JPH0571786B2 - - Google Patents

Info

Publication number
JPH0571786B2
JPH0571786B2 JP59135678A JP13567884A JPH0571786B2 JP H0571786 B2 JPH0571786 B2 JP H0571786B2 JP 59135678 A JP59135678 A JP 59135678A JP 13567884 A JP13567884 A JP 13567884A JP H0571786 B2 JPH0571786 B2 JP H0571786B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
exhaust gas
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59135678A
Other languages
Japanese (ja)
Other versions
JPS6114450A (en
Inventor
Masashi Maruhara
Noboru Hashimoto
Toshimasu Tanaka
Masanori Misumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59135678A priority Critical patent/JPS6114450A/en
Publication of JPS6114450A publication Critical patent/JPS6114450A/en
Publication of JPH0571786B2 publication Critical patent/JPH0571786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料噴射弁から燃料を噴射させてシ
リンダ内に供給するようにした燃料噴射装置付エ
ンジンに関し、特に、燃料噴射を吸気行程の所定
期間内で行わせるようにしたものに関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an engine equipped with a fuel injection device that injects fuel from a fuel injection valve and supplies it into a cylinder. This relates to something that is to be done within a predetermined period of time.

(従来技術) 従来より、この種の燃料噴射装置付エンジンと
して、例えば特開昭56−148636号公報等により開
示されているように、吸気弁を介して燃焼室に連
通する吸気通路に燃料噴射弁を配設し、低負荷域
では吸気行程の後半に上記燃料噴射弁から燃料を
噴射させることにより、点火栓が位置する燃焼室
内上部に混合気を偏在させて成層化するととも
に、燃焼室内に吸入される吸気にスワールを付与
し、このスワールによつて上記成層化された混合
気の圧縮行程における拡散を抑制して爆発膨張行
程で成層燃焼を行わせるようにしたものが知られ
ている。
(Prior Art) Conventionally, this type of engine equipped with a fuel injection device has been designed to inject fuel into an intake passage communicating with a combustion chamber via an intake valve, as disclosed in, for example, Japanese Patent Application Laid-open No. 148636/1983. By installing a valve and injecting fuel from the fuel injection valve in the latter half of the intake stroke in the low load range, the air-fuel mixture is unevenly distributed and stratified in the upper part of the combustion chamber where the spark plug is located, and the mixture is stratified within the combustion chamber. It is known that a swirl is applied to the intake air, and the swirl suppresses the diffusion of the stratified air-fuel mixture in the compression stroke, thereby causing stratified combustion in the explosion and expansion stroke.

そして、上記成層燃焼により、燃焼室の上層に
燃料を偏在させて点火プラグ近傍に着火に必要な
空燃比を確保でき、下層は空気のみまたは非常に
稀薄な混合気でも良好な燃焼性を得ることができ
ることから、全体としての空燃比のリーン化が図
れ、燃費が改善できるとともに、未燃焼成分の排
出が抑制できてエミツシヨン性の向上が図れるな
どの利点を有するものである。
The stratified combustion described above makes it possible to unevenly distribute the fuel in the upper layer of the combustion chamber to ensure the air-fuel ratio necessary for ignition near the ignition plug, and to obtain good combustibility even with only air or a very dilute mixture in the lower layer. As a result, the air-fuel ratio as a whole can be made leaner, improving fuel efficiency, and the emission of unburned components can be suppressed to improve emission performance.

(発明が解決しようとする問題点) ところで、このような成層燃焼を行う燃料噴射
装置付エンジンにおいて、その低負荷時に吸気行
程で排気ガスの一部をシリンダ内に供給して排気
ガス中のNOxを低減させるいわゆる排気還流を
行う場合に、通常行われているように、吸気行程
の全期間に亘つてシリンダ内に排気ガスを供給し
たときには、シリンダ上部に位置する点火栓近傍
に混合気と共に還流排気ガスが分布するようにな
り、その不活性な還流排気ガスにより点火栓から
の火種が不安定となつて着火性が低下するという
問題が生じる。
(Problem to be Solved by the Invention) By the way, in an engine equipped with a fuel injection device that performs stratified combustion, a part of the exhaust gas is supplied into the cylinder during the intake stroke at low load, and NOx in the exhaust gas is reduced. When performing so-called exhaust gas recirculation to reduce the amount of gas, when exhaust gas is supplied into the cylinder during the entire intake stroke, as is normally done, the gas is recirculated together with the air-fuel mixture near the spark plug located at the top of the cylinder. The exhaust gas becomes distributed, and the inert recirculated exhaust gas makes the spark from the ignition plug unstable, resulting in a problem that the ignitability deteriorates.

そこで、上記の如く、エンジンの吸気行程で燃
料噴射と共に排気還流を行う場合に、排気ガスの
供給終了時期を燃料噴射弁からの燃料噴射終了時
期よりも所定期間前に設定することにより、シリ
ンダ上部に位置する点火栓近傍には混合気のみを
分布させて、点火栓からの安定した火種を確保で
きるようにし、排気還流に伴うエンジンの着火性
の低下を防止するようにすることが考えられる。
Therefore, as mentioned above, when exhaust gas recirculation is performed together with fuel injection during the intake stroke of the engine, by setting the exhaust gas supply end time to a predetermined period earlier than the end time of fuel injection from the fuel injection valve, it is possible to It is conceivable to distribute only the air-fuel mixture near the ignition plug located at the ignition plug, to ensure a stable source of spark from the ignition plug, and to prevent a decrease in the ignitability of the engine due to exhaust gas recirculation.

