JPH0572119A - Spectrophotometer and manufacture of attenuation total reflection prism thereof - Google Patents

Spectrophotometer and manufacture of attenuation total reflection prism thereof

Info

Publication number
JPH0572119A
JPH0572119A JP23598691A JP23598691A JPH0572119A JP H0572119 A JPH0572119 A JP H0572119A JP 23598691 A JP23598691 A JP 23598691A JP 23598691 A JP23598691 A JP 23598691A JP H0572119 A JPH0572119 A JP H0572119A
Authority
JP
Japan
Prior art keywords
total reflection
prism
film
spectrophotometer
reflection prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23598691A
Other languages
Japanese (ja)
Inventor
Toshiko Fujii
稔子 藤井
Yuji Miyahara
裕二 宮原
Yoshio Watanabe
吉雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23598691A priority Critical patent/JPH0572119A/en
Publication of JPH0572119A publication Critical patent/JPH0572119A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To suppress the adhesion of high polymers, improve the analysis precision, and prolong the life of a prism by forming a Langmuir-Brodgett's film which possesses the hydrophilic performance and hydrophobic performance under control and has a thickness less than a specific value, on the surface of an attenuation total reflection prism. CONSTITUTION:On a trapezoidal shaped attenuation total reflection (ATR) prism 3 made of ZnSe or AgBr, a thin and firm Langmuir-Brodgett's film which has a thickness having a specific value Langmuir-Brodgett's(LB) film 21 which is formed by superposing the vinyl compound such as vinyl stearate which has a thickness of at most 1/5 of the wave length of infrared ray 8, e.g. 30Angstrom by ultraviolet rays, electron beams and radioactive rays is formed. Though the infrared ray 8 being incident on the edge surface of the ATR prism 3 is transmitted from the other edge surface through the repetition of total reflection, the depth of the infrared ray 8 which oozes outside the prism 3 is about 1mum. and the infrared ray oozes into a sample 22, passing through the LB film 21 having a thickness of 60Angstrom or so, and an absorption spectrum is formed. The LB film 21 whose hydrophilic performance and hydrophobic performance are controlled prevents the adhesion of the high polymer of the sample 22 on the surface of the prism 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分光光度計に係り、とく
に高分子を含有する液体中の有機物質を赤外分光法と減
衰全反射法によって分析する分光光度計とそこに用いる
減衰全反射(ATR)プリズムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrophotometer, and more particularly to a spectrophotometer for analyzing an organic substance in a liquid containing a polymer by infrared spectroscopy and attenuated total reflection method and an attenuated total reflection used therefor. (ATR) prism.

【0002】[0002]

【従来の技術】従来の減衰全反射法、赤外分光法の組合
せによる高分子溶液の成分分析は、例えばアナリティカ
ル ケミストリ 61誌、(1989年)、第2016
〜2023頁に記載のように、全血及び血漿の生化学成
分を、ロッド状ZnSeの減衰全反射(ATR、Attenu
ated TotaL Reflection)プリズムを用いた光学セルと
フ−リエ変換赤外分光光度計(FT−IR,Fourier Tra
nsform-Infrared Spectrometer)を用いて分析してい
た。なお、上記装置に関しては、例えばアメリカン ケ
ミカル ソサエティ ナンバ−343、(1987
年)、第362〜377頁に記載のように、ポリ塩化ビ
ニルなどの高分子膜をスピンコ−トしたGeのATRプ
リズム上に試料の流路を形成し、プリズム上に試料を導
入してFT−IRでスペクトルを測定するようにしてい
た。また、特開昭55−500589号公報には、反射
エレメントと試料の間に交換可能な透明な高屈折率物質
の中間層を挿入して、反射エレメントの光学面を汚れを
除去して再生する全反射スペクトル法が開示されてい
る。
2. Description of the Related Art The component analysis of a polymer solution by a conventional combination of attenuated total reflection method and infrared spectroscopy is described in Analytical Chemistry 61, (1989), No. 2016.
As described on page 2023, the biochemical components of whole blood and plasma are analyzed by the attenuated total reflection (ATR, Attenu) of rod-shaped ZnSe.
ated TotaL Reflection) Optical cell using a prism and Fourier transform infrared spectrophotometer (FT-IR, Fourier Tra)
nsform-Infrared Spectrometer). Regarding the above apparatus, for example, American Chemical Society Number-343, (1987)
, Pp. 362-377, a sample channel was formed on a Ge ATR prism spin-coated with a polymer film such as polyvinyl chloride, and the sample was introduced onto the prism to obtain FT. The IR was used to measure the spectrum. Further, in JP-A-55-500589, a replaceable transparent intermediate layer of a high refractive index material is inserted between the reflective element and the sample to remove dirt on the optical surface of the reflective element for reproduction. A total reflection spectroscopy method is disclosed.

【0003】図10は分光器部1とコンピュ−タ部2と
を組み合わせディスクトップ型とした上記フ−リエ変換
赤外分光光度計(FT−IR)の外観の一例である。A
TRプリズム3上に形成された試料室に試料を直接導入
して測定を行う。分析操作はキ−ボ−ド4によって行
い、測定されたスペクトル及び分析結果はディスプレイ
5やプリンタ6に出力される。
FIG. 10 shows an example of the appearance of the above-mentioned Fourier transform infrared spectrophotometer (FT-IR) of a desktop type in which the spectroscope section 1 and the computer section 2 are combined. A
The sample is directly introduced into the sample chamber formed on the TR prism 3 for measurement. The analysis operation is performed by the keyboard 4, and the measured spectrum and the analysis result are output to the display 5 and the printer 6.

