JPH0573938B2 - - Google Patents

Info

Publication number
JPH0573938B2
JPH0573938B2 JP21709384A JP21709384A JPH0573938B2 JP H0573938 B2 JPH0573938 B2 JP H0573938B2 JP 21709384 A JP21709384 A JP 21709384A JP 21709384 A JP21709384 A JP 21709384A JP H0573938 B2 JPH0573938 B2 JP H0573938B2
Authority
JP
Japan
Prior art keywords
shaft
continuously variable
variable transmission
input
transmission mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21709384A
Other languages
Japanese (ja)
Other versions
JPS6196254A (en
Inventor
Masahiko Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP21709384A priority Critical patent/JPS6196254A/en
Publication of JPS6196254A publication Critical patent/JPS6196254A/en
Publication of JPH0573938B2 publication Critical patent/JPH0573938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/065Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the friction or endless flexible member type

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Of Transmissions (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はVベルト式無段変速機構を有した車両
用無段変速機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a continuously variable transmission mechanism for a vehicle having a V-belt type continuously variable transmission mechanism.

[従来の技術] Vベルト式無段変速機構は、流体伝動装置(流
体継手、トルクコンバータ等)を発進装置とし、
前後進切換機構と組合わせて車両用無段変速機に
用いられている。この種の変速機では、Vベルト
式無段変速機構より入力側に流体伝動装置を配置
すると、変速機構が車軸側に直結した連結関係に
なるため、車両の急停止等で車軸の回転が急に止
まると、トルク比が最大となる位置へのダウンシ
フトが成されないままに変速機構のシーブも停止
し、再発進時の急激な変速機構のダウンシフトに
よるシヨツクと振動とが生じるという問題があ
る。そこで、第3図に示す如く、Vベルト式無段
変速機構200の出力側に流体伝動装置300を
配置する方式が提案されており、これでは車両停
止後も流体伝動装置による動力の遮断でVベルト
260が回転し続けるため、常に確実にトルク比
の最大となる位置までダウンシフトがなされる利
点があり、また急激なシーブの停止によるVベル
トとのスリツプを回避できるためVベルト260
の耐久性の面でも有利である。
[Prior art] A V-belt continuously variable transmission mechanism uses a fluid transmission device (hydraulic coupling, torque converter, etc.) as a starting device,
It is used in continuously variable transmissions for vehicles in combination with a forward/reverse switching mechanism. In this type of transmission, when the fluid transmission device is placed on the input side of the V-belt continuously variable transmission mechanism, the transmission mechanism is directly connected to the axle, so the axle may suddenly rotate when the vehicle suddenly stops. If the vehicle stops, the sheave of the transmission mechanism will also stop without being able to downshift to the position where the torque ratio is maximum, causing shock and vibration due to the sudden downshift of the transmission mechanism when restarting. . Therefore, as shown in FIG. 3, a method has been proposed in which a fluid transmission device 300 is disposed on the output side of the V-belt type continuously variable transmission mechanism 200. In this method, even after the vehicle has stopped, the fluid transmission device can cut off the power and cause the V-belt type continuously variable transmission mechanism 200 to Since the belt 260 continues to rotate, there is an advantage that the downshift can always be performed reliably to the position where the torque ratio is maximum, and slippage with the V belt due to sudden stoppage of the sheave can be avoided, so the V belt 260
It is also advantageous in terms of durability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記のような従来の配置では、前
後進切換機構400がVベルト式無段変速機構2
00の入力側に配設されているため、、前後進の
切換時に回転中のVベルト式無段変速機構200
が逆転する動作を生じ、シフトシヨツクが大きく
なるばかりでなく、前記機構200の慣性により
逆転までのタイムラグも大きい。このような問題
は、理屈の上では、前後進切換機構400をVベ
ルト式無段変速機構200の出力側に移設すれば
当然に解決できるはずであるが、実際には、Vベ
ルト式無段変速機構200の出力側に配置された
流体伝動装置と直列に前後進切換機構を配設する
ことは、軸方向、径方向スペースの関係で、変速
機構の外形寸法の拡大なくしては不可能である。
However, in the conventional arrangement as described above, the forward/reverse switching mechanism 400 is connected to the V-belt continuously variable transmission mechanism 2.
00 input side, the V-belt type continuously variable transmission mechanism 200 is rotated when switching between forward and forward travel.
This causes a reverse operation, which not only increases the shift shock but also increases the time lag until the reverse rotation occurs due to the inertia of the mechanism 200. In theory, this kind of problem should be solved by moving the forward/reverse switching mechanism 400 to the output side of the V-belt continuously variable transmission mechanism 200, but in reality, the V-belt continuously variable transmission mechanism 200 Due to the axial and radial space constraints, it is impossible to arrange a forward/reverse switching mechanism in series with the fluid transmission device disposed on the output side of the transmission mechanism 200 without enlarging the external dimensions of the transmission mechanism. be.

