JPH0572131A - Concentration control for azole - Google Patents

Concentration control for azole

Info

Publication number
JPH0572131A
JPH0572131A JP23794991A JP23794991A JPH0572131A JP H0572131 A JPH0572131 A JP H0572131A JP 23794991 A JP23794991 A JP 23794991A JP 23794991 A JP23794991 A JP 23794991A JP H0572131 A JPH0572131 A JP H0572131A
Authority
JP
Japan
Prior art keywords
concentration
water
measurement
wave length
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23794991A
Other languages
Japanese (ja)
Other versions
JP3024301B2 (en
Inventor
Norimasa Kobayashi
徳正 小林
Mayumi Kira
まゆみ 吉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP3237949A priority Critical patent/JP3024301B2/en
Publication of JPH0572131A publication Critical patent/JPH0572131A/en
Application granted granted Critical
Publication of JP3024301B2 publication Critical patent/JP3024301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To facilitate the concentration control of a corrosionproof agent for copper by measuring the residual concentration in simple manner at a site by carrying out the fluorescent analysis for the residual concentration in water of azoles. CONSTITUTION:The fluorescent intensity for a solution having a known concentration is obtained by using a corrosionproof agent and the water in the water system into which the corrosionproof agent is added, and the calibration curve is prepared. In this case, the max. excitation wave length and the max. fluorescent wave length are obtained by using a high concentration solution, and it is desirable to set this wave length as measurement wave length. The water in the water system into which the corrosionproof agent is added is taken as sample water continuously or intermittently, and the fluorescent intensity is measured at a previously determined measurement wave length, and the concentration of the corrosionproof agent is obtained from the previously obtained calibration curve. In this measurement, if pH varies, pH is adjusted by adding acetic acid, etc. In the result of the measurement, if the excess or shortage of concentration is judged, a chemicals pouring pump is turned ON or OFF, or a chemicals pouring valve is adjusted to control the addition quantity so as to obtain a proper concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアゾール類の濃度管理方
法に係り、特に、微少量のベンゾトリアゾール及びその
誘導体等のアゾール類の水中濃度を、短時間で簡便に測
定することができるアゾール類の濃度管理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the concentration of azoles, and particularly to an azole which can easily measure the concentration of a small amount of benzotriazole and its derivatives in water in a short time. Concentration management method.

【0002】[0002]

【従来の技術】ベンゾトリアゾールやその誘導体である
トリルトリアゾール及びこれらのカリウム塩等のアルカ
リ金属塩は、水中の銅又は銅合金用防食剤として冷却水
系等で広く使用されている。これらの防食剤はその防食
効果が非常に優れているため、水中添加濃度は非常に低
く、0.5mg/l〜数mg/lで使用される場合が多
い。
2. Description of the Related Art Benzotriazole and its derivative tolyltriazole and their alkali metal salts such as potassium salts are widely used in cooling water systems as anticorrosive agents for copper or copper alloys in water. Since these anticorrosive agents are very excellent in their anticorrosive effect, their concentration in water is very low, and they are often used at 0.5 mg / l to several mg / l.

【0003】ところで、これらの防食剤の水中濃度は、
水の希釈や濃縮、防食剤の金属面への吸着による消費等
の原因によって添加後変化する。従って、防食管理を充
分に行なうためには、水中濃度を適宜測定し、これら防
食剤の実際濃度が所望範囲に保持されていることを確認
すると共に、濃度不足である場合には防食剤を追加する
などの措置をとることが必要とされる。
By the way, the concentration of these anticorrosive agents in water is
It changes after addition due to factors such as water dilution and concentration, consumption of the anticorrosive agent adsorbed on the metal surface, etc. Therefore, in order to carry out sufficient anticorrosion control, the concentrations in water should be appropriately measured, and it should be confirmed that the actual concentrations of these anticorrosives are maintained within the desired range. It is necessary to take measures such as

