JPH0573147B2 - - Google Patents

Info

Publication number
JPH0573147B2
JPH0573147B2 JP7088886A JP7088886A JPH0573147B2 JP H0573147 B2 JPH0573147 B2 JP H0573147B2 JP 7088886 A JP7088886 A JP 7088886A JP 7088886 A JP7088886 A JP 7088886A JP H0573147 B2 JPH0573147 B2 JP H0573147B2
Authority
JP
Japan
Prior art keywords
powder
carbon black
coating
fluororesin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7088886A
Other languages
Japanese (ja)
Other versions
JPS62227967A (en
Inventor
Yoshisuke Ishii
Takao Nishio
Hiroshi Katabami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd, Ricoh Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP7088886A priority Critical patent/JPS62227967A/en
Publication of JPS62227967A publication Critical patent/JPS62227967A/en
Publication of JPH0573147B2 publication Critical patent/JPH0573147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • G03G15/2057Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating relating to the chemical composition of the heat element and layers thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は非帯電性であつて且つ耐摩耗性、非粘
着性に優れたふつ素樹脂塗膜を形成するための粉
体塗料に関する。 ふつ素樹脂は表面エネルギーが低く、非粘着性
に優れているため、ふつ素樹脂の粉体塗料は例え
ば、オフセツト防止機能が要求される電子複写機
の加熱定着ローラーの被覆や食品、プラスチツク
等の成形ローラの被覆、あるいはホツパーやタン
クのライニング等に多く利用されている。しかし
ながらこのような用途において、ふつ素樹脂の塗
膜は1017オーム以上という高い表面抵抗を有する
ため摩擦によつて帯電し易いという問題があり、
その改善がもとめられている。 例えば、電子複写機の定着装置においては、金
属芯体表面にふつ素樹脂を被覆した加熱定着ロー
ラーと金属芯体表面にシリコーンゴムを被覆した
加圧ローラーの組合せが多く利用されているが、
シリコーンゴムや複写機との摩擦により静電気が
発生し、その結果帯電した定着ローラー表面に複
写紙上の未定着トナーが吸引されて定着ローラー
表面が汚れ、オフセツトが発生する。又成形ロー
ラー等においては空気中の塵あいを吸着して、処
理物がそれによつて汚染されるというトラブルが
発生する。 従来、上記のような塗膜の帯電を防止するため
ふつ素樹脂粉体塗料にカーボンブラツクを配合す
ることが行われているが、これを十分な帯電防止
効果を得るために好ましい108オーム以下の表面
抵抗とするに必要な配合比率(5重量%以上)迄
添加すると、樹脂の見かけの溶融粘度が極めて高
くなるため塗膜の形成性が悪化し、平滑でピンホ
ールの無い塗膜を得ることが困難となる他、塗膜
面の非粘着性が低下し、又耐摩耗性も十分でない
という問題があつた。 更に、ふつ素樹脂粉末とカーボンブラツクとを