ところが、成層燃焼を行うエンジンは、上述の
如く混合気の空燃比を全体としてリーン化してい
るので、上記のように排気還流を燃料噴射終了時
期以前に終了させて点火栓近傍に混合気のみを分
布させても、該混合気の空気過剰率は1になら
ず、着火性のより一層の向上を図る点でさらに改
良の余地がある。
However, in engines that perform stratified charge combustion, the air-fuel ratio of the air-fuel mixture is lean as a whole, so as mentioned above, exhaust recirculation is ended before the end of fuel injection, and only the air-fuel mixture is placed near the spark plug. Even if it is distributed, the excess air ratio of the mixture will not be 1, and there is still room for further improvement in terms of further improving the ignitability.

本発明はかかる諸点に鑑み、上記の考え方をさ
らに推し進めてなされたものであり、その目的と
するところは、エンジンの吸気行程の所定期間内
に燃料噴射弁から噴射させる燃料噴射量を排気還
流の終了時期以前では減らし、排気還流が終了す
ると上記減量した分だけ増量させるようにするこ
とにより、点火栓近傍に分布する混合気の空燃比
をリツチ化してその空気過剰率は1に近付けるよ
うにし、よつて成層燃焼を行う燃料噴射装置付エ
ンジンに供給する混合気の空燃比を全体としてリ
ーン状態に保つて燃費の低減を図りつつ、排気還
流によるNOxの低減および着火性のより一層の
向上を図ることにある。
In view of these points, the present invention has been made by further advancing the above idea, and its purpose is to reduce the amount of fuel injected from the fuel injection valve within a predetermined period of the intake stroke of the engine by reducing the amount of fuel injected from the exhaust gas recirculation. By reducing the amount before the end time and increasing it by the amount reduced when the exhaust gas recirculation ends, the air-fuel ratio of the air-fuel mixture distributed near the ignition plug is enriched so that the excess air ratio approaches 1, As a result, the overall air-fuel ratio of the air-fuel mixture supplied to an engine with a fuel injection device that performs stratified combustion is maintained in a lean state to reduce fuel consumption, while reducing NOx through exhaust gas recirculation and further improving ignitability. There is a particular thing.

(問題点を解決するための手段) 上記目的を達成するために、本発明の解決手段
は、シリンダの上部に点火栓が配設されていると
ともに、シリンダ内に吸入される吸気にスワール
を生成するスワール生成手段と、吸気行程の所定
期間に燃料噴射弁から燃焼に必要な燃料を噴射さ
せる燃料噴射制御手段とを備えた燃料噴射式エン
ジンにおいて、その少なくとも低負荷時に排気の
一部をシリンダ内にその上部から供給する排気供
給手段と、上記燃料噴射制御手段による燃料噴射
が実質的に終了する時期よりも所定時間前に上記
排気供給手段による排気供給を終了させる排気供
給制御手段と、上記排気供給の終了時期から燃料
噴射の終了時期にかけて上記燃料噴射制御手段に
より噴射される燃料を排気供給の終了時期以前よ
りも増量させる燃料増量手段とを設けたものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes an ignition plug disposed in the upper part of the cylinder, and a swirl generated in the intake air drawn into the cylinder. In a fuel injection type engine, a part of the exhaust gas is injected into the cylinder at least at low load in a fuel injection type engine, which is equipped with a swirl generating means to generate a swirl, and a fuel injection control means to inject the fuel necessary for combustion from a fuel injection valve during a predetermined period of the intake stroke. an exhaust supply means for supplying the exhaust gas from above to the exhaust gas; A fuel increasing means is provided for increasing the amount of fuel injected by the fuel injection control means from the time when supply ends to the time when fuel injection ends, compared to before the time when exhaust supply ends.