【0004】従来、この濃度測定法としては、試料水を
液体クロマトグラフィーで分離濃縮した後、紫外線吸収
スペクトルで検出する方法が実用されており、精度、感
度ともに良好な結果が得られている。
Conventionally, as a method for measuring the concentration, a method in which a sample water is separated and concentrated by liquid chromatography and then detected by an ultraviolet absorption spectrum has been practically used, and good results are obtained in terms of accuracy and sensitivity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の濃度測定法では、 分析装置を測定現場に携帯できないので、試料水を
分析室に運ぶ必要があり、煩雑な運送作業が必要とな
る。 測定にかなりの長時間(約15分)を必要とする。 等の欠点を有し、必ずしも満足し得る方法とは言えなか
った。
However, in the above-mentioned conventional concentration measuring method, since the analyzer cannot be carried to the measuring site, it is necessary to carry the sample water to the analyzing room, which requires complicated carrying work. The measurement requires a considerably long time (about 15 minutes). However, it is not always a satisfactory method.

【0006】本発明は上記従来の問題点を解決し、微少
量のベンゾトリアゾール及びその誘導体等のアゾール類
の水中濃度であっても、短時間で簡便に測定することが
できるアゾール類の濃度管理方法を提供することを目的
とする。
The present invention solves the above-mentioned conventional problems and manages the concentration of azoles which can be easily measured in a short time even if the concentration of azoles such as benzotriazole and its derivatives in water is very small. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】本発明のアゾール類の濃
度管理方法は、アゾール類を水中に添加し、その水中残
留濃度を蛍光分析により測定することを特徴とする。
The method for controlling the concentration of azoles of the present invention is characterized in that the azoles are added to water and the residual concentration in the water is measured by fluorescence analysis.

【0008】即ち、本発明者らは、簡便かつ迅速なアゾ
ール類の水中濃度測定法について検討した結果、アゾー
ル類が蛍光特性を示すことを知見し、蛍光分析によっ
て、これらを短時間で簡便に測定できることを見出し、
本発明を完成させた。
[0008] That is, the inventors of the present invention, as a result of studying a simple and rapid method for measuring the concentration of azoles in water, found that the azoles show fluorescence characteristics, and by fluorescence analysis, they were easily and quickly obtained. Find that you can measure,
The present invention has been completed.

【0009】本発明においては、アゾール類を添加した
水の蛍光分析により、蛍光強度を求めるが、この蛍光分
析においては、各蛍光性化合物特有の最大励起波長の光
で励起し、発せられる蛍光の最大蛍光波長における強度
を測定することにより最大感度の測定が可能である。こ
のため、予め、試料水に応じて、即ち、溶媒となる水及
びアゾール化合物の種類に応じて、比較的高濃度の試料
水を用いて最大励起波長及び最大蛍光波長を求めてお
き、当該最大蛍光波長における強度を測定するのが、測
定精度の面から好ましい。しかしながら、最大励起波長
以外の光で励起し、また、最大蛍光波長以外の蛍光強度
を測定しても、感度は低下するものの測定は可能である
から、本発明の方法において、測定波長は何ら制限され
るものではない。
In the present invention, the fluorescence intensity is obtained by fluorescence analysis of water added with azoles. In this fluorescence analysis, the fluorescence emitted by excitation with light having the maximum excitation wavelength peculiar to each fluorescent compound is detected. The maximum sensitivity can be measured by measuring the intensity at the maximum fluorescence wavelength. Therefore, in advance, depending on the sample water, that is, depending on the water serving as a solvent and the type of the azole compound, the maximum excitation wavelength and the maximum fluorescence wavelength are obtained using sample water having a relatively high concentration, and the maximum It is preferable to measure the intensity at the fluorescence wavelength in terms of measurement accuracy. However, excitation with light other than the maximum excitation wavelength, and even when measuring the fluorescence intensity other than the maximum fluorescence wavelength, since it is possible to measure the sensitivity is reduced, in the method of the present invention, the measurement wavelength is not limited It is not something that will be done.