ドライブレンドした粉体塗料では静電噴霧塗装時
にふつ素樹脂粉末とカーボンブラツクとが分離し
易い上、樹脂粉末とカーボンブラツクとの間で放
電が起こり易くカーボンブラツクの添加量が1%
以上の場合には爆発の危険さえある。 本発明は上記従来の問題点を解決した非帯電性
のふつ素樹脂塗膜を形成するためのふつ素樹脂粉
体塗料を提供する事を目的とするものである。 本発明のふつ素樹脂粉体塗料は、平均粒径2−
150ミクロンの熱流動性ふつ素樹脂の焼結粉末の
粒子内に全重量に対して1−3重量%の導電性カ
ーボンブラツクが均一に分散されていると基に、
全重量に対して少なくとも1重量%の炭素繊維粉
末が該粒子内又は外に均一に分散されており、該
導電性カーボンブラツクと該炭素繊維粉末の合計
割合が10重量%以下であることを特徴とする。 本発明の成分であるふつ素樹脂は熱流動性ふつ
素樹脂であつて、非熱流動性ふつ素樹脂である
PTFE等は除外される。使用し得る熱流動性ふつ
素樹脂としては、テトラフルオロエチレン共重合
体、フツ化ビニリデン重合体及び共重合体、クロ
ロトリフルオロエチレン重合体及び共重合体等を
あげることが出来る。かかる共重合体のコモノマ
ーとしては、テロゲン活性を実質的に有しない共
重合可能なビニルモノマーが利用でき、例えば、
エチレン、プロピレン、イソブチレンのような炭
化水素系オレフイン類;フツ化ビニル、フツ化ビ
ニリデン、クロロトリフルオロエチレン、パーフ
ルオロアルキルエチレンのような含ふつ素オレフ
イン類;テトラフルオロエチレン、ヘキサフルオ
ロプロピレンのようなパーフルオロオレフイン
類;パーフルオロメチルビニルエーテル、パーフ
ルオロプロピルビニルエーテルのようなフルオロ
アルキルビニルエーテル類等をあげることができ
る。 特に好適な樹脂としてはテトラフルオロエチレ
ン/ヘキサフルオロプロピレン共重合体
(FEP)、テトラフルオロエチレン/パーフルオ
ロアルキルビニルエーテル共重合体(PFA)、テ
トラフルオロエチレン/ヘキサフルオロプロピレ
ン/パーフルオロアルキルビニルエーテル三元共
重合体(EPE)、テトラフルオロエチレン/パー
フルオロアルキルエチレン共重合体等を例示する
ことが出来る。 本発明において上記熱流動性ふつ素樹脂の粉末
を構成する各樹脂粒子は融点以上の温度で焼成さ
れた粒子であり、その平均粒径は2−150ミクロ
ンであることが好ましい。平均粒径が150ミクロ
ンを越える場合はピンホールの無い塗膜を形成す
る事が困難であり、一方平均粒径2ミクロン未満
の場合は塗膜にクラツクが生じ易くなる。特に好
ましい平均粒径は5−75ミクロンである。 本発明の導電性カーボンブラツクとしては、フ
アーネスブラツク、チヤネルブラツク、サーマル
ブラツク等従来公知のものが使用できるが、特に
粒子径50ミリミクロン以下のフアーネス系導電性
カーボンブラツクが好ましい。このようなカーボ
ンブラツクとしては、ケツチエンブラツクEC(商
品名、ライオン油脂製)が例示される。 導電性カーボンブラツクの配合量は1−3重量
%の範囲から選択される。1重量%未満の配合量
では、塗膜の表面抵抗が高くなり十分な帯電防止
効果が得られない。3重量%を越える配合量で
は、溶融製膜時の樹脂の見かけの溶融粘度が極め
て高くなるため塗膜の形成性が悪化し、塗膜の非
粘着性も劣つたものとなるので好ましくない。 本発明の利点の一つは、上記のように、導電性
カーボンブラツクの配合量が、塗膜の形成性や非
粘着性に悪影響を及ぼさない程度の少量であるに
もかかわらず、優れた帯電防止効果がえられる点
にあり、これは下記のように第二の充填材成分で
ある炭素繊維粉末との複合効果によつて達成され
る。 本発明の炭素繊維としては、ポリアクリロニト
リル、ピツチ、レーヨン、リダニン等の繊維に原
料とする従来公知の炭素繊維が使用でき、平均繊
維長10−100ミクロン、繊維径5−20ミクロンの
炭素繊維が有利に採用され得る。繊維長が余りに
大きいものは粉末粒子間の空隙率が大となり、平
滑でピンホールのない塗膜を得難いので好ましく
ない。特に好ましい平均繊維長は10−50ミクロン
である。 炭素繊維の配合量は少なくとも1重量%とする