【0004】図11は上記血液分析用フ−リエ変換赤外
分光光度計のブロック図である。グロ−バ光源7が出射
する赤外光8は、ハ−フミラ−9により固定ミラ−10
と可動ミラ−11方向に2分されてそれぞれ反射され、
ハ−フミラ−9により合成されて光の干渉によりインタ
−フェログラムを生じる。ミラ−駆動部20は可動ミラ
−11の位置を調節する。鏡12と同13を経由した赤
外光成分はATRプリズム3に入射され、試料による吸
収を受けてMCT検知器15に入射される。MCT検知
器15の出力信号はAD変換器16によりデジタル信号
に変換されてコンピュ−タ部17に取り込まれ、デ−タ
処理されて表示部18に表示される。また、上記分析の
操作は操作部19によって行われる。
FIG. 11 is a block diagram of the above-mentioned Fourier transform infrared spectrophotometer for blood analysis. The infrared light 8 emitted from the globe light source 7 is fixed by a half mirror 9 to a fixed mirror 10.
And the movable mirror is divided into two in the 11 direction and reflected respectively,
The interferogram is generated by the interference of the light, which is synthesized by the half mirror 9. The mirror driving unit 20 adjusts the position of the movable mirror 11. The infrared light component that has passed through the mirrors 12 and 13 is incident on the ATR prism 3, is absorbed by the sample, and is incident on the MCT detector 15. The output signal of the MCT detector 15 is converted into a digital signal by the AD converter 16 and taken into the computer section 17, processed by data and displayed on the display section 18. The analysis operation is performed by the operation unit 19.

【0005】図12は上記ATRプリズム用セルの部分
断面図である。台形型のATRプリズム3の上に試料2
2を導入し、グロ−バ光源7からの赤外光8を反射鏡2
3を介してATRプリズム端面に入射する。赤外光はA
TRプリズム内を全反射を繰り返して伝搬し、他方の端
面から反射鏡24を介してMCT検知器15に入射され
る。赤外光は上記全反射の過程で試料中にしみ出て試料
22に吸収されるので、吸収スペクトルが形成される。
FIG. 12 is a partial cross-sectional view of the ATR prism cell. Sample 2 on the trapezoidal ATR prism 3
2 is introduced and the infrared light 8 from the globe light source 7 is reflected by the reflecting mirror 2
It is incident on the end surface of the ATR prism via Infrared light is A
The light is repeatedly propagated in the TR prism by repeating total reflection, and is incident on the MCT detector 15 from the other end face via the reflecting mirror 24. Infrared light seeps into the sample and is absorbed by the sample 22 in the process of total reflection, so that an absorption spectrum is formed.

【0006】また、低濃度成分の定量分析において、A
TRプリズム3の表面に液体試料内の高分子が吸着す
る。例えば血液分析においてはアルブミン、グロブリ
ン、フィブリノ−ゲン等の血液中の蛋白が複合してAT
Rプリズム3の表面に吸着する。現状においては、これ
らの中の個々の蛋白の吸着については、蛋白質表面の性
質からある程度予測できるが、蛋白が複合した場合につ
いては未知のことが多い。一方、医用の抗血栓材料の分
野においては、材料表面の性質から蛋白吸着を抑制しよ
うとすることが研究されている。
In the quantitative analysis of low concentration components, A
The polymer in the liquid sample is adsorbed on the surface of the TR prism 3. For example, in blood analysis, proteins in blood such as albumin, globulin, fibrinogen, etc. are complexed to form AT.
Adsorbed on the surface of the R prism 3. At present, the adsorption of each of these proteins can be predicted to some extent from the properties of the protein surface, but it is often unknown when the proteins are complexed. On the other hand, in the field of antithrombogenic materials for medical use, it has been studied to suppress protein adsorption due to the properties of the material surface.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術において
は、液体試料内の低濃度成分の定量分析において、AT
Rプリズム3の表面に液体試料内の高分子が吸着し、こ
の高分子の吸収帯と目的成分物質の吸収帯が重なると目
的成分物質の定量性が低下し、測定結果の再現性を低下
するという問題があった。また、吸着した高分子を除去
するために、検体40個毎に一回程度の割合でATRプ
リズム3の表面を研磨する必要があり、分析の効率化を
阻害していた。本発明の目的は、上記ATRプリズム表
面への高分子吸着を軽減して分析精度の向上し、また、
ATRプリズム自動的に洗浄できるようにして上記吸着
高分子を適宜除去して、ATRプリズムの長寿命化を図
った分光光度計とその減衰全反射プリズムの製造方法を
提供することにある。
SUMMARY OF THE INVENTION In the above-mentioned prior art, AT is used for quantitative analysis of low concentration components in a liquid sample.
When the polymer in the liquid sample is adsorbed on the surface of the R prism 3 and the absorption band of the polymer overlaps with the absorption band of the target component substance, the quantitative property of the target component substance is lowered and the reproducibility of the measurement result is lowered. There was a problem. Further, in order to remove the adsorbed polymer, it is necessary to polish the surface of the ATR prism 3 once for every 40 specimens, which hinders the efficiency of analysis. An object of the present invention is to improve the accuracy of analysis by reducing the adsorption of polymer on the surface of the ATR prism.
It is an object of the present invention to provide a method for manufacturing a spectrophotometer and its attenuating total reflection prism in which the ATR prism can be automatically washed to appropriately remove the adsorbed polymer to prolong the life of the ATR prism.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、ATRプリズム面上に、分子の大きさ単位で少なく
とも一層以上累積した疎水性または親水性の単分子膜、
またはその双方を備えるようにする。また、上記親水基
と疎水基とを併せもった単分子膜をミクロリソグラフィ
−技術により配向して形成し、親水性と疎水性の度合い
を適宜設定できるようにする。また、上記単分子膜の厚
さを、測定用赤外線波長の少なくとも1/5以下にす
る。また、上記単分子膜を、ステアリン酸ビニルまたは
アクリル酸オクタデシル等のビニル系化合物、またはジ
アセチレン系化合物、ジエン系化合物等を紫外線または
電子線または放射線などにより重合して形成するように
する。さらに、上記ATRプリズムを、KRS−5また
はKRS−6またはZnSeまたはGeまたはSiまた
はAs2Se3またはAgClまたはAgBrまたはサフ
ァイア材等により形成するようにする。さらに、洗浄液
を上記ATRプリズム面へ送液し、また同面上より除去
し、さらに乾燥してATRプリズム面を洗浄できるよう
にする。
In order to achieve the above object, a hydrophobic or hydrophilic monomolecular film in which at least one or more molecules are accumulated in a size unit of a molecule on an ATR prism surface,
Or have both. In addition, a monomolecular film having both the hydrophilic group and the hydrophobic group is oriented and formed by a microlithography technique so that the degree of hydrophilicity and hydrophobicity can be appropriately set. Further, the thickness of the monomolecular film is set to at least ⅕ or less of the infrared wavelength for measurement. In addition, the monomolecular film is formed by polymerizing a vinyl compound such as vinyl stearate or octadecyl acrylate, or a diacetylene compound, a diene compound, or the like with ultraviolet rays, electron beams or radiation. Furthermore, the ATR prism, so as to form a KRS-5 or KRS-6 or ZnSe or Ge or Si or As 2 Se 3 or AgCl or AgBr or sapphire material or the like. Further, the cleaning liquid is sent to the ATR prism surface, removed from the same surface, and further dried so that the ATR prism surface can be cleaned.