(作用) 上記構成により、本発明では、成層燃焼を行う
エンジンの少なくとも低負荷時に、吸気行程で排
気供給手段による排気の供給が終了した時点から
燃料噴射制御手段による燃料噴射が終了する時点
までの間の燃料噴射量の増量によりシリンダ内に
空燃比のリツチな混合気のみを供給して、該混合
気をシリンダ上部を点火栓近傍に偏在させ、かつ
この点火栓近傍への混合気の偏在をスワール生成
手段により生成されたスワールによつて圧縮行程
の終期まで維持することにより、点火栓による混
合気への着火性をより一層向上させるようにした
ものである。
(Function) With the above configuration, in the present invention, at least when the load of the engine performing stratified combustion is low, the period from the point in time when the exhaust supply means finishes supplying exhaust gas in the intake stroke to the point in time when fuel injection by the fuel injection control means ends. By increasing the fuel injection amount during the interval, only a mixture with a rich air-fuel ratio is supplied into the cylinder, and the mixture is unevenly distributed in the upper part of the cylinder near the spark plug, and the mixture is prevented from being unevenly distributed near the spark plug. By maintaining the swirl generated by the swirl generating means until the end of the compression stroke, the ability to ignite the air-fuel mixture by the spark plug is further improved.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図ないし第3図において、1はシリンダダ
ブロツク2およびシリンダヘツド3によつて形成
されたシリンダ4を有するエンジン、5はシリン
ダ4内を往復動するピストン、6は該ピストン5
によつてシリンダ4内に区画形成された燃焼室、
7は燃焼室6内に吸気を供給する吸気通路、8は
燃焼室6内の排気を排出する排気通路であつて、
上記吸気通路7および排気通路8の燃焼室6への
開口部7a,8aはシリンダヘツド3に形成さ
れ、吸気通路7の開口部7aには該開口部7aを
開閉する吸気弁9が、排気通路8の開口部8aに
は該開口部8aを開閉する排気弁10がそれぞれ
配設されている。また、上記シリンダヘツド3に
は上記吸気通路7の開口部7aおよび排気通路8
の開口部8aの側方部位に燃焼室6内の混合気に
点火する点火栓11が取り付けられており、よつ
て点火栓11および吸気通路7の開口部7aはシ
リンダ4内の燃焼室6上部に配設されている。
In FIGS. 1 to 3, 1 is an engine having a cylinder 4 formed by a cylinder double lock 2 and a cylinder head 3, 5 is a piston that reciprocates within the cylinder 4, and 6 is the piston 5.
A combustion chamber defined within the cylinder 4 by
7 is an intake passage that supplies intake air into the combustion chamber 6; 8 is an exhaust passage that discharges exhaust gas from the combustion chamber 6;
Openings 7a and 8a of the intake passage 7 and exhaust passage 8 to the combustion chamber 6 are formed in the cylinder head 3, and an intake valve 9 for opening and closing the opening 7a of the intake passage 7 is provided in the opening 7a of the intake passage 7. Exhaust valves 10 for opening and closing the openings 8a are respectively disposed in the openings 8a. The cylinder head 3 also has an opening 7a of the intake passage 7 and an exhaust passage 8.
An ignition plug 11 for igniting the air-fuel mixture in the combustion chamber 6 is attached to a side part of the opening 8a of the cylinder 4. Therefore, the ignition plug 11 and the opening 7a of the intake passage 7 are connected to the upper part of the combustion chamber 6 in the cylinder 4. It is located in

上記吸気通路7には、上流側から順に、燃焼室
6に吸入される吸入空気量を検出するエアフロー
メータ12と、同吸入空気量をコントロールする
スロツトルバルブ13と、吸気の脈動を吸収する
サージタンク14とは配設され、吸気通路7の上
流端はエアクリーナ15に接続されている。
The intake passage 7 includes, in order from the upstream side, an air flow meter 12 that detects the amount of intake air taken into the combustion chamber 6, a throttle valve 13 that controls the amount of intake air, and a surge meter that absorbs the pulsation of intake air. The upstream end of the intake passage 7 is connected to an air cleaner 15.

また、第2図および第3図に拡大詳述するよう
に、上記サージタンク14下流の吸気通路7は隔
壁16によつて1次側吸気通路7bと2次側吸気
通路7cとに分けられ、上記1次側吸気通路7b
は通路面積が2次側吸気通路7cよりも小さく設
定され、かつ1次側吸気通路7bの下流端は吸気
弁9よりも僅かに上流側の吸気通路7にシリンダ
4の円周方向に向かうように開口されており、1
次側吸気通路7bを流れる吸気をその流速を速め
ながらシリンダ4内に円周方向に導入することに
より、シリンダ4内に吸気のスワールKを生成す
るようにしたスワール生成手段17が構成されて
いる。
Further, as shown in enlarged detail in FIGS. 2 and 3, the intake passage 7 downstream of the surge tank 14 is divided by a partition wall 16 into a primary intake passage 7b and a secondary intake passage 7c, The above primary side intake passage 7b
The passage area is set smaller than that of the secondary intake passage 7c, and the downstream end of the primary intake passage 7b is directed toward the intake passage 7 slightly upstream of the intake valve 9 in the circumferential direction of the cylinder 4. It is opened to 1
A swirl generating means 17 is configured to generate a swirl K of intake air within the cylinder 4 by introducing the intake air flowing through the next intake passage 7b into the cylinder 4 in the circumferential direction while increasing its flow velocity. .

また、上記2次側吸気通路7cの下流端はシリ
ンダ4の中心線と略平行な方向つまりピストン5
上面に向かつて開口しており、この2次側吸気通
路7cを通つてシリンダ4に流入する吸気にスワ
ールKを付与しないようにしている。また、上記
2次側吸気通路7cの途中には2次側吸気通路7
cを開閉してスワールKの強度を制御するスワー
ル制御弁18が配設され、該スワール制御弁18
は図示しないアクチユエータに駆動連結されてい
て該アクチユエータによつてエンジン1の回転数
と負荷状態に応じて作動制御され、エンジン1が
低速低負荷領域にあるときには、スワール制御弁
18が閉じることにより、吸気を1次側吸気通路
7bからシリンダ4内に流入させてスワールKの
強度を強め、エンジン1が高速高負荷領域に移行
するのに伴い、スワール制御弁18の開度が増大
することにより、2次側吸気通路7cからの吸気
の流入比率を高めて、シリンダ4内のスワールK
の強度を弱めるように構成されている。
Further, the downstream end of the secondary intake passage 7c is directed in a direction substantially parallel to the center line of the cylinder 4, that is, the piston 5
It is opened toward the upper surface and prevents swirl K from being applied to the intake air flowing into the cylinder 4 through this secondary intake passage 7c. Further, a secondary side intake passage 7 is provided in the middle of the secondary side intake passage 7c.
A swirl control valve 18 is provided to control the intensity of the swirl K by opening and closing c.
is drivingly connected to an actuator (not shown), and its operation is controlled by the actuator according to the rotational speed and load condition of the engine 1. When the engine 1 is in a low speed and low load region, the swirl control valve 18 closes. Intake air is caused to flow into the cylinder 4 from the primary intake passage 7b to strengthen the swirl K, and as the engine 1 shifts to a high-speed, high-load region, the opening degree of the swirl control valve 18 increases. Swirl K in the cylinder 4 is increased by increasing the inflow ratio of intake air from the secondary intake passage 7c.
is configured to reduce the strength of the