ことが必要であり、1重量%未満の場合は十分な
帯電防止効果も耐摩耗性の向上が得られない。炭
素繊維粉末は導電性カーボンブラツクに比べて粒
度が大きく、比表面積も小さいため、配合量の増
加にともなう樹脂の見かけの溶融粘度増大の程度
は導電性カーボンブラツクの場合に比べて小さい
が、導電性カーボンブラツクとの合計割合が10重
量%を越える配合量は塗膜の形成性を悪化させる
ので避けるべきである。特に好ましい合計割合は
5重量%以下である。 本発明の粉体塗料において、上記導電性カーボ
ンブラツク及び炭素繊維粉末の分散形態として
は、 (イ) 導電性カーボンブラツク及び炭素繊維粉末が
共に熱流動性ふつ素樹脂粉末の各焼成粒子の内
部に均一に分散されている形態(粒子表面部分
の樹脂に固着して分散されている形態も包含す
る)、 (ロ) 導電性カーボンブラツクが各焼成粒子の内部
に均一に分散され、一方、炭素繊維粉末が各焼
成粒子の外部に均一に分散されている形態、並
びに、 (ハ) 導電性カーボンブラツクが各焼成粒子の内部
に均一に分散され、一方、炭素繊維粉末が各焼
成粒子の内部及び外部に均一に分散されている
形態、 のいずれの形態をもとることができるが、粉体塗
料の取り扱い時や噴霧塗装時に炭素繊維粉末が分
離し難いという点から、(イ)の形態がより好まし
い。 (イ)の形態の粉体塗料は、例えば特公昭54−3172
や特公昭52−44576に記載されるように、平均粒
径0.05−0.5ミクロンの熱流動性ふつ素樹脂を含
む水性分散液に導電性カーボンブラツクと炭素繊
維粉末とを添加、分散して得られる混合分散液又
は混合分散液を共凝集する事によつて得られる凝
集粉末を該熱流動性ふつ素樹脂の融点以上に保た
れた雰囲気中に噴霧して焼成することにより製造
する事ができる。 (ロ)の形態の粉体塗料は上記製造法において、ふ
つ素樹脂の水性分散液に導電性カーボンブラツク
のみを添加分散し、以下同様にして導電性カーボ
ンブラツクのみが粒子内に分散された熱流動性ふ
つ素樹脂の焼成粉末を得、この粉末と炭素繊維粉
末とを、例えばドライブレンド等の方法により混
合することによつて製造することができる。 (ハ)の形態の粉体塗料は、(イ)の形態の粉体塗料に
炭素繊維粉末を混合することによつて製造するこ
とができる。 本発明の粉体塗料によれば、導電性カーボンブ
ラツクと炭素繊維粉末の配合量が極めて少ないに
もかかわらず、非帯電性にすぐれた塗膜を得るこ
とができ、且つ両充填材の配合量が少ないことに
より、塗膜の形成性に優れ、非粘着性等のふつ素
樹脂の特性も損なわれない。しかも、炭素繊維の
補強効果によつて、従来の導電性カーボンブラツ
クのみを配合したものに比べ、塗膜の耐摩耗性も
大幅に向上したものとなる。 本発明の第二の効果は、導電性カーボンブラツ
クがふつ素樹脂粉末の粒子内に包含されていると
いう特徴によるものであり、粉体塗料の移送、運
搬等の取り扱い時や、噴霧塗装時に導電性カーボ
ンブラツク樹脂粉末から分離することが無いた
め、極めて均一な組成の塗膜を得ることができ
る。更にこの特徴のため、従来のカーボンブラツ
クとふつ素樹脂粉末がドライブレンドされた粉体
塗料のように、導電性カーボンブラツクと樹脂粉
末との間の放電による粉じん爆発の危険性もな
い。 本発明の粉体塗料は、鉄、アルミニウム、ニツ
ケル、チタン、銅等の金属や合金、あるいはガラ
スや陶磁器等の耐熱製基材に塗装され、基材には
樹脂塗膜との接着強度を高めるため、予めブラス
ト処理、エツチング処理、プライマー処理等の表
面処理を施しておくことができる。本発明の粉体
塗料は静電吹き付け塗装に特に有用なものである
が、それ以外の塗装法、例えば、ふりかけ法、転
がし法、吹きつけ法、流動浸せき法、静電流動浸
せき法等にも好適に利用する事ができるし、有機
溶剤等に分散させ分散液塗料として利用すること
もできる。このような塗装法により粉末を基材に
塗着した後は、樹脂の融点以上に加熱して焼付け
が行われる。焼き付け雰囲気としては空気中又は
不活性ガス雰囲気が利用できる。得られた塗膜は
所望により研磨やローラー掛け等の二次加工を施
すことによつて一層平滑性を向上することも出来
る。 本発明の粉体塗料は前記複写機の加熱定着ロー
