する電極を中空構
造とし且つ該電極の基体が設置される面にガス放
出孔を設けることを必須とするが、基体を保持す
る電極は上記例の如くアノード電極としてもよい
し、カソード電極を基体保持用とすることも可能
である。電極への基体の保持は、上記例の如き場
合には電極上に置くだけでよいが、必要に応じて
ネジ等の固定手段によつて電極上に基体を固定す
ることも可能である。
In the present invention, it is essential that the electrode that holds the substrate has a hollow structure and that gas release holes are provided on the surface of the electrode where the substrate is installed, but the electrode that holds the substrate can also be used as an anode electrode as in the above example. It is also possible to use the cathode electrode for holding the substrate. To hold the substrate on the electrode, it is sufficient to simply place it on the electrode in the case like the above example, but it is also possible to fix the substrate on the electrode using fixing means such as screws, if necessary.

電極形状は円盤状、平板状等の所望の形状とし
得るが、上記例の如く平行に配設するのが好まし
い。ガス放出孔も所望の形状とし得るが、例えば
上記例の如く円形のものであれば、直径0.2〜5
mm、通常は直径0.5〜1.0mmのものを電極上の基体
が保持される以外の部分に、1個以上設けること
で、本発明の目的を十分に達成することが可能で
ある。ガス放出孔の配設位置は、上記例の如く電
極上の基体が保持される以外の部分とすることが
好ましい。
The electrodes may have any desired shape, such as a disc or a flat plate, but are preferably arranged in parallel as in the above example. The gas release hole can also have a desired shape, but for example, if it is circular like the above example, it has a diameter of 0.2 to 5.
The object of the present invention can be fully achieved by providing one or more electrodes with a diameter of 0.5 to 1.0 mm on a portion of the electrode other than where the substrate is held. It is preferable that the gas release holes be located at a location other than where the substrate on the electrode is held, as in the above example.

以下に実施例を示し本発明を更に詳細に説明す
る。
The present invention will be explained in more detail with reference to Examples below.

<実施例> 第3図に示したプラズマCVD装置を用いて、
ガラス製の角型板状基体にa−Si膜の成膜を行つ
た。尚、円盤状のアノード電極上のガス放出孔の
配列は、円盤状の直径方向に十字状に複数個配列
し、該放出孔で区切られた円盤上の4つの部分
に、上記角型板状基体を一度に4個おいて成膜し
た。原料ガスとしてはSiH4ガスを用い、ガス流
量および真空槽内の圧力をそれぞれ0.1〜2/
hr、0.1〜2Torrとし、基体温度を100〜350℃に
保ち13.56MHzの高周波電源によりカソード電極
上に高周波電圧を印加して成膜を行つたところ、
膜質、膜厚ともに均一で電気特性も優れたa−Si
膜が、従来に比し短時間で成膜された。
<Example> Using the plasma CVD apparatus shown in Fig. 3,
An a-Si film was formed on a square plate-shaped substrate made of glass. The gas release holes on the disk-shaped anode electrode are arranged in a cross shape in the diameter direction of the disk, and the square plate-shaped Films were formed using four substrates at a time. SiH 4 gas is used as the raw material gas, and the gas flow rate and the pressure in the vacuum chamber are adjusted to 0.1 to 2/2, respectively.
The film was formed by applying a high frequency voltage on the cathode electrode using a 13.56 MHz high frequency power supply while keeping the substrate temperature between 100 and 350°C.
a-Si with uniform film quality and thickness and excellent electrical properties
The film was formed in a shorter time than conventional methods.

