JPH0573077B2 - - Google Patents

Info

Publication number
JPH0573077B2
JPH0573077B2 JP60210979A JP21097985A JPH0573077B2 JP H0573077 B2 JPH0573077 B2 JP H0573077B2 JP 60210979 A JP60210979 A JP 60210979A JP 21097985 A JP21097985 A JP 21097985A JP H0573077 B2 JPH0573077 B2 JP H0573077B2
Authority
JP
Japan
Prior art keywords
epoxy resin
glass
laminate
type epoxy
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60210979A
Other languages
Japanese (ja)
Other versions
JPS6271643A (en
Inventor
Hiroshi Konagaya
Kinichi Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP21097985A priority Critical patent/JPS6271643A/en
Publication of JPS6271643A publication Critical patent/JPS6271643A/en
Publication of JPH0573077B2 publication Critical patent/JPH0573077B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は耐熱性、耐溶剤性が優れ、加工性の良
い印刷回路用積層板の製造方法に関するものであ
る。 <従来技術> 印刷回路用銅張積層板として、ガラス不織布を
中間層基材としてガラス織布を表面層基材とした
構成で、エポキシ樹脂を含浸させ加熱加圧成形し
た積層板(以下コンポジツト積層板という)が多
量に使用されるようになつた。 ガラス織布基材のみにエポキシ樹脂を含浸させ
た積層板は機械的強度、寸法安定性、耐湿性、耐
熱性に優れ、スルホールメツキの信頼性が高いの
で、電子計算機、通信機、電子交換機等の産業用
電子機器に多く使用されている。 しかし、基材にガラス織布のみを使用するの
で、印刷回路板の加工工程のひとつである孔あけ
工程では打抜加工が不可能であり、ドリル加工さ
れているのが実情である。 一方、コンポジツト積層板はガラス織布基材の
積層板より経済的に安価で、且つ打付き孔あけ加
工が可能な点が優れており、加工性の良いガラス
基材積層板として注目をあびたが、スルーホール
メツキの信頼性がガラス織布基材積層板より低い
と評価されていた。その理由として、ガラス織布
基材エポキシ積層板の構成は有機物であるエポキ
シ樹脂と無機物であるガラス織布の重量比率が約
40:60である。この場合エポキシ樹脂が主に各種
電気性能を優れたものにし、ガラス織布が曲げ強
度、寸法安定性などの機械的性能を良好にしてい
ると考えられる。 ところで、一般のコンポジツト積層板は機械的
性能に寄与する無機基材、即ちガラス織布とガラ
ス不織布の合計量がガラス織布積層板より少な
い。有機物と無機物の比率が約60:40であり、ガ
ラス織布積層板とはその比率が逆転しているた
め、寸法安定性やスルーホールメツキの信頼性が
低いとされていた。 本発明者らはコンポジツト積層板の優れた特徴
をいかしながら、これらの欠点を改良すべく検討
し、一般のコンポジツト積層板の構成に更に無機
充填剤を大量に配合することにより、単一組成で
は得られない特徴ある新規コンポジツト積層板を
得ている(特願昭58−115118号)。この無機充填
剤として用いるアルミナ水和物(いわゆる水酸化
アルミニウム)には、結晶性水和物としてギブサ
イト(α型3水和物Al2O3・3H2O)、パイヤライ
ト(β型3水和物)、ノルトストランダイト、ベ
ーマイト(α型1水和物Al2O3・H2O)、ダイア
スボア(β型1水和物)、トーダイト(5Al2O3
H2O)が知られている。 ギブサイト型水酸化アルミニウム(以下、ギブ
サイトという)は200℃から500℃の範囲で水を放
出する。この時の吸熱量が大きいので、これを利
用して一般の合成樹脂では難燃性を保たせるため
に充填剤として用いられている。しかし積層板は
印刷回路及び組立て工程において高熱状態にさら
される頻度が高く、例えば、はんだ工程では通常
260℃のはんだ浴に浸るので、ギブサイトを充填
剤として用いたコンポジツト積層板は浸漬時間が
長くなるとふくれによる不良が発生する。この原
因はギブサイトからの水の放出である。 本発明者等はこの欠点を解消するためにコンポ
ジツト積層板用樹脂に加熱処理したギブサイトを
充填することにより、はんだ耐熱性を著しく向上
させた積層板を得ている(特願昭59−59501号)。 しかし、近年の積層板の加工技術の発達、回路
の高密度化、用途の多様化が図られてきており、
加工条件も一段と厳しさを増してきている状況か
ら、更により高い耐熱性、耐溶剤性、信頼性を要
求されるようになつた。 <発明の目的> 本発明は、従来のコンポジツト積層板では得ら
れなかつた更に高い耐熱性、耐溶剤性、高信頼性
を有し、更に加工性の良い印刷回路用積層板を提
供することを目的とする。 <発明の構成> 本発明は、表面層はエポキシ樹脂成分としてエ
ポキシ当量700ないし1200を有するビスフエノー
ルA型エポキシ樹脂及びノボラツク型エポキシ樹
脂を主成分とするワニスを含浸したガラス織布か
らなり、中間層は表面層と同様の樹脂を主成分と
するワニスにベーマイト型水酸化アルミニウムが
含有されているエポキシ樹脂ガラス不織布からな
り、これら表面層と中間層とを加熱加圧すること
を特徴とする印刷回路用積層板の製造方法であ
る。 本発明において用いられるビスフエノールA型
エポキシ樹脂はエポキシ当量700ないし1200のも
のである。低分子量のエポキシ樹脂を用いた積層
板では、加工工程において機械的、熱的衝撃を吸
収できず破壊へとつながることが多い。そこで用
いるエポキシ樹脂の分子量を上げて700以上のエ
ポキシ当量のものを用いると、従来より架橋点間
の分子量が大きくなり、上述の加工時の機械的、
熱的衝撃を分子運動として吸収し積層板に破壊が
生じにくくなる。一方、ビスフエノールA型エポ
キシ樹脂の分子量を上げてゆくと、加圧成形時に
加熱しても粘度が低下せず、ガラス繊維や金属箔
との界面に樹脂が浸透しにくく、気泡が残り接着
強度を下げる。 そこで高分子量化に伴う架橋密度の低下をノボ
ラツク型エポキシ樹脂を併用することにより抑え
ることができる。このノボラツク型エポキシ樹脂
を併用した場合、エポキシ当量1200以下のビスフ
エノールA型エポキシ樹脂を用い得る。これ以上
の高分子量のエポキシ樹脂を用いると、たとえば
ノボラツク型エポキシ樹脂を併用しても耐溶剤性
等の実用性の面で耐えるものが得られない。 本発明において、ビスフエノール型エポキシ樹
脂は臭素化型のものが通常使用され、臭素含有率
は15〜30%(重量%、以下同じ)が好ましい。 本発明においては、ノボラツク型エポキシ樹脂