ラーや成形ローラー、ホツパー、タンク等の被覆
の他、非粘着性や耐薬品性等のふつ素樹脂の優れ
た特性が要求され、且つ塵あいの吸着や、放電、
電波障害等のトラブル防止のため導電性が要求さ
れる各種物品の被覆に利用することが出来る。 実施例 1 平均粒径約0.2ミクロン、融点307℃を有する
PFA樹脂の23%水性分散液に、平均粒径約25ミ
リミクロンの導電性カーボンブラツク(商品名ケ
ツチエンブラツクEC、ライオン油脂製)及び平
均繊維長25ミクロン、繊維径7ミクロンの炭素繊
維粉末を第1表(テストNo.1−12)に示す割合で
添加し、攪はんによつて均一に分散させた後、硝
酸とトリクロロトリフルオロエタンとを順次添加
して共凝集を行つた。 得られた共凝集粉末をろ別し、トリクロロトリ
フルオロエタンを揮散させた後、リツツミル(リ
ツツマニユフアクチユアリング製、モデルRP−
6−K115、回転数6000RPM)で粉砕した。 該粉砕粉末を350℃の温度雰囲気を有する特公
昭52−44576号に記載されるごとき焼成炉に噴霧
して焼成し、融点以下に冷却された粉末をサイク
ロンに捕集した。サイクロンより取り出した各焼
成粉末の平均粒径は15〜30ミクロンであり、顕微
鏡観察の結果いずれもほぼ球状の粒子であつて、
第1表に示すテストNo.2〜12の粉末では樹脂粒子
内に充填剤粉末が分散しており、粒子表面に存在
する炭素繊維は樹脂に固着して分離し難いことが
観察された。 得られた各焼成粉末をブラスト処理したアルミ
ニウム板上に静電吹き付け法によつて塗着した後
380℃で20分間焼成し、厚さ約50ミクロンの塗膜
を得た。 各粉末から得られた塗膜の状態及び物性を第1
表に示す。テストNo.5−8は本発明例、No.1−4
及び9−12は比較例である。なお、摩耗係数は、
荷重=3Kg/cm2、平均速度=0.5m/秒、相手材
=SS−41、温度=20℃なる条件で測定した。
The present invention relates to a powder coating for forming a fluororesin coating film that is non-static and has excellent abrasion resistance and non-adhesion. Fluorine resins have low surface energy and excellent non-adhesive properties, so fluorine resin powder coatings can be used, for example, as coatings for heat-fixing rollers in electronic copying machines that require offset prevention functions, as well as on foods, plastics, etc. It is widely used for coating forming rollers, lining hoppers and tanks, etc. However, in such applications, fluorine resin coatings have a high surface resistance of 10 17 ohms or more, so there is a problem that they are easily charged by friction.
Improvements are required. For example, in the fusing device of an electronic copying machine, a combination of a heated fusing roller whose metal core surface is coated with fluororesin and a pressure roller whose metal core surface is coated with silicone rubber is often used.