本発明は、Vベルト式無段変速機構の出力側の
軸配置を工夫して流体伝動装置と前後進切換機構
をVベルト式無段変速機構を挟むように配置しな
がら動力伝達経路上は両者をVベルト式無段変速
機構の出力側に互いに直列した連結関係に置くこ
とにより、上記問題点を解決して、従来のものよ
りむしろコンパクト化した車両用無段変速機構を
提供することを目的とする。
In the present invention, the shaft arrangement on the output side of the V-belt continuously variable transmission mechanism is devised so that the fluid transmission device and the forward/reverse switching mechanism are arranged so as to sandwich the V-belt continuously variable transmission mechanism. The purpose of the present invention is to provide a continuously variable transmission mechanism for a vehicle that is more compact than the conventional one by solving the above-mentioned problems by arranging the V-belt type continuously variable transmission mechanism in series connection with each other on the output side of the V-belt type continuously variable transmission mechanism. shall be.

〔問題点の解決するための手段〕[Means for solving problems]

上記の目的を達成するため本発明は、動力源に
連なる入力軸と、該入力軸と平行に配置された互
いに同心の外軸及び内軸と、前記入力軸と前記外
軸とを連結するVベルト式無段変速機構と、入力
要素を前記外軸に連結し、出力要素を前記内軸に
連結して、前記内軸及び外軸の軸端に配置された
流体伝動装置と、入力要素の一方を前記外軸に連
結し、入力要素の他方を前記内軸に連結して、前
記Vベルト式無段変速機構を挟む前記流体伝動装
置配置側とは軸方向反対側の前記内軸及び外軸の
軸端に配置された前後進切換機構とを備えること
を特徴とする。
In order to achieve the above object, the present invention provides an input shaft connected to a power source, an outer shaft and an inner shaft concentric with each other arranged parallel to the input shaft, and a V-shaped shaft connecting the input shaft and the outer shaft. a belt-type continuously variable transmission mechanism; a fluid transmission device that connects an input element to the outer shaft; an output element to the inner shaft; and a fluid transmission device disposed at the shaft ends of the inner shaft and the outer shaft; One of the input elements is connected to the outer shaft, and the other input element is connected to the inner shaft, and the inner shaft and the outer shaft are connected to the inner shaft and the outer shaft on the opposite side in the axial direction from the side where the fluid transmission device is disposed, sandwiching the V-belt type continuously variable transmission mechanism. It is characterized by comprising a forward/reverse switching mechanism disposed at the end of the shaft.

〔発明の作用及び効果〕[Operation and effect of the invention]

上記構成よりなる本発明によれば、Vベルト式
無段変速機構の出力側への前後進切換機構の配置
により、変速機構のシーブ及びベルトの回転方向
が前後進に関わりなく一方向化するため、前後進
の切換時のシフトシヨツクを軽減し、タイムラグ
を小さくすることができる。しかも、流体伝動装
置の軸端部への配置により、その変速機への着脱
も容易となり、変速機外形のコンパクト化も可能
となる。
According to the present invention having the above configuration, by arranging the forward/reverse switching mechanism on the output side of the V-belt type continuously variable transmission mechanism, the direction of rotation of the sheave and belt of the transmission mechanism becomes unidirectional regardless of forward/reverse movement. , it is possible to reduce the shift shock and time lag when switching between forward and reverse directions. Furthermore, by arranging the fluid transmission device at the end of the shaft, it can be easily attached to and removed from the transmission, and the outer shape of the transmission can be made more compact.

[実施例] つぎに本発明の車両用無段変速機を図に示す一
実施例に基づき説明する。
[Embodiment] Next, a continuously variable transmission for a vehicle according to the present invention will be described based on an embodiment shown in the drawings.