としてビスフエノールAノボラツク型のものを使
用するのが好ましい。ビスフエノールAノボラツ
ク型エポキシ樹脂を使用すると、通常のフエノー
ル又はクレゾールノボラツク型エポキシ樹脂を使
用する場合に比較して、可撓性が増し、硬化時の
歪みをより少なくすることができるので、成形性
が良く、得られた積層板は、耐熱性、耐熱衝撃
性、耐溶剤性等の特性が非常にすぐれたものとな
る。ビスフエノールAノボラツク型エポキシ樹脂
は分子量450〜1400のものが上記特性の点で好ま
しい。 またビスフエノールA型エポキシ樹脂との配合
割合は特に限定されないが、ビスフエノールA型
エポキシ樹脂60〜90部(重量部、以下同じ)に対
しビスフエノールAノボラツク型エポキシ樹脂40
〜10部が好ましい。本発明においてエポキシ当量
700ないし1200のビスフエノールA型エポキシ樹
脂の一部を、これよりもエポキシ当量の低いエポ
キシ化合物を置換しても、本発明の目的とする耐
熱性、耐熱衝撃性、寸法安定性において有効な改
善が認められるので、この場合も本発明に含まれ
る。 本発明に用いられる結晶性のよいベーマイト型
水酸化アルミニウム(以下、ベーマイトという)
は、500℃から脱水が始まることが知られており、
本発明者らは、この水の放出温度の違いに着目
し、コンポイジツト積層板用樹脂にベーマイトを
充填することにより、はんだ耐熱性が著しく向上
することを見出した。ベーマイトは中間層の樹脂
に対して10〜200%(重量%、以下同じ)好まし
くは20〜200%含まれる。10%以下では、はんだ
耐熱性向上の効果が小さく、200%以上ではベー
マイト混合時の樹脂粘度が高くなりすぎて、ガラ
ス不織布基材への含浸が困難となる。20%以上の
場合、はんだ耐熱性向上効果がより確実なものと
なる。中間層において、水酸化アルミニウム以外
の無機質充填材(例えばシリカ)を用いることも
できる。無機質充填剤の中間層樹脂に対する割合
は80〜200%が好ましい。80%以下では寸法安定
性やスルホールメツキの信頼性が低下して好まし
くない。200%以上では無機充填剤を樹脂に混合
したとき、粘度が高くなりすぎて、ガラス不織布
への含浸が困難となる。 更に、ベーマイトは無機質充填剤中15%以上を
占めるのがはんだ耐熱性の点で好ましい。また、
水酸化アルミニウムのエポキシ樹脂に対する配合
割合の検討結果から、ギブサイトとベーマイトを
併用するのもよく、ギブサイト単独よりはベーマ
イト併用の方が、はんだ耐熱性がより向上するこ
とも判明した。 このような充填剤がエポキシ樹脂中でいわゆる
ままこになないで均一に分散するためには、充填
剤の平均粒径が5〜10μであり、最大粒径が40μ
以下であることが好ましい。粒径が40μより大き
い場合には無機充填剤含有エポキシ樹脂をガラス
不織布による濾過作用のため積層板のガラス不織
布中で無機充填剤の分布が不均一になる。一方、
無機充填剤の粒子の多くが粒径5μより小さい場
合には無機充填剤の微粉末が固まりままこの状態
になりやすく、やはり無機充填剤の分布が不均一
になる。 <発明の効果> 本発明により得られた印刷回路用積層板は次の
ような特長を有している。 (1) 従来の比較的低分子量のビスフエノールA型
エポキシ樹脂を用いた積層板に比較して、各種
耐熱特性及びガラス転移温度Tgが大巾に向上
している。 (2) ガラス転移温度の向上及びベーマイトの充填
により耐熱衝撃性が更に改善され、信頼性が大
巾に向上している。 (3) 耐溶剤性が大巾に向上している。 <実施例> エポキシ樹脂配合ワニスの組成は次の通りであ
る。
<Industrial Application Field> The present invention relates to a method for manufacturing a printed circuit laminate having excellent heat resistance, solvent resistance, and good workability. <Prior art> As a copper-clad laminate for printed circuits, a laminate (hereinafter referred to as a composite laminate) is impregnated with epoxy resin and formed under heat and pressure, with a structure in which a nonwoven glass fabric is used as an intermediate layer base material and a woven glass fabric is used as a surface layer base material. (called boards) came to be used in large quantities. The laminate, which is made by impregnating only the woven glass fabric base material with epoxy resin, has excellent mechanical strength, dimensional stability, moisture resistance, and heat resistance, and has high reliability in through-hole plating, so it can be used in electronic computers, communication equipment, electronic exchange equipment, etc. It is widely used in industrial electronic equipment. However, since only glass woven fabric is used as the base material, punching is not possible in the drilling process, which is one of the processing steps for printed circuit boards, and the reality is that drilling is required. On the other hand, composite laminates are economically cheaper than laminates made of woven glass fabric, and they are superior in that they can be punched and drilled, and have attracted attention as glass-based laminates with good workability. However, the reliability of through-hole plating was evaluated to be lower than that of glass woven fabric base laminates. The reason for this is that the composition of the glass woven fabric base epoxy laminate is that the weight ratio of the organic epoxy resin and the inorganic glass woven fabric is approximately