Static electricity is generated due to friction between the silicone rubber and the copying machine, and as a result, unfixed toner on the copy paper is attracted to the charged surface of the fixing roller, staining the surface of the fixing roller and causing offset. In addition, forming rollers and the like attract dust in the air, which causes problems such as contamination of the processed material. Conventionally, carbon black has been blended into fluorine resin powder coatings to prevent static electricity on the paint film as described above, but in order to obtain a sufficient antistatic effect, it is preferable to mix carbon black with a resistance of 10 8 ohms or less. If it is added to the blending ratio (5% by weight or more) required to achieve the surface resistance of In addition, there were problems in that the non-adhesion of the coating film surface was reduced and the abrasion resistance was insufficient. Furthermore, in the case of a powder coating that is a dry blend of fluorine resin powder and carbon black, the fluorine resin powder and carbon black are likely to separate during electrostatic spray painting, and electrical discharge is likely to occur between the resin powder and carbon black. Added amount of carbon black is 1%
In these cases, there is even a risk of explosion. The object of the present invention is to provide a fluororesin powder coating for forming a non-static fluororesin coating film which solves the above-mentioned conventional problems. The fluororesin powder coating of the present invention has an average particle size of 2-
Based on the fact that 1-3% by weight of conductive carbon black based on the total weight is uniformly dispersed in particles of 150 micron sintered powder of heat-flowable fluororesin.
At least 1% by weight of carbon fiber powder based on the total weight is uniformly dispersed within or outside the particles, and the total proportion of the conductive carbon black and the carbon fiber powder is 10% by weight or less. shall be. The fluororesin that is a component of the present invention is a thermofluid fluororesin, and is a non-thermofluid fluororesin.
PTFE etc. are excluded. Examples of usable heat-flowable fluororesins include tetrafluoroethylene copolymers, vinylidene fluoride polymers and copolymers, chlorotrifluoroethylene polymers and copolymers, and the like. As a comonomer for such a copolymer, a copolymerizable vinyl monomer having substantially no telogen activity can be used, for example,
Hydrocarbon olefins such as ethylene, propylene, and isobutylene; fluorine-containing olefins such as vinyl fluoride, vinylidene fluoride, chlorotrifluoroethylene, and perfluoroalkylethylene; such as tetrafluoroethylene and hexafluoropropylene Perfluoroolefins; examples include fluoroalkyl vinyl ethers such as perfluoromethyl vinyl ether and perfluoropropyl vinyl ether. Particularly suitable resins include tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene/hexafluoropropylene/perfluoroalkyl vinyl ether ternary copolymer. Examples include polymer (EPE), tetrafluoroethylene/perfluoroalkylethylene copolymer, and the like. In the present invention, each resin particle constituting the powder of the heat-flowable fluororesin is a particle fired at a temperature higher than the melting point, and preferably has an average particle size of 2 to 150 microns. If the average particle size exceeds 150 microns, it is difficult to form a pinhole-free coating, while if the average particle size is less than 2 microns, cracks are likely to occur in the coating. A particularly preferred average particle size is 5-75 microns. As the conductive carbon black of the present invention, conventionally known ones such as furnace black, channel black, and thermal black can be used, but furnace-based conductive carbon blacks having a particle size of 50 mm or less are particularly preferred. An example of such carbon black is Ketsuen Black EC (trade name, manufactured by Lion Oil Co., Ltd.). The amount of conductive carbon black is selected from the range of 1-3% by weight. If the amount is less than 1% by weight, the surface resistance of the coating film becomes high and a sufficient antistatic effect cannot be obtained. If the amount exceeds 3% by weight, the apparent melt viscosity of the resin during melt film formation becomes extremely high, resulting in poor coating film formation properties and poor non-stick properties of the coating film, which is not preferred. One of the advantages of the present invention is that, as mentioned above, the amount of conductive carbon black contained is so small that it does not adversely affect the coating film formation properties or non-adhesive properties, yet it provides excellent charging properties. A preventive effect can be obtained, and this is achieved by the combined effect with carbon fiber powder, which is the second filler component, as described