また、上記スワール制御弁18下流の2次側吸
気通路7cには主および補助の燃料噴射弁19,
20が燃料を燃焼室6に向けて噴射するように配
設され、該両燃料噴射弁19,20には図示しな
い燃圧制御装置によつて降下可能な一定の燃料圧
力が印加されており、燃料噴射弁19,20は入
力されるパルス信号のパルス幅に応じて開弁時間
を変えて燃料噴射量を変化させるものである。
Further, main and auxiliary fuel injection valves 19,
20 is arranged to inject fuel toward the combustion chamber 6, and both fuel injection valves 19 and 20 are applied with a constant fuel pressure that can be lowered by a fuel pressure control device (not shown). The injection valves 19 and 20 change the amount of fuel injection by changing the valve opening time according to the pulse width of the input pulse signal.

一方、上記排気通路8の途中には排気を浄化す
るための触媒21が配設され、該触媒21上流の
排気通路8には排気還流通路22の上流端が開口
され、該排気還流通路22の下流端は上記吸気通
路7の1次側吸気通路7bに開口されている。ま
た、上記排気還流通路22の途中には排気還流弁
23が配設され、該排気還流弁23は排気還流通
路22を絞り開閉する弁体24と、該弁体24に
駆動連結されたダイヤフラム25と、該ダイヤフ
ラム25によつて区画形成された負圧室26と、
該負圧室26に縮装され、ダイヤフラム25を弁
体24の閉弁方向に付勢するスプリング27とを
備え、上記負圧室26はデユーテイバルブ28を
介設した負圧流路29を介して負圧源(図示せ
ず)に連通されている。而して、排気通路8を流
れる排気の一部を排気還流弁23によつて流量制
御しながら吸気通路7の1次側吸気通路7bに流
入させてシリンダ4の燃焼室6に供給するように
した排気供給手段30が構成されている。
On the other hand, a catalyst 21 for purifying exhaust gas is disposed in the middle of the exhaust passage 8, and an upstream end of an exhaust recirculation passage 22 is opened in the exhaust passage 8 upstream of the catalyst 21. The downstream end is opened to the primary intake passage 7b of the intake passage 7. Further, an exhaust gas recirculation valve 23 is disposed in the middle of the exhaust gas recirculation passage 22, and the exhaust gas recirculation valve 23 includes a valve body 24 that throttles and opens and closes the exhaust gas recirculation passage 22, and a diaphragm 25 that is drivingly connected to the valve body 24. and a negative pressure chamber 26 defined by the diaphragm 25.
A spring 27 is installed in the negative pressure chamber 26 and urges the diaphragm 25 in the closing direction of the valve body 24. It is in communication with a pressure source (not shown). Thus, a part of the exhaust gas flowing through the exhaust passage 8 is flowed into the primary side intake passage 7b of the intake passage 7 while controlling the flow rate by the exhaust recirculation valve 23, and is supplied to the combustion chamber 6 of the cylinder 4. An exhaust gas supply means 30 is configured.

さらに、上記排気還流弁23下流の排気還流通
路22には該排気還流通路22を開閉するロータ
リバルブ31が配設され、該ロータリバルブ31
はその開弁時期を調整するバルブタイミング可変
機構32を介してエンジン1に駆動連結されてい
る。
Furthermore, a rotary valve 31 for opening and closing the exhaust gas recirculation passage 22 is disposed in the exhaust gas recirculation passage 22 downstream of the exhaust gas recirculation valve 23, and the rotary valve 31
is drivingly connected to the engine 1 via a variable valve timing mechanism 32 that adjusts its valve opening timing.

