JPH0570860A - Production of tial-based multiple intermetallic compound - Google Patents

Production of tial-based multiple intermetallic compound

Info

Publication number
JPH0570860A
JPH0570860A JP3258709A JP25870991A JPH0570860A JP H0570860 A JPH0570860 A JP H0570860A JP 3258709 A JP3258709 A JP 3258709A JP 25870991 A JP25870991 A JP 25870991A JP H0570860 A JPH0570860 A JP H0570860A
Authority
JP
Japan
Prior art keywords
tial
intermetallic compound
powder
titanium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3258709A
Other languages
Japanese (ja)
Other versions
JP2877999B2 (en
Inventor
Michihiko Nagumo
道彦 南雲
Tatsu Suzuki
達 鈴木
Toru Ino
徹 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3258709A priority Critical patent/JP2877999B2/en
Publication of JPH0570860A publication Critical patent/JPH0570860A/en
Application granted granted Critical
Publication of JP2877999B2 publication Critical patent/JP2877999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce an intermetallic compd. to be used as the heat and wear- resistant materials wherein a carbide and a titanium-aluminum-based intermetallic compd. are finely compounded. CONSTITUTION:The metal powders of titanium and aluminum are mechanically alloyed in an inert gas atmosphere to form the cohesive aggregates, then a lower hydrocarbon is added to the aggregates which are mechanically alloyed in a wet state, hence the metal powders react with the hydrocarbon, the excess hydrocarbon is removed from the product, and the product is pressed and sintered to produce a TiAl-based intermetallic compd. wherein the carbides are compounded. Consequently, the carbides and the titanium-aluminum-based intermetallic compd. are finely compounded, and the hardness is remarkably enhanced from the room temp. to high temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱材料として有望な
TiAl基金属間化合物に関するものである。TiAl
金属間化合物は、比強度の高い高温耐熱材料として各種
回転体あるいは航空機用エンジン等に応用が検討されて
いる。
FIELD OF THE INVENTION The present invention relates to a TiAl-based intermetallic compound which is promising as a heat resistant material. TiAl
The application of intermetallic compounds to various rotating bodies, aircraft engines, etc. is being studied as a high-temperature heat-resistant material having high specific strength.

【0002】[0002]

【従来の技術】TiAl金属間化合物は比重が約3.9
で、高温強度、耐クリープ特性に優れており、軽量耐熱
材料として航空機への応用をめざし研究開発がなされて
いる。しかしながらTiAl金属間化合物は常温におけ
る変形能に乏しく、室温での延性改善について多くの研
究がなされてきた。最近、TiAl金属間化合物にMn
を添加して、常温における延性を2〜3%に改善した例
が、辻本らによって報告された(特開昭61−4174
0号公報)。その他TiAl基金属間化合物に第三元
素、第四元素を添加して特性を改善した例が報告されて
いる(例えば米国特許4842819(Cr添加)、同
4857268(V添加)。
2. Description of the Prior Art TiAl intermetallic compounds have a specific gravity of about 3.9.
It has excellent high-temperature strength and creep resistance, and is being researched and developed for application to aircraft as a lightweight heat-resistant material. However, the TiAl intermetallic compound is poor in deformability at room temperature, and many studies have been made on improving ductility at room temperature. Recently, Mn has been added to the TiAl intermetallic compound.
, Tsujimoto et al. Reported an example in which the ductility at room temperature was improved to 2 to 3% (JP-A-61-4174).
No. 0). Other examples have been reported in which the characteristics are improved by adding a third element and a fourth element to the TiAl-based intermetallic compound (for example, US Pat. Nos. 4,842,819 (Cr added) and 4,857,268 (V added)).