第1図は本発明が適用された車両用無段変速機
構の骨格図、第2図はその断面図を示す。
FIG. 1 is a skeletal diagram of a continuously variable transmission mechanism for a vehicle to which the present invention is applied, and FIG. 2 is a sectional view thereof.

車両用無段変速機100は、Vベルト式無段変
速機構200と、流体伝動装置である流体継手3
00と、前記Vベルト式無段変速機構200と流
体継手300とを入力とする前後進切換機構40
0と、デイフアレンシヤル機構500と、前後進
切換機構400からデイフアレンシヤル機構50
0に動力を伝達する伝動機構600と、上記を内
包する変速機ケース700と、図示しない油圧制
御装置とからなる。
The continuously variable transmission 100 for a vehicle includes a V-belt type continuously variable transmission mechanism 200 and a fluid coupling 3 which is a fluid transmission device.
00, the V-belt type continuously variable transmission mechanism 200, and the fluid coupling 300 as inputs.
0, the differential mechanism 500, and the differential mechanism 50 from the forward/reverse switching mechanism 400.
0, a transmission case 700 containing the above, and a hydraulic control device (not shown).

Vベルト式無段変速機構200は、動力源とし
てのエンジン10のクランク軸211及びエンジ
ンスタート用のスタータホイール212を介して
車両用無段変速機100内にエンジンの動力を導
入する入力軸210と、該入力軸210に一体に
設けられた固定フランジ221と入力軸210の
外周で摺動可能に設けられ、油圧アクチユエータ
222により作動される可動フランジ224から
なる入力シーブ220と、前記入力軸210に対
して平行位置に設けられ、流体継手300の入力
軸とVベルト式無段変速機構200の出力軸とを
兼ねる外軸240と、該外軸240に一体に設け
られた固定フランジ251と外軸240の外周で
摺動可能に設けられ、油圧アクチユエータ252
及び付勢手段253により作動する可動フランジ
254からなる出力シーブ250と、入力シーブ
220より出力シーブ250に動力の伝達を行う
Vベルト260とからなる。
The V-belt type continuously variable transmission mechanism 200 includes an input shaft 210 that introduces engine power into the vehicle continuously variable transmission 100 via a crankshaft 211 of the engine 10 as a power source and a starter wheel 212 for starting the engine. , an input sheave 220 consisting of a fixed flange 221 integrally provided on the input shaft 210 and a movable flange 224 slidably provided on the outer periphery of the input shaft 210 and actuated by a hydraulic actuator 222; An outer shaft 240 which is provided in a parallel position to the fluid coupling 300 and serves as the input shaft of the fluid coupling 300 and an output shaft of the V-belt continuously variable transmission mechanism 200, a fixed flange 251 provided integrally with the outer shaft 240, and an outer shaft The hydraulic actuator 252 is slidably provided on the outer periphery of the hydraulic actuator 240 .
The output sheave 250 includes a movable flange 254 operated by a biasing means 253, and a V-belt 260 that transmits power from the input sheave 220 to the output sheave 250.