It's 40:60. In this case, it is thought that the epoxy resin mainly provides excellent electrical performance, and the glass woven fabric provides excellent mechanical performance such as bending strength and dimensional stability. By the way, in general composite laminates, the total amount of inorganic base materials that contribute to mechanical performance, ie, glass woven fabric and glass nonwoven fabric, is smaller than that in glass woven fabric laminates. The ratio of organic matter to inorganic matter is approximately 60:40, which is the opposite of that of glass woven laminates, so it was thought that dimensional stability and reliability of through-hole plating were low. The present inventors have studied to improve these shortcomings while taking advantage of the excellent characteristics of composite laminates, and by adding a large amount of inorganic filler to the composition of general composite laminates, we have developed a composite laminate that can be made with a single composition. A new composite laminate with unique characteristics has been obtained (Japanese Patent Application No. 115118/1982). The alumina hydrate (so-called aluminum hydroxide) used as this inorganic filler contains gibbsite (α-type trihydrate Al 2 O 3 3H 2 O) and payerite (β-type trihydrate Al 2 O 3 3H 2 O) as crystalline hydrates. ), nordstrandite, boehmite (α-type monohydrate Al 2 O 3・H 2 O), diasbore (β-type monohydrate), toadite (5Al 2 O 3
H2O ) is known. Gibbsite-type aluminum hydroxide (hereinafter referred to as gibbsite) releases water in the range of 200°C to 500°C. Since the amount of heat absorbed at this time is large, it is used as a filler in general synthetic resins to maintain flame retardancy. However, laminates are frequently exposed to high heat conditions during printed circuit and assembly processes;
Since it is immersed in a solder bath at 260°C, composite laminates using gibbsite as a filler will suffer from blistering if the immersion time is too long. The cause of this is the release of water from the gibbsite. In order to overcome this drawback, the present inventors have obtained a laminate with significantly improved soldering heat resistance by filling the resin for composite laminates with heat-treated gibbsite (Japanese Patent Application No. 59-59501). ). However, in recent years, advances in processing technology for laminates, increased circuit densities, and diversification of applications have been made.
Processing conditions are becoming increasingly strict, and even higher heat resistance, solvent resistance, and reliability are now required. <Object of the invention> The present invention aims to provide a printed circuit laminate that has higher heat resistance, solvent resistance, and higher reliability than conventional composite laminates, and is also easy to process. purpose. <Structure of the Invention> In the present invention, the surface layer is made of a glass woven fabric impregnated with a varnish whose main components are a bisphenol