【0010】なお、同一化合物の同一濃度溶液の蛍光強
度は、上述の如く測定波長によって変化するだけでなく
溶媒の特性によっても変化する。溶媒が水の場合にはp
Hが特に重要であり、pHにより蛍光強度は変化する。
従って、試料水のpHが大幅に変動する場合には、蛍光
測定に先立ち、予めpHを一定の値に調整しておく必要
がある。pHを調整するためには、例えば、酢酸のよう
な蛍光特性のない又は蛍光強度の低い弱酸及び/又は弱
塩基を所定量添加すれば良い。
The fluorescence intensity of the same concentration solution of the same compound varies not only with the measurement wavelength as described above but also with the characteristics of the solvent. P when the solvent is water
H is particularly important, and the fluorescence intensity changes with pH.
Therefore, when the pH of the sample water fluctuates significantly, it is necessary to adjust the pH to a constant value in advance before the fluorescence measurement. In order to adjust the pH, for example, a weak acid and / or a weak base having no fluorescence property or low fluorescence intensity, such as acetic acid, may be added in a predetermined amount.

【0011】本発明の方法により、ベンゾトリアゾー
ル、トリルトリアゾール又はトリルトリアゾールカリウ
ム塩等の銅又は銅合金用防食剤の濃度管理を行なうに
は、例えば、次の手順で実施するのが好ましい。
In order to control the concentration of the anticorrosive agent for copper or copper alloy such as benzotriazole, tolyltriazole or tolyltriazole potassium salt by the method of the present invention, it is preferable to carry out, for example, the following procedure.

【0012】 検量線の作成 用いる防食剤と、これを添加する水系の水とを用いて、
既知濃度の溶液に対する蛍光強度を求め、予め検量線を
作成する。この場合、好ましくは、高濃度溶液を用い
て、最大励起波長及び最大蛍光波長を求め、当該波長に
て蛍光強度を測定する。 試料水の測定 連続的に又は間欠的に、防食剤を添加している水系の水
を試料水として採取し、その蛍光強度を上記における
測定波長で測定し、で求めた検量線から防食剤濃度を
求める。この測定に当り、pHが変動している場合に
は、前述の如く酢酸等を添加してpH調整を行なう。 防食剤添加量の制御 上記の測定結果から、濃度の過不足が判明した場合に
は、薬注ポンプの稼働をON又はOFFする、或いは薬
注バルブの開閉を調節することにより、適正濃度となる
ように添加量を制御する。
Preparation of Calibration Curve Using an anticorrosive agent to be used and water of an aqueous system to which it is added,
The fluorescence intensity for a solution of known concentration is determined and a calibration curve is created in advance. In this case, preferably, a high concentration solution is used to obtain the maximum excitation wavelength and the maximum fluorescence wavelength, and the fluorescence intensity is measured at the wavelength. Measurement of sample water Continuously or intermittently, sample water of water containing an anticorrosive as sample water, measure its fluorescence intensity at the measurement wavelength above, and from the calibration curve obtained in Ask for. In this measurement, if the pH is changing, acetic acid or the like is added to adjust the pH as described above. Controlling the amount of anticorrosive agent added If the concentration is found to be excessive or insufficient from the above measurement results, turn the chemical pump on or off or adjust the open / close of the chemical valve to obtain the proper concentration. Control the amount added.

【0013】なお、上記、の処理はコンピュータ制
御により自動的に行なうことも可能である。
The above processing can be automatically performed by computer control.