below. As the carbon fiber of the present invention, conventionally known carbon fibers made from fibers such as polyacrylonitrile, pitch, rayon, and lidanine can be used, and carbon fibers with an average fiber length of 10-100 microns and a fiber diameter of 5-20 microns are used. can be advantageously employed. If the fiber length is too long, the porosity between the powder particles becomes large, making it difficult to obtain a smooth, pinhole-free coating, which is not preferred. A particularly preferred average fiber length is 10-50 microns. It is necessary that the amount of carbon fiber blended is at least 1% by weight; if it is less than 1% by weight, neither sufficient antistatic effect nor improvement in wear resistance can be obtained. Carbon fiber powder has a larger particle size and a smaller specific surface area than conductive carbon black, so the increase in the apparent melt viscosity of the resin with increasing blending amount is smaller than that of conductive carbon black. A total blending amount of more than 10% by weight with carbon black should be avoided since this will deteriorate the coating film formation properties. A particularly preferred total proportion is 5% by weight or less. In the powder coating of the present invention, the dispersion form of the conductive carbon black and carbon fiber powder is as follows: (a) both the conductive carbon black and the carbon fiber powder are inside each fired particle of the heat-flowable fluororesin powder; (b) The conductive carbon black is uniformly dispersed inside each fired particle, while the carbon fiber (c) Conductive carbon black is uniformly dispersed inside each fired particle, while carbon fiber powder is distributed inside and outside each fired particle. It is possible to take any of the forms in which the carbon fiber powder is uniformly dispersed, but form (a) is more preferable because the carbon fiber powder is difficult to separate when handling the powder coating or during spray painting. . The powder coating of the form (a) is, for example,
As described in Japanese Patent Publication No. 52-44576, conductive carbon black and carbon fiber powder are added and dispersed in an aqueous dispersion containing a heat-flowable fluororesin with an average particle size of 0.05-0.5 microns. It can be produced by spraying a mixed dispersion or an agglomerated powder obtained by co-agglomerating a mixed dispersion into an atmosphere maintained at a temperature higher than the melting point of the thermofluidic fluororesin and firing. The powder coating of form (b) is manufactured by adding and dispersing only conductive carbon black to an aqueous dispersion of fluororesin, and then repeating the process in the same manner to form a powder coating in which only conductive carbon black is dispersed within the particles. It can be manufactured by obtaining a sintered powder of a fluid fluororesin and mixing this powder with carbon fiber powder, for example, by a method such as dry blending. The powder coating of the form (c) can be produced by mixing carbon fiber powder with the powder coating of the form (a). According to the powder coating of the present invention, a coating film with excellent non-static properties can be obtained even though the amounts of conductive carbon black and carbon fiber powder are extremely small, and the amounts of both fillers are very low. Due to the small amount of fluorine resin, the coating film is excellent in forming properties, and the properties of the fluororesin, such as non-adhesiveness, are not impaired. Furthermore, due to the reinforcing effect of the carbon fibers, the abrasion resistance of the coating film is also significantly improved compared to a conventional coating containing only conductive carbon black. The second effect of the present invention is due to the characteristic that conductive carbon black is included in the particles of fluororesin powder. Since there is no separation from the carbon black resin powder, a coating film with an extremely uniform composition can be obtained. Furthermore, because of this feature, there is no risk of dust explosion due to electrical discharge between the conductive carbon black and the resin powder, unlike conventional powder paints in which carbon black and fluororesin powder are dry blended. The powder coating of the present invention is applied to metals and alloys such as iron, aluminum, nickel, titanium, and copper, or heat-resistant substrates such as glass and ceramics, and the powder coating enhances the adhesive strength with the resin coating on the substrate. Therefore, surface treatments such as blasting, etching, and primer treatment can be applied in advance. Although the powder coating of the present invention is particularly useful for electrostatic spray painting, it can also be used for other coating methods such as sprinkling, rolling, spraying, fluidized