A type epoxy resin having an epoxy equivalent of 700 to 1200 and a novolak type epoxy resin as an epoxy resin component. The printed circuit is characterized in that the layer is made of an epoxy resin glass nonwoven fabric containing boehmite-type aluminum hydroxide in a varnish whose main component is the same resin as the surface layer, and the surface layer and the intermediate layer are heated and pressurized. This is a method for manufacturing a laminate for use in the manufacturing process. The bisphenol A type epoxy resin used in the present invention has an epoxy equivalent of 700 to 1,200. Laminated plates using low molecular weight epoxy resins are unable to absorb mechanical and thermal shocks during the processing process, often leading to breakage. If the molecular weight of the epoxy resin used is increased and an epoxy equivalent of 700 or more is used, the molecular weight between the crosslinking points will be larger than before, and the mechanical
It absorbs thermal shock as molecular motion, making it difficult for the laminate to break. On the other hand, when the molecular weight of bisphenol A type epoxy resin is increased, the viscosity does not decrease even when heated during pressure molding, and the resin is difficult to penetrate into the interface with glass fibers and metal foil, leaving bubbles to strengthen the bond. lower. Therefore, the decrease in crosslinking density due to increase in molecular weight can be suppressed by using a novolak type epoxy resin in combination. When this novolac type epoxy resin is used in combination, a bisphenol A type epoxy resin having an epoxy equivalent of 1200 or less can be used. If an epoxy resin with a higher molecular weight than this is used, for example, even if a novolak type epoxy resin is used in combination, it will not be possible to obtain a material that has practical properties such as solvent resistance. In the present invention, a brominated bisphenol epoxy resin is usually used, and the bromine content is preferably 15 to 30% (weight %, the same hereinafter). In the present invention, it is preferable to use a bisphenol A novolak type epoxy resin as the novolak type epoxy resin. The use of bisphenol A novolac type epoxy resins provides increased flexibility and less distortion during curing compared to the use of regular phenol or cresol novolac type epoxy resins, making molding easier. The resulting laminate has excellent properties such as heat resistance, thermal shock resistance, and solvent resistance. The bisphenol A novolak type epoxy resin preferably has a molecular weight of 450 to 1,400 from the viewpoint of the above characteristics. The blending ratio with bisphenol A type epoxy resin is not particularly limited, but 60 to 90 parts (by weight, same hereinafter) of bisphenol A type epoxy resin to 40 parts of bisphenol A novolak type epoxy resin.
~10 parts is preferred. In the present invention, epoxy equivalent