【0003】TiAl金属間化合物の製造方法として
は、プラズマアーク溶解法、高周波溶解法、急冷粉末
法、自己燃焼法等が知られている。合金設計した所望の
成分を調整した合金を急冷凝固によって粉末化し、その
後HIPで成型体にした例が報告されている(米国特許
4842819)。さらに、複合化方法として、反応焼
結を行ってTiB2とAlの複合粉末を形成し、複合粉
末をTiAl等金属間化合物に添加した製造方法が公開
されている(米国特許4751048)。TiAl基金
属間化合物の製造方法において、TiとAlの素粉末を
目標組成の割合で混合し、その後反応焼結によってTi
Al金属間化合物を製造する方法が広く行われている。
さらにガスアトマイズ法により作製したTiAl粉末
(プレアロイ粉末)とステアリン酸を助剤として添加
し、メカニカルアロイング法を用いて、炭化物あるいは
酸化物の分散したTiAlの微細組織をつくり、高温で
の強度を向上させた例が公開されている(米国特許48
34942)。
As a method for producing the TiAl intermetallic compound, a plasma arc melting method, a high frequency melting method, a quenching powder method, a self-combustion method and the like are known. It has been reported that an alloy designed alloy having desired components adjusted is powdered by rapid solidification and then formed into a molded body by HIP (US Pat. No. 4,842,819). Further, as a compounding method, a manufacturing method in which a compound powder of TiB 2 and Al is formed by performing reaction sintering and the compound powder is added to an intermetallic compound such as TiAl is disclosed (US Pat. No. 4,751,048). In the method for producing a TiAl-based intermetallic compound, Ti and Al elemental powders are mixed in a target composition ratio, and then Ti is formed by reaction sintering.
A method for producing an Al intermetallic compound is widely used.
Furthermore, TiAl powder (prealloy powder) prepared by gas atomization method and stearic acid are added as an auxiliary agent, and mechanical alloying method is used to form a TiAl fine structure in which carbides or oxides are dispersed to improve the strength at high temperature. The published example is published (US Pat. No. 48
34942).

【0004】[0004]

【発明が解決しようとする課題】本発明は、高耐摩耗
性、高温強度のような要求特性を有する炭化物分散チタ
ンアルミ基金属間化合物を容易に製造する製造方法を提
供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to provide a production method for easily producing a carbide-dispersed titanium-aluminum-based intermetallic compound having required properties such as high wear resistance and high temperature strength. ..

【0005】[0005]

【課題を解決するための手段】本発明は、チタニウムと
アルミニウムの金属粉末を不活性ガス雰囲気中でメカニ
カルアロイングを行い、密着した凝集体を形成させた
後、低級炭化水素を加えて湿式状態でメカニカルアロイ
ングを行なって金属粉と低級炭化水素とを反応させ、さ
らにこの生成物から過剰の炭化水素を除去した後、加圧
・焼結することによって炭化物を複合させたTiAl基
金属間化合物を製造する方法である。金属間化合物の構
成元素となる金属粉を高エネルギーボールミルなどを用
いて不活性ガス雰囲気中でメカニカルアロイングを行な
い、アルミニウム、チタニウム金属粉同士およびボール
と金属粉が密着した凝集体を形成した段階で低級炭化水
素を加えて湿式状態でミリングを続けて金属粉と低級炭
化水素とを反応させ、さらにこの生成物を成型して加圧
・焼結することによって炭化物と金属間化合物が微細に
複合化したTiAl基金属間化合物を製造するものであ
る。
Means for Solving the Problems In the present invention, a metal powder of titanium and aluminum is mechanically alloyed in an inert gas atmosphere to form a coherent agglomerate, and then a lower hydrocarbon is added to the wet state. Mechanically alloying the metal powder with lower hydrocarbons to remove excess hydrocarbons from the product, and then pressing and sintering the TiAl-based intermetallic compound to compound the carbides. Is a method of manufacturing. A stage in which the metal powder that is a constituent element of the intermetallic compound is mechanically alloyed in a high-energy ball mill in an inert gas atmosphere to form an aggregate in which aluminum and titanium metal powders are in close contact with each other and the ball and the metal powder are in close contact with each other. Then, lower hydrocarbons are added and milling is continued in a wet state to react the metal powder with the lower hydrocarbons, and this product is molded and pressed / sintered to finely combine the carbides and intermetallic compounds. To produce a converted TiAl-based intermetallic compound.