【0014】[0014]

【作用】アゾール類は、濃度と蛍光強度とが比例する優
れた蛍光特性を示す蛍光性化合物である。従って、アゾ
ール類と、これを添加する水とを用いて、予め検量線を
作成しておくことにより、試料水の蛍光強度測定結果か
ら、短時間で容易に濃度を求めることができる。この蛍
光分析に要する時間は1〜2分で良く、極めて迅速に測
定を行なえる。特に、蛍光分析装置は小型携帯用のもの
が市販されているので、これを測定したい場所に携行す
れば即時測定可能であり、従来のように、試料水を液体
クロマト分析装置が設置してある分析室に運送しなくて
よく、測定値が容易かつ迅速に得られる。
The azoles are fluorescent compounds exhibiting excellent fluorescence characteristics in which concentration and fluorescence intensity are proportional. Therefore, the concentration can be easily obtained in a short time from the fluorescence intensity measurement result of the sample water by preparing a calibration curve in advance using the azoles and the water to which the azoles are added. The time required for this fluorescence analysis is 1 to 2 minutes, and the measurement can be performed extremely quickly. In particular, since a small and portable fluorescence analyzer is commercially available, it can be measured immediately by carrying it to the place where you want to measure it.As in the past, a sample water for liquid chromatography is installed. Measurement values can be obtained easily and quickly without having to transport them to the analysis room.

【0015】[0015]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0016】実施例1 脱塩水にベンゾトリアゾールとトリルトリアゾールカリ
ウム塩を溶解して各々0.1、0.3、1.0、3.0
mg/l標準溶液を調製した。各溶液の蛍光分析を、日
本分光製「FP−777型分光蛍光光度計」により、次
のようにして行なった。即ち、まず、各3mg/l溶液
について最大励起波長と最大蛍光波長、及びこのときの
蛍光強度を求めた。最大励起波長及び最大蛍光波長は下
記表1に示す通りであった。
Example 1 Benzotriazole and tolyltriazole potassium salt were dissolved in demineralized water to obtain 0.1, 0.3, 1.0 and 3.0, respectively.
A mg / l standard solution was prepared. Fluorescence analysis of each solution was performed as follows using "FP-777 type spectrofluorimeter" manufactured by JASCO. That is, first, the maximum excitation wavelength, the maximum fluorescence wavelength, and the fluorescence intensity at this time were obtained for each 3 mg / l solution. The maximum excitation wavelength and the maximum fluorescence wavelength were as shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】次にこの波長における0.1、0.3、1
mg/l溶液の蛍光強度を測定した。また、脱塩水につ
いても同様の測定を行なった。
Next, 0.1, 0.3, 1 at this wavelength
The fluorescence intensity of the mg / l solution was measured. In addition, the same measurement was performed for demineralized water.

【0019】測定結果を図1に示す。図1より、得られ
た検量線は良好な直線製を示し、誤差0.1mg/l程
度で測定可能であることが確認された。
The measurement results are shown in FIG. From FIG. 1, it was confirmed that the obtained calibration curve showed a good straight line and that measurement was possible with an error of about 0.1 mg / l.

【0020】実施例2 脱塩水にベンゾトリアゾール、トリルトリアゾール、ト
リルトリアゾールカリウム塩を溶解して各々0.1、
0.3、1.0、3.0mg/l標準溶液を調製した。
各溶液50mlに氷酢酸を1%濃度となるように0.5
ml加えてよく混合してから、日本分光製「FP−77
7型分光蛍光光度計」を用いて、実施例1と同様にして
蛍光分析を行なった。3mg/l溶液の最大励起波長及
び最大蛍光波長は下記表2に示す通りであった。なお、
各標準溶液は氷酢酸の添加によりpH2.50となっ
た。
Example 2 Benzotriazole, tolyltriazole and tolyltriazole potassium salt were dissolved in demineralized water to obtain 0.1 and
0.3, 1.0 and 3.0 mg / l standard solutions were prepared.
Add 50 ml of each solution to 0.5% glacial acetic acid to a concentration of 1%.
After adding ml and mixing well, "FP-77" manufactured by JASCO Corporation
Fluorescence analysis was performed in the same manner as in Example 1 using a "7 type spectrofluorometer". The maximum excitation wavelength and maximum fluorescence wavelength of the 3 mg / l solution were as shown in Table 2 below. In addition,
The pH of each standard solution was adjusted to 2.50 by adding glacial acetic acid.