そして、上記主および補助の燃料噴射弁19,
20、排気還流弁23制御用のデユーテイバルブ
28、ロータリバルブ31制御用の可変機構32
および燃圧制御装置を作動制御するための制御シ
ステムを説明すると、33は上記スロツトルバル
ブ13のバルブ開度を検出するスロツトルセン
サ、34はデイストリビユータ35の回転角から
エンジン1のクランク角を検出するクランク角セ
ンサ、36はこれらスロツトルセンサ33、クラ
ンク角センサ34および上記エアフローメータ1
2の出力信号を受けて燃料噴射弁19,20、デ
ユーテイバルブ28、可変機構32および燃圧制
御装置を制御するCPUを内蔵したコントローラ
であつて、該コントローラ36により、上記クラ
ンク角センサ34からのクランク角信号およびエ
アフローメータ12からのエアフロー信号に基づ
いてエンジン1の回転数および負荷状態を検出
し、それを予め設定記憶されている燃料マツプと
照合して基本燃料噴射量を決定するとともに、該
基本燃料噴射量をスロツトルセンサ33からのス
ロツトル信号に応じて補正して実行燃料噴射量を
決定し、該実行燃料噴射量に対応したパルス幅の
信号をエンジン1の吸気行程の所定期間に主およ
び補助燃料噴射弁19,20に出力して該両燃料
噴射弁19,20から燃焼に必要な燃料を噴射さ
せるようにした燃料噴射制御手段37が構成され
ている。
and the main and auxiliary fuel injection valves 19,
20, duty valve 28 for controlling the exhaust recirculation valve 23, variable mechanism 32 for controlling the rotary valve 31
To explain the control system for controlling the operation of the fuel pressure control device, 33 is a throttle sensor that detects the valve opening of the throttle valve 13, and 34 is a throttle sensor that detects the crank angle of the engine 1 from the rotation angle of the distributor 35. A crank angle sensor 36 for detecting the throttle sensor 33, the crank angle sensor 34, and the air flow meter 1
The controller 36 has a built-in CPU that controls the fuel injection valves 19, 20, the duty valve 28, the variable mechanism 32, and the fuel pressure control device in response to the output signal from the crank angle sensor 34. The rotational speed and load condition of the engine 1 are detected based on the signal and the airflow signal from the airflow meter 12, and the basic fuel injection amount is determined by comparing it with a fuel map that is set and stored in advance. The injection amount is corrected according to the throttle signal from the throttle sensor 33 to determine the effective fuel injection amount, and a signal with a pulse width corresponding to the effective fuel injection amount is sent to main and auxiliary signals during a predetermined period of the intake stroke of the engine 1. A fuel injection control means 37 is constructed which outputs an output to the fuel injection valves 19 and 20 to inject the fuel necessary for combustion from both the fuel injection valves 19 and 20.

すなわち、この燃料噴射制御手段37による燃
料噴射期間の設定は、第5図aに示す吸気弁9の
開弁曲線において上死点TDC前の吸気弁9が開
く時点IOから下死点後BDC後の吸気弁9が閉じ
る時点ICまでの吸気行程に対し、同図bに示す
ようにその略中間部でピストン速度が最大となる
時期の近傍を中心として主燃料噴射弁19の噴射
終了時期θE,INJを設定し、該噴射終了時期θE,INJ
りも燃料噴射パルス幅に対応した噴射角θINJだけ
進んだ時期を主燃料噴射弁19の噴射開始時期
θB,INJとするものであり、エンジン1の負荷が増
大して燃料噴射パルス幅が大きくなるのに従い該
パルス幅に対応する噴射角θINJが増大して、吸気
行程の略中間部を中心として主燃料噴射弁19の
噴射開始時期θB,INJおよび噴射終了時期θE,INJが変
更される。
That is, the fuel injection period is set by the fuel injection control means 37 from the time IO when the intake valve 9 opens before the top dead center TDC to after the bottom dead center BDC in the valve opening curve of the intake valve 9 shown in FIG. 5a. Regarding the intake stroke up to the point IC when the intake valve 9 closes, the injection end timing θ E of the main fuel injector 19 is centered around the time when the piston speed reaches its maximum approximately in the middle, as shown in Figure b. , INJ is set, and the injection start time θ B ,INJ of the main fuel injector 19 is set at a time when the injection end time θ E ,INJ is advanced by the injection angle θ INJ corresponding to the fuel injection pulse width. As the load on the engine 1 increases and the fuel injection pulse width becomes larger, the injection angle θ INJ corresponding to the pulse width increases, and the main fuel injection valve 19 starts injection around approximately the middle of the intake stroke. The timing θ B,INJ and the injection end timing θ E,INJ are changed.

また、上記コントロール36により、エンジン
1の負荷状態に応じて排気還流弁23の弁開度お
よびロータリバルブ31の開閉時期を制御し、エ
ンジン1が低中負荷域にあるときには、第5図c
に示すように吸気行程において、上記主燃料噴射
弁19から燃料が噴射されるのと略同期したロー
タリバルブ31が開弁させて、還流排気を燃料室
6内の可燃混合気が分布した空間内に分布させる
とともに、混合気のシリンダ4への流入が実質的
に終了する時期、すなわち混合気を構成する燃料
の主燃料噴射弁19からの噴射が終了する時期
θE,INJよりも所定期間前の時期θE,EGRに上記ロータ
リバルブ31を閉弁させて排気供給手段30によ
る排気の供給を終了させるようにした排気供給制
御手段38が構成されている。
Further, the control 36 controls the valve opening degree of the exhaust recirculation valve 23 and the opening/closing timing of the rotary valve 31 according to the load condition of the engine 1, and when the engine 1 is in the low-medium load range,
As shown in FIG. 2, during the intake stroke, the rotary valve 31 opens substantially in synchronization with the injection of fuel from the main fuel injection valve 19 to direct the recirculated exhaust gas into the space in the fuel chamber 6 where the combustible mixture is distributed. and a predetermined period before the timing θ E,INJ when the air-fuel mixture substantially ends flowing into the cylinder 4, that is, the timing θ E,INJ when the injection of fuel constituting the air-fuel mixture from the main fuel injection valve 19 ends. An exhaust gas supply control means 38 is configured to close the rotary valve 31 at the time θ E,EGR to terminate the supply of exhaust gas by the exhaust gas supply means 30.