【0006】[0006]

【作用】メカニカルアロイングによって金属粉末の混合
体から金属間化合物を生成するためには、まず原料とな
る構成元素金属粉同士が密着した界面を形成して、相互
拡散が容易に起こるようにする必要があり、そのために
は金属粉の表面が酸化されないようにアルゴンのような
不活性ガス雰囲気中でミリングを行う。メカニカルアロ
イングにおいては容器及びボール材質の一部が金属粉に
混入して不純物となることが多い。これを抑制するため
には容器及びボールの表面を試料金属でコーティングす
ることが有効で、乾式状態でのミリングによって初期に
コーティング状態を形成する。
[Function] In order to generate an intermetallic compound from a mixture of metal powders by mechanical alloying, first, an interface in which the constituent element metal powders as raw materials are in close contact with each other is formed so that mutual diffusion easily occurs. Therefore, milling is performed in an atmosphere of an inert gas such as argon so that the surface of the metal powder is not oxidized. In mechanical alloying, a part of the material of the container and the ball is often mixed with the metal powder and becomes an impurity. In order to suppress this, it is effective to coat the surface of the container and the ball with the sample metal, and the coating state is initially formed by milling in the dry state.

【0007】低級炭化水素は金属粉に炭素を供給して後
の焼結過程で炭化物を形成させるために添加されるもの
である。液体状の炭化水素は金属粉と一様に接触する。
一方、金属粉の表面に付着した液体は金属粉同士の接触
による合金化を阻害するから、合金化を効率よく行うた
めには炭化水素の添加以前に乾式状態でメカニカルアロ
イングを行うことが必要である。低級炭化水素は、ミリ
ング中に金属粉と反応し、後の焼結過程で分解して炭化
物となる液体であることが必要である。このような炭化
物としては、炭素数で5以上のペンタン、ヘキサン、ヘ
プタン、オクタン等がある。しかしペンタンは沸点が3
6℃でミリング中に温度が上昇して気化することが考え
られ、適当でない。したがって、低級炭化水素として
は、ミリング中に液体であり、またミリング後に揮発さ
せ、回収し易いものとしてヘキサン、ヘプタン、オクタ
ン等が適当である。
The lower hydrocarbon is added to supply carbon to the metal powder to form a carbide in the subsequent sintering process. Liquid hydrocarbons make uniform contact with the metal powder.
On the other hand, the liquid adhering to the surface of the metal powder hinders the alloying due to the contact between the metal powders, so it is necessary to perform mechanical alloying in a dry state before adding hydrocarbons in order to perform the alloying efficiently. Is. The lower hydrocarbon needs to be a liquid that reacts with the metal powder during milling and decomposes into a carbide in the subsequent sintering process. Such carbides include pentane, hexane, heptane, octane and the like having 5 or more carbon atoms. However, pentane has a boiling point of 3
At 6 ° C, the temperature rises and vaporizes during milling, which is not suitable. Therefore, as the lower hydrocarbon, hexane, heptane, octane and the like are suitable as a liquid which is liquid during milling and which is easily volatilized and collected after milling.