【0009】[0009]

【作用】上記本発明による単分子膜が、ATRプリズム
表面に対する試料内高分子物質の吸着を抑止する。ま
た、上記単分子膜の厚みは十分に薄いので、プリズムよ
り試料内にしみだす光成分を減衰なく透過させる。ま
た、ATRプリズム面の上記洗浄機構によりATRプリ
ズム面を自動的に洗浄して再生する。
The monolayer according to the present invention suppresses the adsorption of the polymer substance in the sample to the surface of the ATR prism. Further, since the thickness of the monomolecular film is sufficiently small, the light component oozing into the sample from the prism is transmitted without attenuation. The ATR prism surface cleaning mechanism automatically cleans and regenerates the ATR prism surface.

【0010】[0010]

【実施例】図1は本発明の分光光度計に用いるATRプ
リズム用セルの部分断面図である。台形型のKRS−5
またはKRS−6またはZnSeまたはGeまたはSi
またはAs2Se3またはAgClまたはAgBrまたは
サファイア材等により形成したATRプリズム3上に、
厚みが赤外光8の波長の少なくとも1/5以下、例えば
30Åのステアリン酸ビニルまたはアクリル酸オクタデ
シル等のビニル系化合物、またはジアセチレン系化合
物、ジエン系化合物等を紫外線または電子線または放射
線などにより重合して形成したラングミュア−ブロジェ
ット(LB)膜21を設けている点が本発明の特徴であ
る。このATRプリズム3上に試料22を直接導入す
る。
1 is a partial sectional view of an ATR prism cell used in a spectrophotometer of the present invention. Trapezoid type KRS-5
Or KRS-6 or ZnSe or Ge or Si
Or on the ATR prism 3 formed of As 2 Se 3 or AgCl or AgBr or sapphire material,
A thickness of at least ⅕ or less of the wavelength of infrared light 8, for example, a vinyl compound such as 30 Å vinyl stearate or octadecyl acrylate, or a diacetylene compound, a diene compound, etc. by ultraviolet rays, electron beams or radiation. A feature of the present invention is that a Langmuir-Blodgett (LB) film 21 formed by polymerization is provided. The sample 22 is directly introduced onto the ATR prism 3.

【0011】グロ−バ光源7からの赤外光8は反射鏡2
3を介してATRプリズム3端面に入射され、全反射を
繰り返してプリズム内を伝搬し、他方の端面から出射し
反射鏡24を介してMCT検知器15へ入射される。上
記全反射の過程で、プリズム外へしみだす赤外光の深さ
は約1μmであるから、赤外光8はこれより十分に薄い
例えば60Å程度のLB膜を透過して試料中へ滲みだ
し、特定の波長成分が吸収されて吸収スペクトルを形成
する。上記LB膜21はATRプリズム3の表面に対す
る有害高分子の付着を抑止する。
Infrared light 8 from the globe light source 7 is reflected by the reflecting mirror 2.
The light is incident on the end surface of the ATR prism 3 via 3 and propagates through the prism by repeating total reflection, is emitted from the other end surface, and is incident on the MCT detector 15 via the reflecting mirror 24. In the process of total reflection described above, the depth of infrared light exuding to the outside of the prism is about 1 μm, so the infrared light 8 penetrates through the LB film of about 60 Å, which is sufficiently thinner than this, and exudes into the sample. , A specific wavelength component is absorbed to form an absorption spectrum. The LB film 21 prevents the harmful polymer from adhering to the surface of the ATR prism 3.