【0021】[0021]

【表2】 [Table 2]

【0022】測定結果を図2に示す。図2より、いずれ
の検量線も良好な直線製を示し、氷酢酸によりpH調整
を行なっても3種共に測定誤差0.1ppm以下で測定
可能であることが確認された。なお、図2で濃度0mg
/lに対応する蛍光強度35〜50は、測定のために添
加した氷酢酸とアゾール化合物を溶解した脱塩水による
バックグラウンドであり、測定波長によってわずかなが
ら異なった値を示している。バックグラウンドは水中不
純物によって異なった値をとり得るが、測定するアゾー
ル類を添加する水を用いて検量線を作成しておけば、測
定が可能である。
The measurement results are shown in FIG. From FIG. 2, it was confirmed that all the calibration curves showed good linearity, and that even if the pH was adjusted with glacial acetic acid, all three types could be measured with a measurement error of 0.1 ppm or less. Note that the concentration is 0 mg in FIG.
The fluorescence intensity of 35 to 50 corresponding to / l is the background due to the demineralized water in which glacial acetic acid and the azole compound added for the measurement were dissolved, and shows slightly different values depending on the measurement wavelength. The background may take different values depending on impurities in water, but the measurement can be performed by preparing a calibration curve using water to which the azoles to be measured are added.

【0023】実施例3 厚木市水にベンゾトリアゾール、トリルトリアゾールを
溶解した後、氷酢酸を1%となるように添加して、実施
例2と同様な測定を行なった。各3mg/l溶液の最大
励起波長及び最大蛍光波長は下記表3に示す通りであっ
た。
Example 3 Benzotriazole and tolyltriazole were dissolved in Atsugi city water, and glacial acetic acid was added thereto to a concentration of 1%, and the same measurement as in Example 2 was carried out. The maximum excitation wavelength and the maximum fluorescence wavelength of each 3 mg / l solution were as shown in Table 3 below.

【0024】[0024]

【表3】 [Table 3]

【0025】測定結果を図3に示す。図3より明らかな
ように、水道水中の不純物により濃度0mg/lの蛍光
強度(バックグラウンド)が少し増加しているが、図2
とほぼ同様の結果であり、ベンゾトリアゾール、トリル
トリアゾール等の銅用防食剤濃度は水道水中でも測定可
能である。
The measurement results are shown in FIG. As is clear from FIG. 3, the fluorescence intensity (background) at a concentration of 0 mg / l was slightly increased due to impurities in tap water.
The results are almost the same as those in Example 1, and the concentration of the anticorrosive agent for copper such as benzotriazole and tolyltriazole can be measured in tap water.

【0026】[0026]

【発明の効果】以上詳述した通り、本発明のアゾール類
の濃度管理方法によれば、各種アゾール類の水中濃度を
微少濃度であっても、短時間で簡便に測定することが可
能とされる。因みに、従来においては、1試料の測定に
約15分要していたものが、本発明によれば、1〜2分
で測定可能とされる。また、従来現場にて測定不可能で
あることから、試料水の分析室への運送が必要とされて
いたが、本発明の方法によれば、携帯用装置等を用い
て、容易かつ効率的に現場測定することが可能とされ
る。
As described above in detail, according to the method for controlling the concentration of azoles of the present invention, it is possible to easily measure the concentration of various azoles in water even in a minute amount in a short time. It Incidentally, conventionally, it took about 15 minutes to measure one sample, but according to the present invention, it can be measured in 1 to 2 minutes. Further, since it was conventionally impossible to measure at the site, it was necessary to transport the sample water to the analysis room, but according to the method of the present invention, it is easy and efficient to use a portable device or the like. It is possible to measure in the field.