【0008】炭化水素の量は、後の焼結過程で生成させ
る炭化物の量に必要な炭素を供給し、また金属粉の表面
を覆うのに十分であることが必要である。アルミニウム
粉末とチタン粉末からTiAl金属間化合物をメカニカ
ルアロイングで合成する場合、例えばヘプタンを添加し
てAl2Ti42炭化物との複合体にするにはヘプタン
の量は金属粉との体積比で50%以上であることが望ま
しい。ミリングの時間は特に重要である。炭化物を添加
するまでの乾式状態でのミリングは、原料の金属粉同士
が密着した界面を持つ凝集体を形成し、また容器および
ボールの表面が試料金属でコーティングされるまで行
う。この時間はボールミルの回転数やボールと金属粉と
の容積比などによって変化するものであるが、通常1時
間以上とすることが望ましい。炭化水素を添加した後の
湿式状態でのミリングは、炭化水素と金属粉とを均一に
混合するとともに反応を起こさせるために行う。反応が
起きたことは、例えばX線回折パターンに変化が起きる
ことから判定される。
The amount of hydrocarbons must be sufficient to supply the carbon necessary for the amount of carbides formed in the subsequent sintering process and to cover the surface of the metal powder. When synthesizing a TiAl intermetallic compound from aluminum powder and titanium powder by mechanical alloying, for example, in order to add heptane to form a complex with Al 2 Ti 4 C 2 carbide, the amount of heptane is the volume ratio with the metal powder. Is preferably 50% or more. Milling time is especially important. Milling in a dry state until the addition of the carbide is performed until an aggregate having an interface in which the metal powders of the raw materials adhere to each other is formed and the surfaces of the container and the ball are coated with the sample metal. This time varies depending on the number of revolutions of the ball mill, the volume ratio of the balls to the metal powder, and the like, but it is usually desirable to set it to 1 hour or more. Milling in a wet state after adding hydrocarbons is performed in order to uniformly mix the hydrocarbons and the metal powder and to cause a reaction. The occurrence of the reaction is judged from, for example, a change in the X-ray diffraction pattern.

【0009】その一例を図2に示す。図2は不活性ガス
雰囲気中でアルミニウム粉末とチタン粉末をミリング
し、さらに低級炭化水素を加えて湿式状態でミリングし
て得られた合金粉のX線回折パターンであり、2θに相
当する60°付近に僅かなピークが現われている。乾式
状態でのミリングだけでは、前述のようなピークは発現
しない。この反応によって炭化水素は炭化物が形成され
る後の焼結過程にまで安定に保持され、また金属粉中に
微細分散される。したがって、ミリング時間は導入する
炭化水素の量を制御するためにも変化させることができ
る。例えば、上記のアルミニウム粉末とチタン粉末にヘ
プタンを添加してTiAl金属間化合物とAl2Ti4
2炭化物との複合体をメカニカルアロイングを経由して
製造する場合、湿式ミリングの時間は約1時間以上であ
る。ミリングの雰囲気は、不活性ガス雰囲気で行う。不
活性ガスとしては、ヘリウム、アルゴン等が使用でき、
窒化物が生成しない場合には窒素雰囲気にすることもで
きる。さらに、ボールミル容器の構造が耐圧構造であれ
ば、減圧下、加圧下でもミリング可能である。酸素が混
入すると活性な金属素粉末が酸化され、酸化物が形成さ
れる。酸化物の形成は延性を低下させるとともに合金化
の進行を阻害する。
An example thereof is shown in FIG. FIG. 2 is an X-ray diffraction pattern of an alloy powder obtained by milling aluminum powder and titanium powder in an inert gas atmosphere and further milling in a wet state by adding a lower hydrocarbon, which is 60 ° corresponding to 2θ. A slight peak appears in the vicinity. The above-mentioned peaks do not appear only by milling in a dry state. By this reaction, hydrocarbons are stably retained until the sintering process after formation of carbides, and are finely dispersed in the metal powder. Therefore, the milling time can also be varied to control the amount of hydrocarbons introduced. For example, heptane is added to the above aluminum powder and titanium powder to form a TiAl intermetallic compound and Al 2 Ti 4 C.
When a composite with 2 carbides is manufactured via mechanical alloying, the time of wet milling is about 1 hour or more. The milling atmosphere is an inert gas atmosphere. As the inert gas, helium, argon, etc. can be used,
A nitrogen atmosphere can be used when no nitride is formed. Further, if the structure of the ball mill container is a pressure resistant structure, milling can be performed under reduced pressure and pressure. When oxygen is mixed, the active metal powder is oxidized and an oxide is formed. Oxide formation reduces ductility and inhibits the progress of alloying.