流体継手300は、外軸240を入力とし、外
軸240内に回転自在に配設された内軸310に
出力する。流体継手300は外軸240及び内軸
310の後方(エンジン10の反対側)端部にス
プライン嵌合にて装着され、内部に入力要素とし
てのポンプ羽根車331を有する流体伝動ケース
330と、出力要素としてのタービン羽根車34
1を有する出力伝動部340とからなる。流体伝
動ケース330は外軸240の外周にスプライン
嵌合するフランジ部332とポンプ羽根車331
を保持するポンプカバー333と、内部にタービ
ン羽根車341を内包するタービンカバー334
と、タービンカバー334の内周に固着されたベ
アリング支持カバー335とからなり、出力伝動
部340はタービン羽根車341を保持するター
ビンシエル342と、内軸310の外周でスプラ
イン嵌合されるとともにタービンシエル342と
固着されるフランジ部343Aを有し、タービン
羽根車341の出力を流体伝動ケース330の外
部に伝達する動力伝達部材343とからなる。外
軸240は後方がフランジ部332と出力シーブ
250の間の外周にてローラーベアリング351
を介して変速機ケース700の支持壁350に支
持され前方が変速機ケース700の支持部材35
2の外周と固定フランジ251の内周との間にロ
ーラーベアリング353を介して支持されてい
る。これにより外軸240にかかるVベルト式無
段変速機構200の軸反力は流体継手300にか
からず、また流体継手300は外軸240を支持
する支持壁350の外方とされるため流体継手3
00のみの着脱が容易に行うことができる。
The fluid coupling 300 receives an input from the outer shaft 240 and outputs an output to an inner shaft 310 rotatably disposed within the outer shaft 240. The fluid coupling 300 is attached to the rear (opposite side of the engine 10) ends of the outer shaft 240 and the inner shaft 310 by spline fitting, and includes a fluid transmission case 330 having a pump impeller 331 as an input element therein, and an output Turbine impeller 34 as an element
1. The fluid transmission case 330 includes a flange portion 332 spline-fitted to the outer periphery of the outer shaft 240 and a pump impeller 331.
a pump cover 333 that holds a turbine, and a turbine cover 334 that includes a turbine impeller 341 therein.
and a bearing support cover 335 fixed to the inner periphery of the turbine cover 334.The output transmission part 340 is spline-fitted to the turbine shell 342 that holds the turbine impeller 341 and the outer periphery of the inner shaft 310, and The power transmission member 343 has a flange portion 343A fixed to the shell 342 and transmits the output of the turbine impeller 341 to the outside of the fluid transmission case 330. The outer shaft 240 has a roller bearing 351 on the outer periphery between the flange portion 332 and the output sheave 250 at the rear.
The front side is supported by the support wall 350 of the transmission case 700 via the support member 35 of the transmission case 700.
The roller bearing 353 is supported between the outer circumference of the fixed flange 251 and the inner circumference of the fixed flange 251. As a result, the shaft reaction force of the V-belt type continuously variable transmission mechanism 200 applied to the outer shaft 240 is not applied to the fluid coupling 300, and since the fluid coupling 300 is located outside the support wall 350 that supports the outer shaft 240, the fluid Fitting 3
00 can be easily attached and detached.

前後進切換機構400はVベルト式無段変速機
構200を挟む流体伝動装置配置側とは軸方向反
対側の内軸310及び外軸240の軸端に設けら
れ、内軸310と一体に設けられた本例において
入力要素の一方を構成するサンギアSg、該サン
ギアSgと噛合するピニオンギアPg、該ピニオン
ギアPgと噛合するリングギアRg及びピニオンギ
アPgを回転自在に支持し、本例において入力要
素の他方を構成するピニオンキヤリアPcからな
る遊星歯車装置410と、油圧アクチユエータ4
20の作動により外軸240とピニオンキヤリア
Pcとの係合および解放を行なう多板クラツチC
1と、油圧アクチユエータ430の作動によりリ
ングギアRgと変速機ケース700との係合およ
び解放を行なう多板ブレーキB1とからなり、リ
ングギアRgはフランジ441を有する出力ボス
部440に連結されている。
The forward/reverse switching mechanism 400 is provided at the shaft ends of the inner shaft 310 and the outer shaft 240 on the opposite side in the axial direction from the side where the fluid transmission device is arranged, sandwiching the V-belt type continuously variable transmission mechanism 200, and is provided integrally with the inner shaft 310. In this example, a sun gear Sg constituting one of the input elements, a pinion gear Pg that meshes with the sun gear Sg, a ring gear Rg and a pinion gear Pg that mesh with the pinion gear Pg are rotatably supported, and in this example, the input element A planetary gear device 410 consisting of a pinion carrier Pc constituting the other side, and a hydraulic actuator 4
20, the outer shaft 240 and pinion carrier
Multi-plate clutch C that engages and releases PC
1, and a multi-disc brake B1 that engages and releases the ring gear Rg and the transmission case 700 through the operation of a hydraulic actuator 430, and the ring gear Rg is connected to an output boss portion 440 having a flange 441. .

伝達機構300は出力ボス部440の外周にス
プライン嵌合された入力歯車610と、該入力歯
車610と噛合し、デイフアレンシヤル機構50
0に出力する出力歯車620とからなる。
The transmission mechanism 300 has an input gear 610 that is spline-fitted to the outer periphery of the output boss portion 440 and meshes with the input gear 610.
and an output gear 620 that outputs zero.