【0012】単に高分子の付着を抑止するためであれば
他の多くの膜も利用することができる。しかし、上記の
ように赤外光8が膜を透過して試料中へ滲みだす際の赤
外光8が蒙る減衰をできるだけ少なくする必要があるこ
とを考慮すると、比較的強固で薄い膜が得られる上記L
B膜がこの目的に適っているのである。また、上記LB
膜表面には親水性を示すものと疎水性を示すものとがあ
り、高分子の種類によって付着し易さが異なっている。
例えば、蛋白質等の生態を構成する物質は、多相系(ミ
クロドメイン構造)の表面を有しているので、上記LB
膜21にも多相系と類似の構造を持たせれば蛋白の表面
吸着を抑制することができる。また、アルブミンのよう
に比較的分子量の小さい血液蛋白は水中で球状となって
表面に親水基が多数露出するので、LB膜21表面も親
水性にすると互いに反発しあってアルブミンが吸着しに
くくなる。このように、血管内皮に血液蛋白と類似の表
面を作ることにより、血液蛋白の吸着が抑制されること
が実験的に確かめられている。
Many other membranes can be utilized simply to prevent the attachment of macromolecules. However, considering that it is necessary to reduce the attenuation of the infrared light 8 when the infrared light 8 permeates the film and oozes into the sample as described above, a relatively strong and thin film can be obtained. L above
The B film is suitable for this purpose. Also, the above LB
The surface of the film is classified into hydrophilic ones and hydrophobic ones, and the adhesion is different depending on the type of polymer.
For example, since substances such as proteins that make up the biology have a multi-phase (microdomain structure) surface,
If the membrane 21 also has a structure similar to that of the multiphase system, adsorption of proteins on the surface can be suppressed. In addition, since blood proteins having a relatively small molecular weight such as albumin become spherical in water and a large number of hydrophilic groups are exposed on the surface, if the surfaces of the LB film 21 are also made hydrophilic, they repel each other and albumin becomes difficult to adsorb. .. Thus, it has been experimentally confirmed that the adsorption of blood proteins is suppressed by forming a surface similar to blood proteins on the vascular endothelium.

【0013】このようにLB膜の性質と高分子の種類の
組合せにより高分子の付着し易さが異なるのであるが、
実際の場合、蛋白等は複数の高分子を含み、それらの表
面は疎水性と親水性の双方を含むのが一般的なので、L
B膜の表面を疎水性、または親水性にしたり、また、疎
水性と親水性の双方を含むようにすることにより一義的
な高分子吸着抑止効果を得ることができるのである。す
なわち、高分子吸着の抑止に対しては、表面の性質によ
らずLB膜のような薄く強固な膜を備えることがまず重
要である。次いで、高分子の種別に合わせて膜の性質を
設定するようにすると吸着抑止効果をさらに向上するこ
とができる。
As described above, the adhesion of the polymer differs depending on the combination of the properties of the LB film and the type of polymer.
In practice, proteins and the like contain a plurality of macromolecules, and their surfaces generally have both hydrophobic and hydrophilic properties.
By making the surface of the B film hydrophobic or hydrophilic, or by including both hydrophobic and hydrophilic, a unique polymer adsorption inhibiting effect can be obtained. That is, in order to suppress adsorption of polymer, it is first important to provide a thin and strong film such as an LB film regardless of the surface property. Next, by setting the properties of the film according to the type of polymer, the effect of suppressing adsorption can be further improved.

【0014】以下、本発明に用いる各種LB膜について
説明する。図2は上記LB膜の拡大断面図である。ω−
トリコセン酸を成膜分子としてミクロリソグラフィ−技
術により、LB膜21の表面に幅600Å程度の親水性
部分30と疎水性部分31を交互に形成する。このよう
に、親水性部分30と疎水性部分31とを交互に形成す
ると、高分子の種類によらずその付着をある程度防止す
ることができるので、LB膜21の汎用性を高めること
ができる。
Various LB films used in the present invention will be described below. FIG. 2 is an enlarged sectional view of the LB film. ω-
A hydrophilic portion 30 and a hydrophobic portion 31 having a width of about 600 Å are alternately formed on the surface of the LB film 21 by a microlithography technique using tricosenoic acid as a film forming molecule. By alternately forming the hydrophilic portions 30 and the hydrophobic portions 31 as described above, the adhesion of the polymers can be prevented to some extent regardless of the type of the polymer, so that the versatility of the LB film 21 can be enhanced.

【0015】図3はこのLB膜21の製造プロセス図で
ある。まず、同図(a)に示すように、水相32表面に
ω−トリコセン酸の単分子膜33を形成し、電子線34
を走射してω−トリコセン酸を重合する。次いで(b)
に示すように、重合したω−トリコセン酸単分子膜33
の疎水基がATRプリズム3の表面にくるように移しと
る(水平付着法)。次いで(c)に示すように、ATR
プリズム3を水面に対して垂直に沈めてから、水面にω
−トリコセン酸の単分子膜35を形成し、ATRプリズ
ム3を引き上げて単分子膜35をY型になるように膜3
3上に移しとる。次いで(d)に示すように、プリズム
上に移しとった膜35上に電子線34を照射して幅60
0Åの重合部31と非重合部36を交互に縞上に形成
し、(e)に示すように、エタノ−ルで洗浄し非重合部
36を除去して、膜33の親水性部分30を表面に露出
させる。以上の方法によって、ATRプリズム上に幅6
00Å程度の縞上の親水性部分と疎水性部分を持つミク
ロドメイン構造のLB膜を形成することができる。な
お、単分子膜の積層数によりLB膜の厚みを制御する。
FIG. 3 is a manufacturing process diagram of the LB film 21. First, as shown in FIG. 3A, a monomolecular film 33 of ω-tricosenoic acid is formed on the surface of the aqueous phase 32, and an electron beam 34 is formed.
To polymerize ω-tricosenoic acid. Then (b)
As shown in FIG. 3, the polymerized ω-tricosenoic acid monolayer 33
The hydrophobic group of is transferred to the surface of the ATR prism 3 (horizontal attachment method). Then, as shown in (c), the ATR
After submerging the prism 3 perpendicularly to the water surface,
Forming a monomolecular film 35 of tricosenoic acid, and pulling up the ATR prism 3 to form the monomolecular film 35 into a Y-shape.
Move to 3 above. Then, as shown in (d), the film 35 transferred onto the prism is irradiated with an electron beam 34 to have a width 60.
Overlapping portions 31 and non-overlapping portions 36 of 0 Å are alternately formed on the stripes, and as shown in (e), the non-overlapping portions 36 are removed by washing with ethanol to remove the hydrophilic portion 30 of the film 33. Expose to surface. By the above method, a width of 6 is formed on the ATR prism.
It is possible to form an LB film having a microdomain structure having a hydrophilic portion and a hydrophobic portion on a stripe of about 00Å. The thickness of the LB film is controlled by the number of monolayer films stacked.