【0010】メカニカルアロイング生成物のバルク材へ
の成型は、高温高圧化で行う。これは炭化物生成反応を
起こさせるとともに、成型体の密度を相対密度で通常の
80%以上にするためである。メカニカルアロイングを
行った金属粉の焼結においては、通常の金属粉を用いた
粉末冶金で必要な温度、圧力条件を緩和することができ
て経済的に有利である。上記のアルミニウム粉末とチタ
ン粉末からヘプタンを添加してTiAl金属間化合物と
Al2Ti42炭化物との複合体を製造する場合、成型
をホットプレスで行うには、900℃以上、40MPa
以上の温度圧力で行うことが望ましい。900℃以下の
場合炭化物Al2Ti42が十分生成しない。反対に1
200℃以上の場合は反応が進みすぎ、炭化物や結晶粒
が粗大化して機械的性質を低下させる。ホットプレスの
圧力は40MPa以上が望ましく、それ以下の場合は焼
結体の密度が不十分で成型体の健全性に問題が生ずる。
The molding of the mechanical alloying product into the bulk material is carried out at high temperature and high pressure. This is to cause a carbide formation reaction and to make the density of the molded body 80% or more in relative density. In the sintering of metal powder subjected to mechanical alloying, the temperature and pressure conditions necessary for powder metallurgy using ordinary metal powder can be relaxed, which is economically advantageous. When a complex of TiAl intermetallic compound and Al 2 Ti 4 C 2 carbide is produced by adding heptane from the above aluminum powder and titanium powder, in order to carry out molding by hot pressing, 900 ° C. or higher, 40 MPa or more.
It is desirable to carry out at the above temperature and pressure. When the temperature is 900 ° C. or lower, the carbide Al 2 Ti 4 C 2 is not sufficiently formed. On the contrary 1
When the temperature is 200 ° C. or higher, the reaction proceeds excessively, and the carbides and crystal grains become coarse and the mechanical properties deteriorate. The pressure of the hot press is preferably 40 MPa or more, and when it is less than 40 MPa, the density of the sintered body is insufficient and the soundness of the molded body becomes a problem.

【0011】[0011]

【実施例】原子%で50%のチタン粉末と50%のアル
ミニウム粉末(純度99.9%)を高エネルギー遊星ボ
ールミルを用いて粉砕した。ステンレス容器の外径は
9.3cm、体積は680mlであり、アルゴン雰囲気
中で4時間行った。その後、粉末と低級炭化物の反応を
起こさせ、均一に析出物を出させるために、ミリング中
に、ヘプタンを加え、24時間アルゴン雰囲気中でミリ
ングを行った。ミリングした粉末を採取し、グラファイ
ト型中に詰め、ホットプレスを100℃、40MPa、
3時間の条件で行った。ホットプレスした材料は、X線
回折で構造を決定し、光学顕微鏡とSEMで組織の観察
を行った。密度はアルキメデス法で測定した。さらに、
高温硬度を真空中で室温から900℃まで荷重200g
もしくは500gを用いて測定した。焼結体は、組織観
察の結果、やや暗く見える部分(A)と明るい部分
(B)を主要部とすることが認められ、図3に各々の部
分のEDXの測定結果を示す。A部がややAlリッチ、
B部がややTiリッチであり、いずれの部分にも炭素が
存在していた。また、X線回折の結果では、後述する表
1の構造欄に示したように、炭化物の存在が認められ
た。
EXAMPLE 50% titanium powder and 50% aluminum powder (purity 99.9%) in atomic% were pulverized using a high energy planetary ball mill. The outer diameter of the stainless steel container was 9.3 cm, the volume was 680 ml, and the operation was performed for 4 hours in an argon atmosphere. After that, in order to cause a reaction between the powder and the low-grade carbide and uniformly produce a precipitate, heptane was added during milling, and milling was performed in an argon atmosphere for 24 hours. The milled powder is collected, packed in a graphite mold, and hot pressed at 100 ° C., 40 MPa,
It was carried out under the condition of 3 hours. The structure of the hot-pressed material was determined by X-ray diffraction, and the structure was observed with an optical microscope and SEM. The density was measured by the Archimedes method. further,
High temperature hardness in vacuum from room temperature to 900 ℃ load 200g
Alternatively, it was measured using 500 g. As a result of observing the structure, it was recognized that the sintered body had a slightly dark portion (A) and a bright portion (B) as main portions, and FIG. 3 shows the EDX measurement results of each portion. Part A is a little Al rich,
Part B was slightly Ti-rich, and carbon was present in all parts. In addition, as a result of X-ray diffraction, as shown in the structure column of Table 1 described later, the presence of carbide was confirmed.