さらに、上記コントローラ36により上記燃料
噴射制御手段37の補助燃料噴射弁20の開閉時
期を制御し、エンジン1が低中負荷域にあると
き、つまり上記排気供給制御手段38の作動によ
り主燃料噴射弁19からの燃料噴射の終了時期
θE,INJよりも所定期間前に排気供給手段30によ
り排気供給が終了するように制御されているとき
には、燃圧制御装置により上記主および補助燃料
噴射弁19,20に印加する燃料圧力を所定値低
下させて、第5図bに示すように、主燃料噴射弁
19からの燃料噴射量を所定量減量させる一方、
上記排気供給の終了時期θE,EGR後に補助燃料噴射
弁20を開弁させて上記減量分に相当する燃料を
補助燃料噴射弁20から噴射させるようになされ
ており、よつて排気供給の終了時期θE,EGRから燃
料噴射の終了時期θE,INJにかけて燃料噴射制御手
段37により噴射される燃料を排気供給の終了時
期以前よりも増量させるようにした燃料増量手段
39が構成されている。
Further, the controller 36 controls the opening/closing timing of the auxiliary fuel injection valve 20 of the fuel injection control means 37, and when the engine 1 is in a low-medium load range, that is, the exhaust supply control means 38 operates to control the opening/closing timing of the auxiliary fuel injection valve 20. When the exhaust gas supply means 30 is controlled to terminate the exhaust gas supply a predetermined period before the fuel injection termination timing θ E,INJ from 19, the fuel pressure control device controls the main and auxiliary fuel injection valves 19, 20. While reducing the fuel pressure applied to the main fuel injection valve 19 by a predetermined amount, as shown in FIG. 5b,
After the exhaust gas supply end time θ E,EGR, the auxiliary fuel injection valve 20 is opened and fuel corresponding to the amount reduced is injected from the auxiliary fuel injection valve 20. Therefore, the exhaust gas supply end time is A fuel increasing means 39 is configured to increase the amount of fuel injected by the fuel injection control means 37 from θ E,EGR to the end time of fuel injection θ E,INJ than before the end time of exhaust supply.

したがつて、上記実施例においては、エンジン
1が低中負荷域にあるときには、吸気行程の中間
時期に主燃料噴射弁19から燃料が噴射されるの
に略同期してロータリバルブ31が開弁して、排
気が混合気と共に燃料室6内に吸入され、上記主
燃料噴射弁19からの燃料噴射の終了により燃料
室6内への混合気の吸入が終了する前に上記ロー
タリバルブ31が閉弁して燃料室6への排気の流
入が停止されるので、吸気弁9の閉じる吸気行程
の終期では、第4図に模式的に示すように、ピス
トン5の上面近傍の燃料室6下部に吸入空気のみ
からなる吸入空気Z1が、該吸入空気層Z1よりも上
側の燃焼室6中間部に燃料と吸入空気との混合気
に還流排気が混入された還流排気層Z2が、点火栓
11近傍の燃焼室6上部に混合気のみからなる混
合気層Z3がそれぞれ形成されて燃焼室6内が成層
化され、この成層化はスワール生成手段17によ
つて燃焼室6内に生成されたスワールKのもとで
強力に維持される。
Therefore, in the embodiment described above, when the engine 1 is in the low-medium load range, the rotary valve 31 opens approximately in synchronization with the injection of fuel from the main fuel injection valve 19 in the middle of the intake stroke. Then, the exhaust gas is sucked into the fuel chamber 6 together with the air-fuel mixture, and the rotary valve 31 is closed before the intake of the air-fuel mixture into the fuel chamber 6 is completed due to the end of fuel injection from the main fuel injection valve 19. Since the flow of exhaust gas into the fuel chamber 6 is stopped by the valve, at the end of the intake stroke when the intake valve 9 closes, as schematically shown in FIG. The intake air Z 1 consisting only of intake air is ignited in the recirculation exhaust layer Z 2 where the recirculation exhaust gas is mixed into the mixture of fuel and intake air in the middle part of the combustion chamber 6 above the intake air layer Z 1 . An air-fuel mixture layer Z 3 consisting of only air-fuel mixture is formed in the upper part of the combustion chamber 6 near the plug 11, and the inside of the combustion chamber 6 is stratified. It is strongly maintained under the swirl K.

しかも、上記吸気行程で主燃料噴射弁19から
噴射される燃料は所定量だけ減量され、ロータリ
バルブ31の閉弁により燃焼室6への排気供給が
終了した排気還流終了時期θE,EGRの経過後は上記
主燃料噴射弁19で減量された量の燃料が補助燃
料噴射弁20から噴射されるので、上記点火栓1
1近傍の燃焼室6上部に分布した混合気の空燃比
はリツチ化されてその空気過剰率は1に近付く。
Furthermore, the amount of fuel injected from the main fuel injection valve 19 during the intake stroke is reduced by a predetermined amount, and the passage of the exhaust gas recirculation end time θ E,EGR when the rotary valve 31 closes and exhaust gas supply to the combustion chamber 6 ends. After that, the amount of fuel reduced by the main fuel injection valve 19 is injected from the auxiliary fuel injection valve 20, so that the spark plug 1
The air-fuel ratio of the air-fuel mixture distributed in the upper part of the combustion chamber 6 in the vicinity of 1 is enriched, and its excess air ratio approaches 1.