【0016】図4および図5は上記LB膜の他の構造例
の断面図である。主な構成は図2と同様であるが、図4
においては、ATRプリズム3の上にY型膜を形成し電
子線をその表面に走射して配向を固定し、LB膜表面を
疎水性構造にしている点が特徴である。図5の構造は、
図3(a)と同様に電子線を走射し分子を重合させた水
面上の単分子膜をプリズム上に移しとったものであり、
LB膜表面は親水性になている。
4 and 5 are cross-sectional views of other structural examples of the LB film. The main structure is the same as that of FIG. 2, but FIG.
2 is characterized in that a Y-type film is formed on the ATR prism 3, an electron beam is radiated on the surface to fix the orientation, and the LB film surface has a hydrophobic structure. The structure of FIG.
Similar to FIG. 3 (a), an electron beam is radiated to polymerize molecules, and a monomolecular film on the water surface is transferred onto a prism.
The surface of the LB film is hydrophilic.

【0017】図6は本発明の効果を示すFT−IRによ
る血中蛋白の等温吸着量を説明する図である。横軸は血
液とプリズムとの接触時間であり、縦軸は蛋白の特徴的
なピ−クであるアミドIIの面積強度である。200はL
B膜のない従来のATRプリズム3を用いた場合の特性
であり、ATRプリズム3の表面に血液が接触すると、
血中蛋白はラングミュア型の吸着動態を示すので多量の
蛋白がATRプリズム表面に吸着し、大きなアミドIIの
面積強度値を示すようになる。これに対してLB膜を設
けた本発明のATRプリズムを用いると、特性線100
のように、血中蛋白の吸着は多少増加するものの、特性
線200と比較して蛋白の表面吸着量は著しく減少する
ことになる。
FIG. 6 is a diagram for explaining the isothermal adsorption amount of blood protein by FT-IR showing the effect of the present invention. The horizontal axis represents the contact time between blood and the prism, and the vertical axis represents the area intensity of amide II, which is a characteristic peak of protein. 200 is L
This is the characteristic when the conventional ATR prism 3 without the B film is used. When blood contacts the surface of the ATR prism 3,
Since blood proteins exhibit Langmuir-type adsorption kinetics, a large amount of proteins are adsorbed on the surface of the ATR prism, and a large area intensity value of amide II is exhibited. On the other hand, when the ATR prism of the present invention provided with the LB film is used, the characteristic line 100
As described above, although the adsorption of the protein in blood is slightly increased, the adsorption amount of the protein on the surface is significantly reduced as compared with the characteristic line 200.

【0018】図7は同様に本発明の効果を従来の場合と
比較して示すFT−IRによる蛋白スペクトルの測定デ
−タであり、横軸は光の波数(波長の逆数)、縦軸吸光
度である。特性線201はLB膜を被覆しないATRプ
リズムを用いて蛋白溶液を100回測定し、洗浄、風乾
した後のATRプリズム表面に吸着している蛋白の測定
結果である。特性線101はLB膜を被覆したATRプ
リズムを用い場合の同様の測定結果であり、矢印で示し
た部分が蛋白の特性吸収帯である。特性線101と同2
01を比較すると、ピ−ク強度で約5倍の開きがあり、
本発明によるLB膜の被覆により蛋白の吸着量を著しく
低減できることがわかる。
Similarly, FIG. 7 shows the measurement data of the protein spectrum by FT-IR showing the effect of the present invention in comparison with the conventional case, where the horizontal axis is the wave number of light (the reciprocal of the wavelength) and the vertical axis is the absorbance. Is. Characteristic line 201 is the measurement result of the protein adsorbed on the surface of the ATR prism after the protein solution was measured 100 times using the ATR prism not covering the LB film, washed and air dried. Characteristic line 101 is the same measurement result when the ATR prism coated with the LB film is used, and the portion indicated by the arrow is the characteristic absorption band of the protein. Same as characteristic line 101 2
Comparing 01, there is a gap of about 5 times in peak strength,
It can be seen that the coating amount of the LB film according to the present invention can significantly reduce the amount of adsorbed protein.