dipping, electrostatic dynamic dipping, etc. It can be suitably used, and it can also be used as a dispersion paint by dispersing it in an organic solvent or the like. After the powder is applied to the base material by such a coating method, baking is performed by heating the powder to a temperature higher than the melting point of the resin. Air or an inert gas atmosphere can be used as the baking atmosphere. The smoothness of the resulting coating film can be further improved by subjecting it to secondary processing such as polishing or rolling, if desired. The powder coating of the present invention is used to coat the heat fixing roller, forming roller, hopper, tank, etc. of the copying machine, and is required to have the excellent properties of fluorine resin such as non-adhesiveness and chemical resistance, and is also suitable for dust-proofing. Adsorption, discharge,
It can be used to coat various articles that require electrical conductivity to prevent troubles such as radio wave interference. Example 1 Average particle size of approximately 0.2 microns, melting point of 307°C
Conductive carbon black (trade name: KETSUCHEN BLACK EC, manufactured by Lion Oil & Fats) with an average particle size of approximately 25 mm and carbon fiber powder with an average fiber length of 25 μm and a fiber diameter of 7 μm are added to a 23% aqueous dispersion of PFA resin. After adding in the proportions shown in Table 1 (Test No. 1-12) and uniformly dispersing them by stirring, nitric acid and trichlorotrifluoroethane were sequentially added to perform co-aggregation. After filtering the obtained co-agglomerated powder and volatilizing the trichlorotrifluoroethane, a Ritz Mill (manufactured by Ritz Manufacture, Model RP-
6-K115, rotation speed 6000 RPM). The pulverized powder was sprayed into a firing furnace as described in Japanese Patent Publication No. 52-44576 having a temperature atmosphere of 350°C and fired, and the powder cooled below the melting point was collected in a cyclone. The average particle size of each fired powder taken out from the cyclone was 15 to 30 microns, and microscopic observation revealed that all of the particles were approximately spherical.
In the powders of Test Nos. 2 to 12 shown in Table 1, the filler powder was dispersed within the resin particles, and it was observed that the carbon fibers present on the particle surface adhered to the resin and were difficult to separate. After applying each of the obtained fired powders onto a blasted aluminum plate by electrostatic spraying,
It was baked at 380°C for 20 minutes to obtain a coating film with a thickness of about 50 microns. The state and physical properties of the coating film obtained from each powder were determined first.
Shown in the table. Test No. 5-8 is an example of the present invention, No. 1-4
and 9-12 are comparative examples. In addition, the wear coefficient is
Measurement was carried out under the following conditions: load = 3 kg/cm 2 , average speed = 0.5 m/sec, mating material = SS-41, and temperature = 20°C.

【表】 実施例 2 加熱ローラの表面を実施例1のテストNo.1又は
No.5の粉体塗料で被覆した第1図に示す熱ローラ
型定着装置を用いて複写試験を行なつた。 その結果、テストNo.1ではオフセツトが起つた
が、テストNo.5ではオフセツトの発生は全く認め
られなかつた。 また、ローラ回転数=94rpm、ローラ表面温度
=180〜190℃、分離爪材質=ポリアミドイミド、
分離爪先端圧力=60gなる条件下での耐摩耗性試
験においても、テストNo.5は第2図に示すように
テストNo.1に較べて!?かに優れた結果を与えた。
[Table] Example 2 The surface of the heating roller was tested in Test No. 1 of Example 1 or
Copying tests were conducted using a heated roller type fixing device shown in FIG. 1 coated with No. 5 powder coating. As a result, offset occurred in Test No. 1, but no offset was observed in Test No. 5. Also, roller rotation speed = 94 rpm, roller surface temperature = 180 to 190°C, separation claw material = polyamide-imide,
Even in the abrasion resistance test under the condition of separation claw tip pressure = 60g, Test No. 5 gave much better results than Test No. 1, as shown in Figure 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例2において使用された熱ローラ
型定着装置の断面略示図であり、第2図は実施例
2における耐摩耗性試験の結果を示すグラフであ
る。 図において、1は加熱ローラ、2は加圧ロー
ラ、3は被覆層、4は芯金、5は発熱ランプ、6
はシリコーンゴム層、7は芯金、8は未定着(帯
電)トナー、9は定着トナー、10は複写紙であ
る。
FIG. 1 is a schematic cross-sectional view of the heat roller type fixing device used in Example 2, and FIG. 2 is a graph showing the results of the abrasion resistance test in Example 2. In the figure, 1 is a heating roller, 2 is a pressure roller, 3 is a coating layer, 4 is a core metal, 5 is a heating lamp, 6
1 is a silicone rubber layer, 7 is a core metal, 8 is an unfixed (charged) toner, 9 is a fixed toner, and 10 is copy paper.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径2−150ミクロンの熱流動性ふつ素
樹脂の焼結粉末の粒子内に全重量に対して1−3
重量%の導電性カーボンブラツクが均一に分散さ
れていると共に全重量に対して少なくとも1重量
%の炭素繊維粉末が該粒子内又は外に均一に分散
されており、該導電性カーボンブラツクと該炭素
繊維粉末との合計割合が10重量%以下であること
を特徴とする非帯電性塗膜形成用ふつ素樹脂粉体
塗料。
1.1 to 3% of the total weight of the sintered powder of thermofluid fluororesin with an average particle size of 2 to 150 microns.