そのため、吸気行程後の圧縮行程終期に点火栓
11が給電されると、該点火栓11から発生した
着火火炎は点火栓11近傍に偏在する上記リツチ
な混合気Z3によつて安定した火種となり、よつて
混合気への着火性を確実に向上させることができ
る。
Therefore, when power is supplied to the spark plug 11 at the end of the compression stroke after the intake stroke, the ignition flame generated from the spark plug 11 becomes a stable spark due to the rich air-fuel mixture Z 3 unevenly distributed near the spark plug 11. Therefore, the ignitability of the air-fuel mixture can be reliably improved.

また、吸気行程で主燃料噴射弁19からの燃料
噴射と略同期して排気還流が行われ、すなわち爆
発膨張行程で燃焼温度が上昇する領域に還流排気
が分布するので、その不活性な還流排気によつて
燃焼温度を低下させることができ、最少量の還流
排気によつてNOxを有効に低減することができ
る。
In addition, since exhaust gas recirculation is performed approximately in synchronization with fuel injection from the main fuel injection valve 19 during the intake stroke, that is, the recirculated exhaust gas is distributed in the region where the combustion temperature increases during the explosion and expansion stroke, the inert recirculated exhaust gas The combustion temperature can be lowered by reducing the combustion temperature, and NOx can be effectively reduced by using the minimum amount of recirculated exhaust gas.

さらに、この場合、上記補助燃料噴射弁20か
ら噴射される燃料噴射量は主燃料噴射弁19の燃
料噴射量の減量分であるので、燃料室6全体への
燃料供給量が増加することはなく、燃焼室6内の
混合気の空燃比を全体としてリーン状態に保つこ
とができ、よつて成層燃焼による燃費の低減を維
持することができる。
Furthermore, in this case, since the amount of fuel injected from the auxiliary fuel injection valve 20 is a reduction in the amount of fuel injected from the main fuel injection valve 19, the amount of fuel supplied to the entire fuel chamber 6 does not increase. , the air-fuel ratio of the air-fuel mixture in the combustion chamber 6 can be kept in a lean state as a whole, and thus the reduction in fuel consumption due to stratified combustion can be maintained.

尚、上記実施例では、吸気行程において排気供
給の終了時期θE,EGRから燃料噴射の終了時期θE,INJ
にかけての燃料供給量の増量を補助燃料噴射弁2
0からの燃料噴射によつて行うようにしたが、補
助燃料噴射弁20を省略して吸気通路7に設ける
燃料噴射弁を1つとし、該燃料噴射弁に印加する
燃料圧力を排気還流の終了後に増大させることに
より、燃料供給量を増量させるようにしてもよ
い。
In the above embodiment, in the intake stroke, the exhaust gas supply end time θ E,EGR changes from the fuel injection end time θ E,INJ.
The auxiliary fuel injection valve 2 increases the amount of fuel supplied during
However, the auxiliary fuel injection valve 20 is omitted and only one fuel injection valve is provided in the intake passage 7, and the fuel pressure applied to the fuel injection valve is adjusted to the end of exhaust gas recirculation. The amount of fuel supplied may be increased by increasing it later.