【0019】上記のように、ATRプリズム上のLB膜
により蛋白等の高分子の吸着を低減することができる
が、図8、図9に示すような洗浄機構を設けると上記吸
着を洗浄、除去してATRプリズム面をリフレッシュす
ることができる。このような洗浄機構はLB膜を有して
いない従来のATRプリズムに対しても有効である。図
8は上記洗浄機構の構成図である。LB膜21上の試料
は測定終了後に吸引装置25により除去され、次いで、
洗浄液(蒸留水)が送液装置26によってLB膜上に注
入される。この洗浄液の注入と同時に吸引装置25によ
り洗浄液を吸引、廃棄するようにして上記洗浄を行う。
試料及び洗浄廃液は廃液槽27に廃棄される。洗浄後は
吸引装置25によりセル中の残留溶液を除去して乾燥さ
せる。
As described above, the adsorption of macromolecules such as proteins can be reduced by the LB film on the ATR prism, but if a washing mechanism as shown in FIGS. 8 and 9 is provided, the adsorption is washed and removed. Then, the ATR prism surface can be refreshed. Such a cleaning mechanism is also effective for a conventional ATR prism having no LB film. FIG. 8 is a configuration diagram of the cleaning mechanism. The sample on the LB film 21 is removed by the suction device 25 after the measurement, and then,
The cleaning liquid (distilled water) is injected onto the LB film by the liquid feeding device 26. Simultaneously with the injection of the cleaning liquid, the above cleaning is performed by sucking and discarding the cleaning liquid by the suction device 25.
The sample and the cleaning waste liquid are discarded in the waste liquid tank 27. After washing, the residual solution in the cell is removed by the suction device 25 and dried.

【0020】図9は上記洗浄機構上面図である。送液装
置26と吸引装置25につながる管28がATRプリズ
ム3の両側面に沿って配管されており、各管28から複
数の分岐管29が接続され、左側の各分岐管29端から
LB膜21上に洗浄液が注入され、右側の各分岐管29
端から吸引される。また、試料も同様に、左側の分岐管
29端から注入され、右側の各分岐管29端に吸引され
る。
FIG. 9 is a top view of the cleaning mechanism. A pipe 28 connected to the liquid feeding device 26 and the suction device 25 is arranged along both side surfaces of the ATR prism 3, a plurality of branch pipes 29 are connected from each pipe 28, and an LB film is formed from the end of each branch pipe 29 on the left side. 21 is filled with the cleaning liquid, and each branch pipe 29 on the right side
Aspirated from the edge. Similarly, the sample is injected from the end of the branch pipe 29 on the left side and sucked into the end of each branch pipe 29 on the right side.

【0021】[0021]

【発明の効果】本発明により、ATRプリズム3の表面
に対する血液蛋白等の高分子の吸着量を低減することが
できるので、吸着した高分子の吸収帯と目的成分物質の
吸収帯が重なるような場合に生じる測定誤差を低減し、
また、測定結果の再現性を向上することができる。ま
た、上記吸着高分子を除去するために、検体の40個に
一回程度の割合で行っていた従来のATRプリズム3表
面の研磨作業を廃止することができるので分析を効率化
することができる。また、上記高分子の吸着を防止する
めに設けたATRプリズム表面のLB(ラングミュア−
ブロジェット)膜の分子配向を重合、ミクロリソグラフ
ィ−技術などにより制御し安定化させるので、LB膜の
両親媒性を向上し、長寿命化することができる。さら
に、ATRプリズム表面を自動的に洗浄する機構により
上記吸着高分子をさらに完全に除去できるので、ATR
プリズムを長寿命化することができる。
According to the present invention, since the adsorption amount of the polymer such as blood protein on the surface of the ATR prism 3 can be reduced, the absorption band of the adsorbed polymer and the absorption band of the target component substance may overlap. Reduce the measurement error that occurs in some cases,
In addition, the reproducibility of the measurement result can be improved. Further, since the conventional polishing work of the surface of the ATR prism 3 which is performed once for every 40 specimens to remove the adsorbed polymer can be eliminated, the efficiency of the analysis can be improved. .. Further, the LB (Langmuir-type) on the surface of the ATR prism provided to prevent the adsorption of the polymer
Since the molecular orientation of the (Blodgett) film is controlled and stabilized by polymerization, microlithography technique, etc., the amphipathicity of the LB film can be improved and the life can be extended. In addition, the mechanism for automatically cleaning the surface of the ATR prism can more completely remove the adsorbed polymer.
The prism can have a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のATRプリズム用セルの断面図であ
る。
FIG. 1 is a sectional view of an ATR prism cell of the present invention.

【図2】本発明によるLB膜部の拡大断面図である。FIG. 2 is an enlarged sectional view of an LB film portion according to the present invention.

【図3】本発明のLB膜の製造方法を説明するプロセス
図である。
FIG. 3 is a process diagram illustrating a method for manufacturing an LB film of the present invention.

【図4】本発明による他のLB膜の部分断面図である。FIG. 4 is a partial cross-sectional view of another LB film according to the present invention.

【図5】本発明による他のLB膜の部分断面図である。FIG. 5 is a partial cross-sectional view of another LB film according to the present invention.

【図6】血中蛋白の等温吸着線結果を本発明と従来につ
いて比較して示す図である。
FIG. 6 is a graph showing the results of isothermal adsorption lines of blood proteins in comparison with those of the present invention and the prior art.

【図7】本発明と従来装置の蛋白スペクトルを比較して
示す測定デ−タである。
FIG. 7 is measurement data showing the protein spectra of the present invention and a conventional device in comparison.

【図8】本発明によるATRプリズム面洗浄機構の構成
図である。
FIG. 8 is a configuration diagram of an ATR prism surface cleaning mechanism according to the present invention.

【図9】本発明によるATRプリズム面洗浄機構の上面
図である。
FIG. 9 is a top view of an ATR prism surface cleaning mechanism according to the present invention.

【図10】ディスクトップ型フ−リエ変換赤外分光光度
計の外観図である。
FIG. 10 is an external view of a disc type Fourier transform infrared spectrophotometer.

【図11】フ−リエ変換赤外分光光度計のブロック図で
ある。
FIG. 11 is a block diagram of a Fourier transform infrared spectrophotometer.