Even if a part of the 700 to 1200 bisphenol A type epoxy resin is replaced with an epoxy compound having a lower epoxy equivalent than this, the heat resistance, thermal shock resistance, and dimensional stability that are the objectives of the present invention can be effectively improved. Since this is recognized, this case is also included in the present invention. Boehmite type aluminum hydroxide with good crystallinity used in the present invention (hereinafter referred to as boehmite)
It is known that dehydration begins at 500℃,
The present inventors paid attention to the difference in the water release temperature and found that by filling the composite laminate resin with boehmite, the soldering heat resistance was significantly improved. Boehmite is contained preferably in an amount of 10 to 200% (wt%, same hereinafter) based on the resin of the intermediate layer. If it is less than 10%, the effect of improving solder heat resistance will be small, and if it is more than 200%, the viscosity of the resin when mixed with boehmite will become too high, making it difficult to impregnate the glass nonwoven fabric base material. When it is 20% or more, the effect of improving soldering heat resistance becomes more reliable. Inorganic fillers other than aluminum hydroxide (eg silica) can also be used in the intermediate layer. The ratio of the inorganic filler to the intermediate layer resin is preferably 80 to 200%. If it is less than 80%, the dimensional stability and reliability of through hole plating decreases, which is not preferable. If it exceeds 200%, the viscosity becomes too high when the inorganic filler is mixed with the resin, making it difficult to impregnate the glass nonwoven fabric. Further, it is preferable that boehmite accounts for 15% or more of the inorganic filler from the viewpoint of soldering heat resistance. Also,
From the results of examining the blending ratio of aluminum hydroxide to epoxy resin, it was found that it is good to use gibbsite and boehmite in combination, and that using boehmite in combination improves soldering heat resistance more than using gibbsite alone. In order for such a filler to be uniformly dispersed in the epoxy resin without clumping, the average particle size of the filler should be 5 to 10μ, and the maximum particle size should be 40μ.
It is preferable that it is below. When the particle size is larger than 40μ, the inorganic filler-containing epoxy resin is filtered by the glass nonwoven fabric, resulting in uneven distribution of the inorganic filler in the glass nonwoven fabric of the laminate. on the other hand,
If most of the particles of the inorganic filler have a particle size of less than 5 μm, the fine powder of the inorganic filler tends to remain agglomerated, resulting in uneven distribution of the inorganic filler. <Effects of the Invention> The printed circuit laminate obtained by the present invention has the following features. (1) Compared to conventional laminates using relatively low molecular weight bisphenol A type epoxy resins, various heat resistance properties and glass transition temperature Tg are greatly improved. (2) Thermal shock resistance is further improved by raising the glass transition temperature and filling with boehmite, and reliability is greatly improved. (3) Solvent resistance has been greatly improved. <Example> The composition of the epoxy resin-containing varnish is as follows.