(発明の効果) 以上の如く、本発明によれば、吸気行程の所定
期間に燃料噴射弁から燃料を噴射させて成層燃焼
を行う燃料噴射式エンジンにおいて、吸気行程で
実質的に上記燃料噴射が終了する時点よりも所定
期間前に終了すように排気の還流を行うととも
に、該排気還流の終了時期より後の燃料噴射量を
排気還流の終了時期以前よりも増量させて、シリ
ンダ上部の点火栓近傍に空燃比のリツチな混合気
のみを偏在させ、かつその状態をスワールによつ
て圧縮行程終期まで維持するようにしたものであ
るので、点火栓近傍のリツチな混合気によつて該
点火栓からの安定した火種を確保でき、よつて成
層燃焼を行う燃料噴射式エンジンにおけるNOx
の低減および燃費の低減を図りつつ、その着火性
のより一層の向上を図ることができるものであ
る。
(Effects of the Invention) As described above, according to the present invention, in a fuel injection engine that performs stratified combustion by injecting fuel from a fuel injection valve during a predetermined period of the intake stroke, the fuel injection is substantially performed during the intake stroke. Exhaust recirculation is performed so as to end a predetermined period before the end of the exhaust recirculation, and the amount of fuel injection after the end of the exhaust recirculation is increased compared to before the end of the exhaust recirculation, and the spark plug at the top of the cylinder is Since only a mixture with a rich air-fuel ratio is unevenly distributed in the vicinity, and this state is maintained until the end of the compression stroke by swirl, the rich mixture near the ignition plug causes the ignition plug to NOx in fuel-injected engines that perform stratified combustion by ensuring a stable source of spark from
This makes it possible to further improve the ignitability while reducing fuel consumption and fuel consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
全体概略構成図、第2図はエンジンの要部縦断面
図、第3図はシリンダヘツドの底面図、第4図は
吸気行程終期のシリンダ内のガス組成を示す説明
図、第5図は吸気行程における燃料噴射時期およ
び排気還流時期を示す説明図である。 1……エンジン、4……シリンダ、6……燃焼
室、7……吸気通路、7a……開口部、11……
点火栓、12……エアフローメータ、17……ス
ワール生成手段、19,20……燃料噴射弁、2
2……排気還流通路、23……排気還流弁、30
……排気供給手段、31……ロータリバルブ、3
3……スロツトルセンサ、34……クランク角セ
ンサ、36……コントローラ、37……燃料噴射
制御手段、38……排気供給制御手段、39……
燃料増量手段。
The drawings show an embodiment of the present invention, in which Fig. 1 is a general schematic diagram, Fig. 2 is a vertical cross-sectional view of the main parts of the engine, Fig. 3 is a bottom view of the cylinder head, and Fig. 4 is a diagram at the end of the intake stroke. FIG. 5 is an explanatory diagram showing the gas composition in the cylinder, and FIG. 5 is an explanatory diagram showing the fuel injection timing and exhaust gas recirculation timing in the intake stroke. DESCRIPTION OF SYMBOLS 1... Engine, 4... Cylinder, 6... Combustion chamber, 7... Intake passage, 7a... Opening, 11...
Spark plug, 12... Air flow meter, 17... Swirl generating means, 19, 20... Fuel injection valve, 2
2... Exhaust recirculation passage, 23... Exhaust recirculation valve, 30
...Exhaust supply means, 31...Rotary valve, 3
3... Throttle sensor, 34... Crank angle sensor, 36... Controller, 37... Fuel injection control means, 38... Exhaust supply control means, 39...
Fuel increase means.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダの上部に点火栓が配設されていると
ともに、シリンダ内に吸入される吸気にスワール
を生成するスワール生成手段と、吸気行程の所定
期間に燃料噴射弁から燃焼に必要な燃料を噴射さ
せる燃料噴射制御手段とを備えた燃料噴射装置付
エンジンにおいて、少なくとも低負荷時に排気の
一部をシリンダ内にその上部から供給する排気供
給手段と、上記燃料噴射制御手段による燃料噴射
が実質的に終了する時期よりも所定期間前に上記
排気供給手段による排気供給を終了させる排気供
給制御手段と、上記排気供給の終了時期から燃料
噴射の終了時期にかけて上記燃料噴射制御手段に
より噴射される燃料を排気供給の終了時期以前よ
りも増量させる燃料増量手段とを設けたことを特
徴とする燃料噴射装置付エンジン。
1. An ignition plug is disposed at the top of the cylinder, and a swirl generating means generates a swirl in the intake air taken into the cylinder, and the fuel necessary for combustion is injected from a fuel injection valve during a predetermined period of the intake stroke. In an engine with a fuel injection device, the engine includes an exhaust supply means for supplying part of the exhaust gas into the cylinder from the upper part thereof at least during low load, and fuel injection by the fuel injection control means is substantially completed. exhaust supply control means for terminating the exhaust gas supply by the exhaust supply means a predetermined period before the time when the exhaust gas supply ends; An engine equipped with a fuel injection device, characterized in that the engine is equipped with means for increasing the amount of fuel compared to before the end of the period.
JP59135678A 1984-06-29 1984-06-29 Engine associated with fuel injector Granted JPS6114450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59135678A JPS6114450A (en) 1984-06-29 1984-06-29 Engine associated with fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59135678A JPS6114450A (en) 1984-06-29 1984-06-29 Engine associated with fuel injector

Publications (2)

Publication Number Publication Date
JPS6114450A JPS6114450A (en) 1986-01-22
JPH0571786B2 true JPH0571786B2 (en) 1993-10-07

Family

ID=15157366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59135678A Granted JPS6114450A (en) 1984-06-29 1984-06-29 Engine associated with fuel injector

Country Status (1)

Country Link
JP (1) JPS6114450A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029503B2 (en) * 2008-06-12 2012-09-19 トヨタ自動車株式会社 In-cylinder / port injection internal combustion engine
JP6657629B2 (en) * 2015-07-15 2020-03-04 三菱自動車工業株式会社 engine

Also Published As

Publication number Publication date
JPS6114450A (en) 1986-01-22

Similar Documents

Publication Publication Date Title
US10247156B2 (en) Internal combustion engine
US5740775A (en) Diesel engine
US5765372A (en) Lean burn engine for automobile
US7168409B2 (en) Controller for direct injection internal combustion engine
EP0978643A2 (en) Control device for direct injection engine
JPH0559270B2 (en)
JP2004510910A (en) Internal combustion engine operating method, internal combustion engine operating computer program, and internal combustion engine
JPH0571786B2 (en)
JPS60230554A (en) Knocking suppressor for engine
JPS60230543A (en) Engine equipped with fuel injector
JP2003106186A (en) Control system for spark ignition type direct injection engine
JP2599953B2 (en) Diesel engine combustion control device
JP3826294B2 (en) Premixed compression ignition internal combustion engine
JPH0559272B2 (en)
JPH0615857B2 (en) Exhaust gas recirculation control device for engine
JPH06147022A (en) Cylinder injection type internal combustion engine
JP3397866B2 (en) Engine fuel supply
JP2004293484A (en) Spark ignition type engine
JPS6116257A (en) Engine exhaust recirulation control system
JPS6030416A (en) Stratiform charging engine
JPH0571768B2 (en)
JPH0559250B2 (en)
JP3430522B2 (en) Engine fuel supply
JPH11148408A (en) Spark ignition cylinder injection type internal combustion engine
KR100633896B1 (en) EGR system of an engine