【0027】本発明の方法は、特にベンゾトリアゾー
ル、トリルトリアゾール或いはこれらの金属塩等のアゾ
ール系銅・銅合金用防食剤の濃度測定、濃度管理法とし
て、工業的に極めて有用であり、簡便かつ迅速な測定に
より、濃度変化に対する応答性に優れた濃度管理を行な
って、より確実な防食を行なうことが可能とされる。
The method of the present invention is industrially extremely useful, particularly as a method for measuring and controlling the concentration of an azole-based anticorrosive agent for copper / copper alloys such as benzotriazole, tolyltriazole or metal salts thereof, and is simple and simple. Rapid measurement enables concentration control with excellent responsiveness to changes in concentration, and more reliable corrosion prevention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の測定結果を示すグラフである。FIG. 1 is a graph showing the measurement results of Example 1.

【図2】実施例2の測定結果を示すグラフである。FIG. 2 is a graph showing the measurement results of Example 2.

【図3】実施例3の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of Example 3.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アゾール類を水中に添加し、その水中残
留濃度を蛍光分析により測定することを特徴とするアゾ
ール類の濃度管理方法。
1. A method for controlling the concentration of azoles, which comprises adding azoles to water and measuring the residual concentration in the water by fluorescence analysis.
JP3237949A 1991-09-18 1991-09-18 How to control the concentration of azoles Expired - Lifetime JP3024301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237949A JP3024301B2 (en) 1991-09-18 1991-09-18 How to control the concentration of azoles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237949A JP3024301B2 (en) 1991-09-18 1991-09-18 How to control the concentration of azoles

Publications (2)

Publication Number Publication Date
JPH0572131A true JPH0572131A (en) 1993-03-23
JP3024301B2 JP3024301B2 (en) 2000-03-21

Family

ID=17022855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237949A Expired - Lifetime JP3024301B2 (en) 1991-09-18 1991-09-18 How to control the concentration of azoles

Country Status (1)

Country Link
JP (1) JP3024301B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121545A1 (en) * 2010-03-31 2011-10-06 Ecolab Usa Inc. Methods for calibrating a fluorometer
JP2011220980A (en) * 2010-04-14 2011-11-04 Central Res Inst Of Electric Power Ind Measuring method of concentration of fluorescence dyestuff in sample solution
US8248611B2 (en) 2010-03-31 2012-08-21 Ecolab Usa Inc. Handheld optical measuring device and method of use
CN104597010A (en) * 2014-12-30 2015-05-06 中国原子能科学研究院 Method for detecting Pd in high-level liquid waste by virtue of fluorescent probes
JP2018519513A (en) * 2015-07-01 2018-07-19 エコラボ ユーエスエー インコーポレイティド Calibration method for water hardness measurement
CN116106282A (en) * 2023-02-13 2023-05-12 上海淼清水处理有限公司 Method for detecting concentration of scale and corrosion inhibitor in circulating water by fluorescence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181826A (en) * 1975-01-14 1976-07-17 Mitsui Toatsu Chemicals
JPS6295449A (en) * 1985-10-22 1987-05-01 Fuji Electric Co Ltd Method for measuring concentration of benzotriazole in water
JPH01305069A (en) * 1988-05-31 1989-12-08 Shionogi & Co Ltd Benzotriazole derivative and fluorescent light emitting reagent containing the same derivative
JPH03182562A (en) * 1989-12-01 1991-08-08 Technicon Instr Corp Compound for quantitative measurement of reticular erythrocyte in whole blood, reagent composition and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181826A (en) * 1975-01-14 1976-07-17 Mitsui Toatsu Chemicals
JPS6295449A (en) * 1985-10-22 1987-05-01 Fuji Electric Co Ltd Method for measuring concentration of benzotriazole in water
JPH01305069A (en) * 1988-05-31 1989-12-08 Shionogi & Co Ltd Benzotriazole derivative and fluorescent light emitting reagent containing the same derivative
JPH03182562A (en) * 1989-12-01 1991-08-08 Technicon Instr Corp Compound for quantitative measurement of reticular erythrocyte in whole blood, reagent composition and its use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121545A1 (en) * 2010-03-31 2011-10-06 Ecolab Usa Inc. Methods for calibrating a fluorometer
US8248611B2 (en) 2010-03-31 2012-08-21 Ecolab Usa Inc. Handheld optical measuring device and method of use
US8352207B2 (en) 2010-03-31 2013-01-08 Ecolab Usa Inc. Methods for calibrating a fluorometer
JP2011220980A (en) * 2010-04-14 2011-11-04 Central Res Inst Of Electric Power Ind Measuring method of concentration of fluorescence dyestuff in sample solution
CN104597010A (en) * 2014-12-30 2015-05-06 中国原子能科学研究院 Method for detecting Pd in high-level liquid waste by virtue of fluorescent probes
JP2018519513A (en) * 2015-07-01 2018-07-19 エコラボ ユーエスエー インコーポレイティド Calibration method for water hardness measurement
CN116106282A (en) * 2023-02-13 2023-05-12 上海淼清水处理有限公司 Method for detecting concentration of scale and corrosion inhibitor in circulating water by fluorescence