デイフアレンシヤル機構500は、出力歯車6
20と噛合するデイフアレンシヤルギア510
と、該デイフアレンシヤルギア510に締結して
設けられたデフケース511に装着されたデイフ
アレンシヤルピニオンシヤフト520と、該デイ
フアレンシヤルピニオンシヤフト520の外周で
回転自在に取付けられたデイフアレンシヤルピニ
オン530と、該デイフアレンシヤルピニオン5
30に噛合し、一方側駆動軸541および他方側
駆動軸551に動力を伝達するデイフアレンシヤ
ルサイドギア540および550とからなる。
The differential mechanism 500 includes an output gear 6
Differential gear 510 meshing with 20
, a differential pinion shaft 520 attached to a differential case 511 fastened to the differential gear 510, and a differential rotatably attached to the outer periphery of the differential pinion shaft 520. an allencial pinion 530 and the differential pinion 5
30 and transmit power to one side drive shaft 541 and the other side drive shaft 551.

変速機ケース700は、スタータホイール21
2、伝達機構600、デイフアレンシヤル機構5
00の図示右側を内包し、入力歯車610、出力
歯車620、デフケース511の図示右側を回転
自在に支持する前部ケース710と、該前記ケー
ス710に締結して設けられ、Vベルト式無段変
速機構200と前後進切換機構400及びデイフ
アレンシヤル機構500の図示左側を内包し、入
力軸210、外軸240のそれぞれの中間部を回
転自在に支持する無段変速機前部ケース720
と、該無段変速機前部ケース720に締結して設
けられ、入力歯車610、出力歯車620の図示
左側を回転自在に支持する内部サポート730
と、前記無段変速機構前部ケース720に締結し
て設けられ、入力軸210と外軸240の図示左
側と流体伝動ケース330を回転自在に支持する
無段変速機後部ケース740と、該無段変速機後
部ケース740に締結して設けられ、内部にVベ
ルト260への潤滑油供給路を有する後部カバー
750と、前記車両用無段変速機後部ケース74
0に締結して設けられ、流体伝動ケース330を
内包する流体継手ケース760とからなる。
The transmission case 700 includes the starter wheel 21
2. Transmission mechanism 600, differential mechanism 5
A front case 710 that encloses the right side of 00 in the figure and rotatably supports the right side of the input gear 610, output gear 620, and differential case 511; A continuously variable transmission front case 720 encloses the left side of the mechanism 200, the forward/reverse switching mechanism 400, and the differential mechanism 500, and rotatably supports the intermediate portions of the input shaft 210 and the outer shaft 240.
and an internal support 730 that is fastened to the continuously variable transmission front case 720 and rotatably supports the left side of the input gear 610 and the output gear 620 in the drawing.
a continuously variable transmission rear case 740 that is fastened to the continuously variable transmission front case 720 and rotatably supports the input shaft 210, the left side of the outer shaft 240, and the fluid transmission case 330; a rear cover 750 that is fastened to the rear case 740 of the continuously variable transmission and has a lubricant supply path to the V-belt 260 therein; and a rear cover 750 that is fastened to the rear case 740 of the continuously variable transmission for a vehicle.
0 and a fluid coupling case 760 that includes a fluid transmission case 330.