% by weight of conductive carbon black is uniformly dispersed, and at least 1% by weight of carbon fiber powder based on the total weight is uniformly dispersed within or outside the particles, and the conductive carbon black and the carbon A fluororesin powder coating for forming a non-static coating film, characterized in that the total proportion with fiber powder is 10% by weight or less.
JP7088886A 1986-03-31 1986-03-31 Fluororesin power coating for use in forming electrically non-chargeable coating film Granted JPS62227967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7088886A JPS62227967A (en) 1986-03-31 1986-03-31 Fluororesin power coating for use in forming electrically non-chargeable coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7088886A JPS62227967A (en) 1986-03-31 1986-03-31 Fluororesin power coating for use in forming electrically non-chargeable coating film

Publications (2)

Publication Number Publication Date
JPS62227967A JPS62227967A (en) 1987-10-06
JPH0573147B2 true JPH0573147B2 (en) 1993-10-13

Family

ID=13444514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7088886A Granted JPS62227967A (en) 1986-03-31 1986-03-31 Fluororesin power coating for use in forming electrically non-chargeable coating film

Country Status (1)

Country Link
JP (1) JPS62227967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178369A1 (en) 2021-02-22 2022-08-25 Chemours-Mitsui Fluoroproducts Co., Ltd Powder coating composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430939B2 (en) * 2006-10-10 2014-03-05 株式会社クレハ Powder coating material, method for producing painted material, and painted material
CN104927503A (en) * 2015-06-18 2015-09-23 巨化集团技术中心 Thermoset fluororesin powder coating preparation method
JP7260835B1 (en) * 2021-12-22 2023-04-19 ダイキン工業株式会社 Powder coating compositions, coatings, multi-layer coatings and coated articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178369A1 (en) 2021-02-22 2022-08-25 Chemours-Mitsui Fluoroproducts Co., Ltd Powder coating composition

Also Published As

Publication number Publication date
JPS62227967A (en) 1987-10-06

Similar Documents

Publication Publication Date Title
EP0008542B1 (en) Method of manufacturing xergraphic fuser roll having an abhesive surface
WO2013146078A1 (en) Composite particles, powder coating material, coating film, laminate, and method for producing composite particles
JP2008525616A (en) Fluoropolymer composition, coated article, and method of making the same
EP0483760B1 (en) Fluororesin coating composition
US7341770B2 (en) Fixing rotating body
US20050267246A1 (en) Abrasion resistant fluoropolymer compositions containing zeolite
US5376307A (en) Fluorocarbon paint composition
EP1749062B1 (en) Abrasion resistant fluoropolymer compositions containing micropulp
CN109983088A (en) Fluorocarbon polymer coating composition
JPH0573147B2 (en)
CN112236280B (en) Fluoropolymer coating compositions
JP5430939B2 (en) Powder coating material, method for producing painted material, and painted material
JP5089068B2 (en) Fixing rotator and method for manufacturing the same
JP4945851B2 (en) Non-adhesive wear-resistant paint composition and non-adhesive wear-resistant coated article
EP0542893B1 (en) Fluorocarbon paint composition
JP2811611B2 (en) Fluorocarbon coating composition
KR20230146585A (en) powder coating composition
JPH06102786A (en) Fixing roller
JPS60122976A (en) Heating fixing roller
JPS6227870B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term