【0012】表1に各製造条件を変化させて作製したT
iAl基金属間化合物の構造と密度を示す。各条件で作
製した炭化物分散TiAl基金属間化合物の高温硬度と
温度の関係を図1に示す。破線で示したものは、アーク
溶解法によって溶解した化学量論組成のTiAlインゴ
ット材の高温硬度測定結果である。γ相単相組織のイン
ゴット材に比べて、室温から800℃までの温度範囲
で、硬度が著しく高いことが明らかとなった。特に、1
100℃、1200℃でホットプレスした金属間化合物
は同様な傾向を示し600℃まで室温と同レベルの硬度
を維持している事が明らかとなった。
Table 1 shows T manufactured by changing each manufacturing condition.
1 shows the structure and density of an iAl-based intermetallic compound. The relationship between the high temperature hardness and the temperature of the carbide-dispersed TiAl-based intermetallic compound produced under each condition is shown in FIG. What is indicated by a broken line is a high temperature hardness measurement result of a TiAl ingot material having a stoichiometric composition melted by an arc melting method. It was revealed that the hardness was remarkably high in the temperature range from room temperature to 800 ° C. as compared with the ingot material having the γ-phase single-phase structure. Especially 1
It was revealed that the intermetallic compound hot-pressed at 100 ° C and 1200 ° C showed the same tendency and maintained the same level of hardness as that at room temperature up to 600 ° C.

【0013】[0013]

【比較例】Al 50原子%、Ti50原子%組成のT
iAl金属間化合物を多極アーク溶解炉中でアルゴン雰
囲気下で溶解および凝固を行った。得られたインゴット
を1050℃48時間真空中で保持し、均質化を行った
結果、ほぼγ単相組織であった。均質化後、高温硬度試
験片(5×5×10mm)を加工し、高温硬度は、真空
中で室温から900℃まで荷重200gもしくは500
gを用いて測定した。測定の結果600℃まで硬度20
0程度を保持し、それ以上の温度では硬度が徐々に低下
する。
[Comparative Example] T of 50 atomic% Al and 50 atomic% Ti
The iAl intermetallic compound was melted and solidified in a multipolar arc melting furnace under an argon atmosphere. The obtained ingot was held in vacuum at 1050 ° C. for 48 hours for homogenization, and as a result, it was found to have a substantially γ single-phase structure. After homogenization, a high temperature hardness test piece (5 × 5 × 10 mm) was processed, and the high temperature hardness was 200 g or 500 load under vacuum from room temperature to 900 ° C.
It was measured using g. Hardness 20 up to 600 ℃
The hardness is maintained at about 0, and the hardness gradually decreases at a temperature higher than that.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】金属間化合物の構成元素となるアルミニ
ウムとチタン金属粉末を高エネルギーボールミルなどを
用いて不活性ガス雰囲気中でメカニカルアロイングを行
い、これに低級炭化水素を加えて湿式状態でミリングを
続けて金属粉と低級炭化水素とを反応させ、さらにこの
生成物を成型して加圧・焼結することによって炭化物と
チタンアルミ基金属間化合物が微細に複合化した金属間
化合物が容易に得られた。この複合金属間化合物は炭化
物が複合していないTiAl基金属間化合物に比べて室
温から高温にいたるまで硬度が著しく高く、耐熱材料、
耐摩耗材料としてエンジンや工具等に使用できる。
EFFECTS OF THE INVENTION Aluminum and titanium metal powders, which are the constituent elements of the intermetallic compound, are mechanically alloyed in a high energy ball mill in an inert gas atmosphere, and a lower hydrocarbon is added to this to perform milling in a wet state. Then, the metal powder and the lower hydrocarbon are reacted, and this product is molded, pressed and sintered to easily form an intermetallic compound in which the carbide and the titanium-aluminum-based intermetallic compound are finely combined. Was obtained. This composite intermetallic compound has a significantly higher hardness from room temperature to a higher temperature than a TiAl-based intermetallic compound in which carbide is not composited, and a heat-resistant material,
It can be used as an abrasion resistant material for engines and tools.