【表】【table】

【表】 上記材料を混合して均一なワニスを作製した。
次に表面層用として配合した該ワニスをガラス織
布(日東紡製WE−18−RB84)に樹脂含有量が
42〜45%になるように含浸乾燥し、ガラス織布プ
リプレグを得た。続いて、中間層用として同様に
配合したワニスに樹脂分100部に対し次の配合の
無機充填剤を添加し、撹拌混合し無機充填剤含有
ワニスを作製した。 シリカ(龍森製 クリスタライトVX−3) 25部 ベーマイト型水酸化アルミニウム(Al2O3
H2O)(住友アルミニウム製錬製CB−310) 70部 超微粉末シリカ(シオノギ製薬製カープレツク
ス) 5部 この無機充填剤含有ワニスをガラス不織布(日
本バイリーン製Ep−4075)に樹脂及び無機充填
剤の含有量が90%になるように含浸乾燥して、ガ
ラス不織布プリプレグを得た。 次に前記ガラス不織布プリプレグを中間層と
し、上・下表面層に前記ガラス織布プリプレグを
配置し、さらにその上に銅箔を重ね、成形温度
165℃、圧力60Kg/cm2で90分間積層成形して、厚
さ1.6mmの銅張積層板を得た。 比較例(従来例) 表面層及び中間層用のエポキシ樹脂配合ワニス
の組成を、 臭素化エポキシ樹脂(油化シエル製Ep−1046)
100部 ジシアンジアミド 4 2エチル4メチルイミダゾール 0.15 メチルセロソルブ 36 アセトン 60 とした以外は実施例と同様にして銅張積層板を得
た。 以上の実施例及び比較例において、各特性の比
較結果を第2表に示す。
[Table] A uniform varnish was prepared by mixing the above materials.
Next, the varnish formulated for the surface layer was applied to a glass woven fabric (Nittobo WE-18-RB84) with a resin content.
It was impregnated and dried to a concentration of 42 to 45% to obtain a glass woven fabric prepreg. Subsequently, an inorganic filler of the following formulation was added to 100 parts of resin to a varnish similarly formulated for the intermediate layer, and the mixture was stirred and mixed to produce an inorganic filler-containing varnish. Silica (Tatsumori Crystallite VX-3) 25 parts Boehmite type aluminum hydroxide (Al 2 O 3
H 2 O) (CB-310 manufactured by Sumitomo Aluminum Smelting and Refining Co., Ltd.) 70 parts Ultrafine powder silica (Carplex manufactured by Shionogi Pharmaceutical Co., Ltd.) 5 parts This inorganic filler-containing varnish was applied to a glass nonwoven fabric (Ep-4075 manufactured by Nippon Vilene Co., Ltd.) filled with resin and inorganic. The glass nonwoven fabric prepreg was obtained by impregnation and drying so that the agent content was 90%. Next, the glass nonwoven fabric prepreg is used as an intermediate layer, the glass woven fabric prepreg is placed on the upper and lower surface layers, and a copper foil is layered on top of that, and the molding temperature is
Lamination molding was performed at 165° C. and a pressure of 60 kg/cm 2 for 90 minutes to obtain a copper-clad laminate with a thickness of 1.6 mm. Comparative example (conventional example) The composition of the epoxy resin-containing varnish for the surface layer and intermediate layer was brominated epoxy resin (Ep-1046 manufactured by Yuka Ciel).
A copper-clad laminate was obtained in the same manner as in Example except that the following ingredients were used: 100 parts dicyandiamide 4 2 ethyl 4 methylimidazole 0.15 methyl cellosolve 36 acetone 60. Table 2 shows the comparison results of each characteristic in the above Examples and Comparative Examples.

〔測定方法〕〔Measuring method〕

はんだ耐熱性、耐溶剤性、熱時曲げ強さ:JIS
C 6481による。 赤外フユーズ耐熱性:フユージング装置を用い、
試験片を予熱ヒータ175V、本加熱ヒータ200V
の電圧をかけ、1.1m/minの速度で通過させ
て加熱し、ふくれを生じるまでの通過回数を測
定する。 ガラス転移温度:粘弾性法によりtanδのピーク値
の温度を求める。 なおその他一般特性項目等も測定したが、実施
例と比較例との間に差はみられなかつた。 以上のように、本発明の印刷回路用積層板はコ
ンポジツト積層板の特徴を維持しつつ、各種耐熱
特性、耐溶剤性が著しく向上している優れた積層
板であることがわかつた。
Soldering heat resistance, solvent resistance, bending strength when heated: JIS
According to C 6481. Infrared fuse heat resistance: using a fusing device,
Preheat the test piece with a heater of 175V and a main heater of 200V.
Apply a voltage of 1.0 m/min, heat the material by passing it at a speed of 1.1 m/min, and measure the number of times it passes until blistering occurs. Glass transition temperature: Find the temperature at the peak value of tanδ using the viscoelastic method. Other general property items were also measured, but no differences were found between the Examples and Comparative Examples. As described above, it has been found that the printed circuit laminate of the present invention is an excellent laminate that maintains the characteristics of a composite laminate and has significantly improved various heat resistance properties and solvent resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ樹脂成分として、エポキシ当量700
ないし1200を有するビスフエノールA型エポキシ
樹脂及びノボラツク型エポキシ樹脂を主成分とす
るワニスを含浸したガラス織布を表面層とし、前
記ワニスにベーマイト型水酸化アルミニウムを含
有したワニスを含浸したガラス不織布を中間層と
して、これら表面層と中間層とを加熱加圧成形す
ることを特徴とする印刷回路用積層板の製造方
法。
1 As an epoxy resin component, the epoxy equivalent is 700
The surface layer is a glass woven fabric impregnated with a varnish mainly composed of a bisphenol A type epoxy resin and a novolac type epoxy resin having a molecular weight of 1200 to 1200, and a glass nonwoven fabric impregnated with a varnish containing boehmite type aluminum hydroxide in the varnish. A method for manufacturing a laminate for printed circuits, which comprises forming the surface layer and the intermediate layer under heat and pressure to form the intermediate layer.
JP21097985A 1985-09-26 1985-09-26 Manufacture of laminated board for printed circuit Granted JPS6271643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21097985A JPS6271643A (en) 1985-09-26 1985-09-26 Manufacture of laminated board for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21097985A JPS6271643A (en) 1985-09-26 1985-09-26 Manufacture of laminated board for printed circuit