【図12】従来のATRプリズム用セルの断面図であ
る。
FIG. 12 is a cross-sectional view of a conventional cell for ATR prism.

【符号の説明】[Explanation of symbols]

1 分光器部 2 コンピュ−タ部 3 ATRプリズム 4 キ−ボ−ド 5 ディスプレイ 6 プリンタ 7 グロ−バ光源 8 赤外光 9 ハ−フミラ− 10 固定ミラ− 11 可動ミラ− 12,13 ミラ− 14 洗浄機構 15 MCT検知器 16 AD変換器 17 コンピュ−タ部 18 表示部 19 操作部 20 ミラ−駆動部 21 LB膜 22 試料 23,24 ミラ− 25 吸引装置 26 送液装置 27 廃液槽 28 管 29 分岐管 30 親水性部分 31 疎水性部分 32 水相 33 単分子膜 34 電子線 35 単分子膜 36 非重合部分 1 spectroscope part 2 computer part 3 ATR prism 4 key board 5 display 6 printer 7 globe light source 8 infrared light 9 haar mirror 10 fixed mirror 11 movable mirror 12, 13 mirror 14 Cleaning mechanism 15 MCT detector 16 AD converter 17 Computer section 18 Display section 19 Operation section 20 Miller drive section 21 LB film 22 Sample 23, 24 Miller 25 Suction apparatus 26 Liquid transfer apparatus 27 Waste liquid tank 28 Pipe 29 Branch Tube 30 Hydrophilic part 31 Hydrophobic part 32 Aqueous phase 33 Monolayer 34 Electron beam 35 Monolayer 36 Non-polymerized part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 減衰全反射プリズムの面上に導入した液
体試料を減衰全反射法により分析する分光光度計におい
て、上記減衰全反射プリズムの面上に、膜厚を分子の大
きさ単位で少なくとも一層以上累積した疎水性または親
水性の単分子膜を備えるようにしたことを特徴とする分
光光度計。
1. A spectrophotometer for analyzing a liquid sample introduced on the surface of an attenuating total reflection prism by the attenuating total reflection method, wherein the film thickness is at least on a molecular size unit basis on the surface of the attenuating total reflection prism. A spectrophotometer characterized by comprising a hydrophobic or hydrophilic monomolecular film accumulated in one or more layers.
【請求項2】 請求項1において、上記単分子膜を、親
水基を有する単分子膜部と疎水基を有する単分子膜部と
を配向したものとし、これにより表面の親水性と疎水性
の度合いを規定するようにしたことを特徴とする分光光
度計。
2. The monomolecular film according to claim 1, wherein the monomolecular film portion having a hydrophilic group and the monomolecular film portion having a hydrophobic group are oriented, whereby the hydrophilic and hydrophobic surfaces are formed. A spectrophotometer characterized in that the degree is regulated.
【請求項3】 請求項1または2において、上記単分子
膜の厚さを、測定に用いる赤外線波長の少なくとも1/
5以下にしたことを特徴とする分光光度計。
3. The thickness according to claim 1 or 2, wherein the thickness of the monomolecular film is at least 1 / n of an infrared wavelength used for measurement.
A spectrophotometer characterized in that the number is 5 or less.
【請求項4】 請求項1ないし3のいずれかにおいて、
上記単分子膜を、紫外線または電子線または放射線など
により重合可能なステアリン酸ビニルまたはアクリル酸
オクタデシル等のビニル系化合物、またはジアセチレン
系化合物、ジエン系化合物の単分子膜としたことを特徴
とする分光光度計。
4. The method according to any one of claims 1 to 3,
The above monomolecular film is a monomolecular film of a vinyl compound such as vinyl stearate or octadecyl acrylate that can be polymerized by ultraviolet rays, electron beams or radiation, or a diacetylene compound or a diene compound. Spectrophotometer.
【請求項5】 請求項1ないし4のいずれかにおいて、
上記減衰全反射プリズムを、KRS−5またはKRS−
6またはZnSeまたはGeまたはSiまたはAs2
3またはAgClまたはAgBrまたはサファイア材
により形成したものとすることを特徴とする分光光度
計。
5. The method according to any one of claims 1 to 4,
The attenuated total reflection prism is a KRS-5 or KRS-
6 or ZnSe or Ge or Si or As 2 S
A spectrophotometer characterized by being formed of e 3 or AgCl or AgBr or a sapphire material.
【請求項6】 減衰全反射プリズムの面上に導入した液
体試料を減衰全反射法により分析する分光光度計におい
て、洗浄液を上記減衰全反射プリズム面上への送液する
手段と、上記減衰全反射プリズム面上より除去する手段
と、上記減衰全反射プリズム面を乾燥する手段とを備え
たことを特徴とする分光光度計。
6. A spectrophotometer for analyzing a liquid sample introduced on the surface of an attenuating total reflection prism by an attenuating total reflection method, a means for feeding a cleaning liquid onto the surface of the attenuating total reflection prism, and the attenuating total reflection prism. A spectrophotometer comprising means for removing from the reflecting prism surface and means for drying the attenuated total reflection prism surface.
【請求項7】 請求項1または2記載の単分子膜を、電
子線、紫外線、放射線等の照射により分子を重合させて
形成するようにしたことを特徴とする分光光度計用減衰
全反射プリズムの製造方法。
7. The attenuated total reflection prism for a spectrophotometer, wherein the monomolecular film according to claim 1 or 2 is formed by polymerizing molecules by irradiation with electron beams, ultraviolet rays, radiation or the like. Manufacturing method.
【請求項8】 請求項2記載の親水基を有する単分子膜
部と疎水基を有する単分子膜とをミクロリソグラフィ−
技術により形成するようにしたことを特徴とする分光光
度計用減衰全反射プリズムの製造方法。
8. The monolithic film portion having a hydrophilic group according to claim 2 and the monomolecular film portion having a hydrophobic group are subjected to microlithography.
A method of manufacturing an attenuating total reflection prism for a spectrophotometer, which is characterized in that it is formed by a technique.
JP23598691A 1991-09-17 1991-09-17 Spectrophotometer and manufacture of attenuation total reflection prism thereof Pending JPH0572119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23598691A JPH0572119A (en) 1991-09-17 1991-09-17 Spectrophotometer and manufacture of attenuation total reflection prism thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23598691A JPH0572119A (en) 1991-09-17 1991-09-17 Spectrophotometer and manufacture of attenuation total reflection prism thereof