【図面の簡単な説明】[Brief description of drawings]

【図1】各温度でホットプレスしたTiAl基金属間化
合物の高温硬度測定結果を示す図、
FIG. 1 is a diagram showing the high-temperature hardness measurement results of a TiAl-based intermetallic compound hot-pressed at each temperature,

【図2】湿式状態でのミリング後の合金粉末のX線回折
パターンの一例を示す図、
FIG. 2 is a diagram showing an example of an X-ray diffraction pattern of an alloy powder after milling in a wet state,

【図3】焼結体のEDXによる分析結果を示す図であ
る。
FIG. 3 is a diagram showing an EDX analysis result of a sintered body.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月16日[Submission date] September 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】メカニカルアロイング生成物のバルク材へ
の成型は、高温高圧で行う。これは炭化物生成反応を
起こさせるとともに、成型体の密度を相対密度で通常の
80%以上にするためである。メカニカルアロイングを
行った金属粉の焼結においては、通常の金属粉を用いた
粉末冶金で必要な温度、圧力条件を緩和することができ
て経済的に有利である。上記のアルミニウム粉末とチタ
ン粉末からヘプタンを添加してTiAl金属間化合物と
AlTi炭化物との複合体を製造する場合、成
型をホットプレスで行うには、900℃以上、40MP
a以上の温度圧力で行うことが望ましい。900℃以下
の場合炭化物AlTiが十分生成しない。反対
に1200℃以上の場合は反応が進みすぎ、炭化物や結
晶粒が粗大化して機械的性質を低下させる。ホットプレ
スの圧力は40MPa以上が望ましく、それ以下の場合
は焼結体の密度が不十分で成型体の健全性に問題が生ず
る。
The molding of the mechanical alloying product into a bulk material is carried out under high temperature and high pressure. This is to cause a carbide formation reaction and to make the density of the molded body 80% or more in relative density. In the sintering of metal powder subjected to mechanical alloying, the temperature and pressure conditions necessary for powder metallurgy using ordinary metal powder can be relaxed, which is economically advantageous. When heptane is added from the above aluminum powder and titanium powder to produce a composite of a TiAl intermetallic compound and Al 2 Ti 4 C 2 carbide, in order to perform molding by hot pressing, 900 ° C. or higher, 40MP or more.
It is desirable to carry out at a temperature and pressure of a or higher. When the temperature is 900 ° C. or lower, the carbide Al 2 Ti 4 C 2 is not sufficiently formed. On the other hand, when the temperature is 1200 ° C. or higher, the reaction proceeds excessively, and the carbides and crystal grains become coarse, deteriorating the mechanical properties. The pressure of the hot press is preferably 40 MPa or more, and when it is less than 40 MPa, the density of the sintered body is insufficient and the soundness of the molded body becomes a problem.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】[0011]