Publications (2)

Publication Number Publication Date
JPS6271643A JPS6271643A (en) 1987-04-02
JPH0573077B2 true JPH0573077B2 (en) 1993-10-13

Family

ID=16598295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21097985A Granted JPS6271643A (en) 1985-09-26 1985-09-26 Manufacture of laminated board for printed circuit

Country Status (1)

Country Link
JP (1) JPS6271643A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2924966B2 (en) * 1989-04-27 1999-07-26 住友ベークライト株式会社 Printed circuit laminate
JP4770019B2 (en) * 2000-12-22 2011-09-07 三菱瓦斯化学株式会社 Prepreg and metal foil-clad laminate
US20050075024A1 (en) * 2003-10-01 2005-04-07 Ranken Paul F. Flame retardant epoxy prepregs, laminates, and printed wiring boards of enhanced thermal stability
JP5135705B2 (en) * 2006-04-04 2013-02-06 三菱瓦斯化学株式会社 Prepreg, metal foil-clad laminate, printed wiring board
JP5381016B2 (en) * 2008-10-30 2014-01-08 日立化成株式会社 Thermosetting resin composition, and prepreg and laminate using the same
JP5713205B2 (en) * 2012-04-25 2015-05-07 三菱瓦斯化学株式会社 Prepreg, metal foil-clad laminate, printed wiring board
JP2013237844A (en) * 2013-06-12 2013-11-28 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, and laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136377A (en) * 1974-04-17 1975-10-29
JPS58167625A (en) * 1982-03-26 1983-10-03 Toho Rayon Co Ltd Prepreg
JPS6059795A (en) * 1983-09-13 1985-04-06 住友ベークライト株式会社 Laminated board for printed circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136377A (en) * 1974-04-17 1975-10-29
JPS58167625A (en) * 1982-03-26 1983-10-03 Toho Rayon Co Ltd Prepreg
JPS6059795A (en) * 1983-09-13 1985-04-06 住友ベークライト株式会社 Laminated board for printed circuit

Also Published As

Publication number Publication date
JPS6271643A (en) 1987-04-02

Similar Documents

Publication Publication Date Title
KR101677736B1 (en) Thermosetting resin composition for semiconductor package and Prepreg and Metal Clad laminate using the same
JPH0245349B2 (en) INSATSUKAIROYOSEKISOBAN
JPH0573077B2 (en)
JPH0221667B2 (en)
JPH0197633A (en) Manufacture of laminated plate for printed circuit
JPH10321974A (en) Board for forming circuit
JPH0573076B2 (en)
JPH0360862B2 (en)
JP5448414B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP3343443B2 (en) Resin composition and prepreg
JPS60203438A (en) Laminated board for printed circuit
JP2659490B2 (en) Printed circuit laminate
JP2787846B2 (en) Printed circuit laminate
JP2003136620A (en) Composite laminate
JP2012091322A (en) High thermal conductive laminate
JPH047374B2 (en)
JP2924966B2 (en) Printed circuit laminate
JPH0571157B2 (en)
TWI549923B (en) Fused filler and its manufacturing method and use
JP3288819B2 (en) Copper clad laminate
JPH05309789A (en) Production of composite copper clad laminated sheet
JPH04259543A (en) Manufacture of laminated board for printed circuit
JPH06112611A (en) Laminated board for printed circuit
JPH069316B2 (en) Multilayer printed wiring board
JPH07176843A (en) Laminated board for printed circuit