Publications (1)

Publication Number Publication Date
JPH0572119A true JPH0572119A (en) 1993-03-23

Family

ID=16994123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23598691A Pending JPH0572119A (en) 1991-09-17 1991-09-17 Spectrophotometer and manufacture of attenuation total reflection prism thereof

Country Status (1)

Country Link
JP (1) JPH0572119A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363119A1 (en) * 2001-12-26 2003-11-19 Matsushita Electric Industrial Co., Ltd. Information measuring device
JP2008057980A (en) * 2006-08-29 2008-03-13 Sharp Corp Molecule detector and washing device using it
US7488940B2 (en) 2003-05-29 2009-02-10 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
US7843571B2 (en) * 2005-09-30 2010-11-30 Fujifilm Corporation Sensing system
JP2013053862A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Evaluation test piece, evaluation method for sensitizing dye, and manufacturing method of dye-sensitized solar cell
CN103383344A (en) * 2013-06-24 2013-11-06 西安近代化学研究所 Multi-crystal integrated attenuated total reflection accessory of infrared spectroscopy
CN106323899A (en) * 2016-08-31 2017-01-11 北京彤程创展科技有限公司 Method for testing content of vinyl in vulcanized rubber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363119A1 (en) * 2001-12-26 2003-11-19 Matsushita Electric Industrial Co., Ltd. Information measuring device
EP1363119A4 (en) * 2001-12-26 2004-05-26 Matsushita Electric Ind Co Ltd Information measuring device
US7488940B2 (en) 2003-05-29 2009-02-10 Aisin Seiki Kabushiki Kaisha Reflection type terahertz spectrometer and spectrometric method
US7843571B2 (en) * 2005-09-30 2010-11-30 Fujifilm Corporation Sensing system
JP2008057980A (en) * 2006-08-29 2008-03-13 Sharp Corp Molecule detector and washing device using it
JP4676402B2 (en) * 2006-08-29 2011-04-27 シャープ株式会社 Molecular detector and cleaning device using the molecular detector
JP2013053862A (en) * 2011-09-01 2013-03-21 Sekisui Chem Co Ltd Evaluation test piece, evaluation method for sensitizing dye, and manufacturing method of dye-sensitized solar cell
CN103383344A (en) * 2013-06-24 2013-11-06 西安近代化学研究所 Multi-crystal integrated attenuated total reflection accessory of infrared spectroscopy
CN103383344B (en) * 2013-06-24 2015-10-28 西安近代化学研究所 A kind of polycrystal integrated infrared spectrum attenuated total reflection annex
CN106323899A (en) * 2016-08-31 2017-01-11 北京彤程创展科技有限公司 Method for testing content of vinyl in vulcanized rubber
CN106323899B (en) * 2016-08-31 2019-10-29 北京彤程创展科技有限公司 A kind of test method of vulcanizate medium vinyl content

Similar Documents

Publication Publication Date Title
US7537734B2 (en) Integrated optic waveguide immunosensor
Averett et al. Effective path length in attenuated total reflection spectroscopy
JP3786073B2 (en) Biochemical sensor kit and measuring device
US6330062B1 (en) Fourier transform surface plasmon resonance adsorption sensor instrument
US5991488A (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties
Swalen et al. Spectra of organic molecules in thin films
US9829434B2 (en) Optical detection system for liquid samples
US6872786B2 (en) Molecularly imprinted polymeric sensor for the detection of explosives
KR100723401B1 (en) Long-range SPR device having nanoporous material and method for fabricating the same
JPH05504626A (en) Sample cell used for chemical or biochemical tests
JPH05240774A (en) Optical cell and optical detecting device and sample separating/detecting device using them
JP2003524178A (en) SPR sensor system
JP6483834B2 (en) Inclined incidence structure, prism incidence type, silicon-based immersion fine channel measuring device and measuring method
US9494465B2 (en) Raman spectroscopic apparatus, raman spectroscopic method, and electronic apparatus
Liedberg et al. Molecular gradients of ω-substituted alkanethiols on gold studied by X-ray photoelectron spectroscopy
JPH0572119A (en) Spectrophotometer and manufacture of attenuation total reflection prism thereof
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
US6843963B1 (en) Flow-through shear analyzer for biologically active molecules in liquid layers on surfaces
JP2721616B2 (en) Infrared spectrum measurement method using attenuated total reflection prism
JP2002543380A (en) Apparatus and method for measuring attenuation of electromagnetic wave intensity in multipath spectroscopy
US7200311B1 (en) Surface corrugation on internal reflection infrared waveguide for enhanced detection sensitivity and selectivity
JPH05142142A (en) Spectrophotometer
US3279307A (en) Spectrum examination of substances
JPH07502815A (en) Analyzer using light scattering
Scholten et al. Vapor discrimination by dual-laser reflectance sensing of a single functionalized nanoparticle film