この車両用無段変速機100は、前進時、前記
多板クラツチC1を係合、前記多板ブレーキB1
を解放することにより、流体継手300により伝
動時、トルクの一部はピニオンキヤリアPc、ピ
ニオンギアPgからリングギアRgを介して出力ボ
ス部440に伝達され、トルクの他の一部はピニ
オンギアPgよりリングギアRgに伝達されるトル
クの反力を受けるため、サンギアSgおよび流体
継手300を介して再びピニオンキヤリアPcに
伝達されてトルク循環が行われる。これにより通
常、流体伝動装置は流体を介して動力伝達がなさ
れるため生じる動力損失は、流体継手300を介
して伝動されるトルクについてのみ生じ、ピニオ
ンギアPgから直接リングギアRgに伝達されるト
ルクについては、流体を介することによる動力の
損失は生じない。また流体継手300を介して伝
達されるトルクが全伝達トルクの一部であること
から、流体継手300の伝達トルク容量が小さく
て良い。したがつて外形寸法の小さい流体伝動装
置を用いた場合でも大きいトルクを伝達でき、車
両用無段変速機100の外形寸法のコンパクト化
が可能となる。さらに車両が急停止し、遊星歯車
装置410のリングギアRgが停止した時も、外
軸240は流体継手300をスリツプさせながら
回転できるので、Vベルト式無段変速機構200
はトルク比が最大になる点まで充分に回転でき、
再発進時に最大トルク比でスムーズに発進するこ
とが可能である。さらに流体継手など流体伝動装
置は高速になるほどスリツプ率が小さくなるの
で、、前記流体継手300を介して伝達されるト
ルクが全伝達トルクの一部であるが、直結クラツ
チ(ロツクアツプクラツチ)を用いずとも、中高
速の定常走行時に高い動力伝達効率が達成でき、
燃費の向上が図れる。
When moving forward, this continuously variable transmission 100 for a vehicle engages the multi-disc clutch C1 and engages the multi-disc brake B1.
By releasing , when transmission is performed by the fluid coupling 300, part of the torque is transmitted from the pinion carrier Pc and pinion gear Pg to the output boss part 440 via the ring gear Rg, and the other part of the torque is transmitted to the pinion gear Pg. In order to receive the reaction force of the torque transmitted to the ring gear Rg, the torque is transmitted again to the pinion carrier Pc via the sun gear Sg and the fluid coupling 300, and the torque is circulated. As a result, in a fluid transmission device, power is normally transmitted through fluid, so the power loss that occurs occurs only for the torque transmitted via the fluid coupling 300, and the torque that is transmitted directly from the pinion gear Pg to the ring gear Rg. In this case, there is no loss of power due to the passage of fluid. Furthermore, since the torque transmitted via the fluid coupling 300 is part of the total transmission torque, the transmission torque capacity of the fluid coupling 300 may be small. Therefore, even when a fluid transmission device with a small external size is used, a large torque can be transmitted, and the external size of the continuously variable transmission 100 for a vehicle can be made compact. Furthermore, even when the vehicle suddenly stops and the ring gear Rg of the planetary gear unit 410 stops, the outer shaft 240 can rotate while slipping the fluid coupling 300, so the V-belt continuously variable transmission mechanism 200 can rotate.
can rotate sufficiently to the point where the torque ratio is maximum,
When restarting, it is possible to start smoothly with the maximum torque ratio. Furthermore, the slip rate of fluid transmission devices such as fluid couplings decreases as the speed increases. Naturally, high power transmission efficiency can be achieved during steady driving at medium and high speeds,
Fuel efficiency can be improved.

後進時、前記多板クラツチC1を解放し、前記
多板ブレーキB1を係合することにより、流体継
手300と遊星歯車装置410が直列し、ピニオ
ンキヤリアPcを固定させリバースを達成する。
本実施例では後進時にVベルト式無段変速機構2
00の減速比を最小減速比付近に設定し、流体継
手300の伝達トルクを押さえ、遊星歯車装置4
10で減速することもより最適な後退比を得てい
る。
When moving backward, by releasing the multi-plate clutch C1 and engaging the multi-disc brake B1, the fluid coupling 300 and the planetary gear set 410 are connected in series, fixing the pinion carrier Pc and achieving reverse.
In this embodiment, when moving backward, the V-belt type continuously variable transmission mechanism 2
The reduction ratio of 00 is set near the minimum reduction ratio, the transmission torque of the fluid coupling 300 is suppressed, and the planetary gear device 4
Decelerating at 10 also provides a more optimal reverse ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の車両用無段変速機を示す骨格
図、第2図は第1図に示す車両用無段変速機の断
面図、第3図は従来の車両用無段変速機を示す骨
格図である。 10…エンジン(動力源)、100…車両用無
段変速機、200…Vベルト式無段変速機構、2
10…入力軸、240…外軸、300…流体継手
(流体伝動装置)、310…内軸、331…ポンプ
羽根車(入力要素)、341…タービン羽根車
(出力要素)、400…前後進切換機構、Sg…サ
ンギア(入力要素の一方)、Pc…ピニオンキヤリ
ア(入力要素の他方)。
FIG. 1 is a skeletal diagram showing the continuously variable transmission for a vehicle according to the present invention, FIG. 2 is a sectional view of the continuously variable transmission for a vehicle shown in FIG. 1, and FIG. 3 is a diagram showing a conventional continuously variable transmission for a vehicle. FIG. 10...Engine (power source), 100...Vehicle continuously variable transmission, 200...V-belt type continuously variable transmission mechanism, 2
DESCRIPTION OF SYMBOLS 10... Input shaft, 240... Outer shaft, 300... Fluid coupling (fluid transmission device), 310... Inner shaft, 331... Pump impeller (input element), 341... Turbine impeller (output element), 400... Forward/forward switching Mechanism, Sg...Sun gear (one of the input elements), Pc...Pinion carrier (the other input element).