以上に説明した如く本発明によれば、膜質や膜
厚が均一で電気特性等の諸特性にも優れたa−Si
等の堆積膜を形成することが可能であり、しかも
成膜速度も向上したプラズマCVD装置を提供し
得るものである。
As explained above, according to the present invention, the a-Si film has uniform film quality and thickness and is excellent in various properties such as electrical properties.
It is possible to provide a plasma CVD apparatus which is capable of forming deposited films such as the above, and which also has an improved film formation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、従来例のプラズマ
CVD装置の縦断面図、第3図は本発明に係るプ
ラズマCVD装置の一例の縦断面図である。 1,11,21……高周波電源、2,12,2
2……カソード電極、3,13,23……真空
槽、4,14,24……真空排気口、5,15,
25……基体、6,16,26……アノード電
極、7,17,27……加熱ヒーター、8,1
8,28……原料ガスボンベ、9……原料ガス放
出管、9′,29,30……ガス放出孔。
Figures 1 and 2 show conventional plasma
FIG. 3 is a vertical cross-sectional view of an example of a plasma CVD apparatus according to the present invention. 1, 11, 21...High frequency power supply, 2, 12, 2
2... Cathode electrode, 3, 13, 23... Vacuum chamber, 4, 14, 24... Vacuum exhaust port, 5, 15,
25...Substrate, 6,16,26...Anode electrode, 7,17,27...Heating heater, 8,1
8, 28... Raw material gas cylinder, 9... Raw material gas discharge pipe, 9', 29, 30... Gas discharge hole.

Claims (1)

【特許請求の範囲】[Claims] 1 減圧にし得る真空槽内に原料ガスを導入し、
該真空槽内に設けられた一対の電極間に放電を生
じさせ、該放電により該電極の一方に保持された
基体上に堆積膜を形成させるプラズマCVD装置
において、前記基体が保持される電極を中空構造
とし且つ該電極の該基体が保持される面に1個以
上の孔を設け、該孔から前記原料ガスを前記真空
槽内に放出するようにした事を特徴とするプラズ
マCVD装置。
1 Introduce the raw material gas into a vacuum chamber that can be reduced in pressure,
In a plasma CVD apparatus in which a discharge is generated between a pair of electrodes provided in the vacuum chamber, and a deposited film is formed on a substrate held by one of the electrodes by the discharge, the electrode on which the substrate is held is A plasma CVD apparatus characterized in that the electrode has a hollow structure, and one or more holes are provided in the surface of the electrode on which the base is held, and the raw material gas is discharged into the vacuum chamber from the hole.
JP1820084A 1984-02-06 1984-02-06 Plasma cvd apparatus Granted JPS60162777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1820084A JPS60162777A (en) 1984-02-06 1984-02-06 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1820084A JPS60162777A (en) 1984-02-06 1984-02-06 Plasma cvd apparatus

Publications (2)

Publication Number Publication Date
JPS60162777A JPS60162777A (en) 1985-08-24
JPH057462B2 true JPH057462B2 (en) 1993-01-28

Family

ID=11964990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1820084A Granted JPS60162777A (en) 1984-02-06 1984-02-06 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS60162777A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979467A (en) * 1988-05-06 1990-12-25 Fujitsu Limited Thin film formation apparatus
JP2581487B2 (en) * 1992-06-15 1997-02-12 中外炉工業株式会社 Film forming method in plasma film forming apparatus
JP6123390B2 (en) * 2013-03-15 2017-05-10 東洋製罐株式会社 Film formation by high frequency plasma CVD

Also Published As

Publication number Publication date
JPS60162777A (en) 1985-08-24

Similar Documents

Publication Publication Date Title
US8883029B2 (en) Method of making a gas distribution member for a plasma processing chamber
US4438188A (en) Method for producing photosensitive film for electrophotography
JPH0594950A (en) Method for minimizing particle generation in design of reaction chamber and chemical vapor deposition reactor
JPS62152171A (en) Thin-film transistor
US4545328A (en) Plasma vapor deposition film forming apparatus
JPS6248753B2 (en)
JPH057462B2 (en)
JPS6010618A (en) Plasma cvd apparatus
JPS6126772A (en) Formation of accumulated film
JP3038524B2 (en) Semiconductor manufacturing equipment
US20030019858A1 (en) Ceramic heater with thermal pipe for improving temperature uniformity, efficiency and robustness and manufacturing method
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP2630089B2 (en) Microwave plasma processing equipment
JPS62177181A (en) Production of electrophotographic sensitive body
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPH041730Y2 (en)
JP2968085B2 (en) Vapor phase growth equipment
JP2891991B1 (en) Plasma CVD equipment
JPH058268B2 (en)
JPS60221578A (en) Plasma cvd device
JPH0686664B2 (en) Deposited film forming device by glow discharge method
JPS642192B2 (en)
JPH0629231A (en) Method and apparatus for glow discharge
JPH05102041A (en) Plasma cvd apparatus