Also Published As

Publication number Publication date
JP3024301B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US5278074A (en) Method of monitoring and controlling corrosion inhibitor dosage in aqueous systems
Miller et al. Hydrogen peroxide measurement in seawater by (p-hydroxyphenyl) acetic acid dimerization
Matsumiya et al. A novel fluorescence reagent, 10-hydroxybenzo [h] quinoline-7-sulfonate, for selective determination of beryllium (II) ion at pg cm− 3 levels
Compañó et al. Spectrofluorimetric detection of zinc and cadmium with 8-(benzenesulfonamido)-quinoline immobilized on a polymeric matrix
JPH0572131A (en) Concentration control for azole
Smith et al. Spectrophotometric determination of silicate in natural waters by formation of α-molybdosilicic acid and reduction with a tin (IV)-ascorbic acid-oxalic acid mixture
US5952233A (en) Test kit for measuring the level of carboxylate anion in engine coolant
Hernandez et al. Fluorimetric determination of aluminium with morin after extraction with isobutyl methyl ketone. Part I. Fluorescence of the aluminium-morin complex in an isobutyl methyl ketone-ethanol-water system
IT8323028A1 (en) METHOD REACTIVE COMPOSITIONS SUITABLE FOR THE COLORIMETRIC DETERMINATION OF METALS
Dagnall et al. The spectrofluorimetric determination of magnesium with NN′-bis-salicylidene-2, 3-diaminobenzofuran
Keelan et al. An alternative fluorescence enhancement solution for use in lanthanide-based time-resolved fluoroimmunoassays.
Dakubu et al. The fluorometric determination of europium ion concentration as used in time-resolved fluoroimmunoassay
Cucci et al. Quantitative study of reaction between beryllium and quinizarin-2-sulfonic acid
JPH09178662A (en) Concentration control method for water-based additive
JP2000271564A (en) Method for controlling concentration of chemical for water treatment in cooling-water system
JP3500431B2 (en) Fluoride ion determination method
Feng et al. FIA determination of pyruvate in serum based on direct chemiluminescence oxidation
JP3743798B2 (en) Catecholamine determination method
Smirnova et al. Determination of flunixin by sensitized terbium fluorescence in the presence of surfactant micelles
Schulman et al. Prototropic equilibria in the first excited singlet states of halogenated 8-quinolinols
Christopoulos et al. Ultrasensitive determination of europium using microsecond time-resolved spectrofluorimetry
Vilchez et al. Determination of benomyl residues in waters by solid-phase spectrofluorimetry
Du et al. Flow injection chemiluminescence determination of isoniazid using the lucigenin–periodate system
Sulaiman Differential pulse polarographic behaviors of diazonium salt derived from 1-amino-4-naphthalene sulfonic acid: Application for the trace determination of nitrite
SU1755128A1 (en) Method of aluminium determination

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12