Claims (1)

【特許請求の範囲】 1 動力源に連なる入力軸と、 該入力軸と平行に配置された互いに同心の外軸
及び内軸と、 前記入力軸と前記外軸とを連結するVベルト式
無段変速機構と、 入力要素を前記外軸に連結し、出力要素を前記
内軸に連結して、前記内軸及び外軸の軸端に配置
された流体伝動装置と、 入力要素の一方を前記外軸に連結し、入力要素
の他方を前記内軸に連結して、前記Vベルト式無
段変速機構を挟む前記流体伝動装置配置側とは軸
方向反対側の前記内軸及び外軸の軸端に配置され
た前後進切換機構と を備えることを特徴とする車両用無段変速機構。
[Claims] 1. An input shaft connected to a power source, an outer shaft and an inner shaft concentric with each other arranged parallel to the input shaft, and a V-belt type stepless that connects the input shaft and the outer shaft. a transmission mechanism; a fluid transmission device that connects an input element to the outer shaft, an output element to the inner shaft, and is disposed at the shaft ends of the inner shaft and the outer shaft; one of the input elements is connected to the outer shaft; shaft ends of the inner shaft and the outer shaft that are connected to the inner shaft and the other input element is connected to the inner shaft, and are located on the opposite side in the axial direction from the side where the fluid transmission device is arranged, sandwiching the V-belt type continuously variable transmission mechanism. A continuously variable transmission mechanism for a vehicle, comprising a forward/reverse switching mechanism arranged at
JP21709384A 1984-10-15 1984-10-15 Vehicle stepless speed change gear Granted JPS6196254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21709384A JPS6196254A (en) 1984-10-15 1984-10-15 Vehicle stepless speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21709384A JPS6196254A (en) 1984-10-15 1984-10-15 Vehicle stepless speed change gear

Publications (2)

Publication Number Publication Date
JPS6196254A JPS6196254A (en) 1986-05-14
JPH0573938B2 true JPH0573938B2 (en) 1993-10-15

Family

ID=16698727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21709384A Granted JPS6196254A (en) 1984-10-15 1984-10-15 Vehicle stepless speed change gear

Country Status (1)

Country Link
JP (1) JPS6196254A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682536B2 (en) * 2004-05-26 2011-05-11 トヨタ自動車株式会社 Transmission device having a belt type continuously variable transmission

Also Published As

Publication number Publication date
JPS6196254A (en) 1986-05-14

Similar Documents

Publication Publication Date Title
EP0943841B1 (en) All wheel drive continuously variable transmission having dual mode operation
EP0828094B1 (en) A continually variable transmission
GB2144814A (en) Driving device including continuously variable transmission
US4852427A (en) Transmission
US4484493A (en) Cone pulley V-belt continuously variable transmission
JP3507094B2 (en) Transmission forward / backward switching device
US5888161A (en) All wheel drive continuously variable transmission having dual mode operation
EP0943839B1 (en) Dual mode continuously variable transmission for a all wheel drive vehicle
US5716298A (en) Multiple-speed automatic transmission for an automotive vehicle
US5931760A (en) Dual mode continuously variable transmission having multiple torque input paths
EP0943840B1 (en) All wheel drive continuously variable transmission having dual mode operation
US5261861A (en) Five-speed transaxle for automotive vehicles
US3277744A (en) Transmission
US4074592A (en) Direct drive transmission with hydraulically actuated forward and reverse clutches
JPH0573938B2 (en)
US5800304A (en) Multiple-speed automatic transmission for an automotive vehicle
JPH04248047A (en) Power transmitting device for automatic transmission
JPH0250337B2 (en)
JPH0132378B2 (en)
JPH0557927B2 (en)
KR0183222B1 (en) Infinite variable-speed drive
JPH0648049B2 (en) Automatic transmission for vehicle
JPH0621633B2 (en) Continuously variable transmission for vehicles
JPH048660B2 (en)
JPH0547894Y2 (en)