【実施例】原子%で50%のチタン粉末と50%のアル
ミニウム粉末(純度99.9%)を高エネルギー遊星ボ
ールミルを用いて粉砕した。ステンレス容器の外径は
9.3cm、体積は680mlであり、アルゴン雰囲気
中で4時間行った。その後、粉末と低級炭化物の反応を
起こさせ、均一に析出物を出させるために、ミリング中
に、ヘプタンを加え、24時間アルゴン雰囲気中でミリ
ングを行った。ミリングした粉末を採取し、グラファイ
ト型中に詰め、ホットプレスを1000℃、40MP
a、3時間の条件で行った。ホットプレスした材料は、
X線回折で構造を決定し、光学顕微鏡とSEMで組織の
観察を行った。密度はアルキメデス法で測定した。さら
に、高温硬度を真空中で室温から900℃まで荷重20
0gもしくは500gを用いて測定した。焼結体は、組
織観察の結果、やや暗く見える部分(A)と明るい部分
(B)を主要部とすることが認められ、図3に各々の部
分のEDXの測定結果を示す。A部がややAlリッチ、
B部がややTiリッチであり、いずれの部分にも炭素が
存在していた。また、X線回折の結果では、後述する表
1の構造欄に示したように、炭化物の存在が認められ
た。
EXAMPLE 50% titanium powder and 50% aluminum powder (purity 99.9%) in atomic% were pulverized using a high energy planetary ball mill. The outer diameter of the stainless steel container was 9.3 cm, the volume was 680 ml, and the operation was performed for 4 hours in an argon atmosphere. After that, in order to cause a reaction between the powder and the low-grade carbide and uniformly produce a precipitate, heptane was added during milling, and milling was performed in an argon atmosphere for 24 hours. The milled powder is collected, packed in a graphite mold, hot pressed at 1000 ° C, 40MP
a, the condition was 3 hours. The hot pressed material is
The structure was determined by X-ray diffraction, and the structure was observed with an optical microscope and SEM. The density was measured by the Archimedes method. In addition, the high temperature hardness in vacuum from room temperature to 900 ℃ load 20
It was measured using 0 g or 500 g. As a result of observing the structure, it was recognized that the sintered body had a slightly dark portion (A) and a bright portion (B) as main portions, and FIG. 3 shows the EDX measurement results of each portion. Part A is a little Al rich,
Part B was slightly Ti-rich, and carbon was present in all parts. In addition, as a result of X-ray diffraction, as shown in the structure column of Table 1 described later, the presence of carbide was confirmed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタニウムとアルミニウムの金属粉末を
不活性ガス雰囲気中でメカニカルアロイングを行い、密
着した凝集体を形成させた後、低級炭化水素を加えて湿
式状態でメカニカルアロイングを行なって金属粉と低級
炭化水素とを反応させ、さらにこの生成物から過剰の炭
化水素を除去した後、加圧・焼結することによって炭化
物を複合させることを特徴とするTiAl基金属間化合
物の製造方法。
1. A metal powder of titanium and aluminum is mechanically alloyed in an inert gas atmosphere to form a coherent agglomerate, and then a lower hydrocarbon is added to perform mechanical alloying in a wet state. A method for producing a TiAl-based intermetallic compound, characterized in that a powder and a lower hydrocarbon are reacted with each other, excess hydrocarbon is removed from the product, and then the carbide is compounded by pressurizing and sintering.
JP3258709A 1991-09-11 1991-09-11 Method for producing TiAl-based composite intermetallic compound Expired - Fee Related JP2877999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258709A JP2877999B2 (en) 1991-09-11 1991-09-11 Method for producing TiAl-based composite intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258709A JP2877999B2 (en) 1991-09-11 1991-09-11 Method for producing TiAl-based composite intermetallic compound

Publications (2)

Publication Number Publication Date
JPH0570860A true JPH0570860A (en) 1993-03-23
JP2877999B2 JP2877999B2 (en) 1999-04-05

Family

ID=17324009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258709A Expired - Fee Related JP2877999B2 (en) 1991-09-11 1991-09-11 Method for producing TiAl-based composite intermetallic compound

Country Status (1)

Country Link
JP (1) JP2877999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323178C (en) * 2005-09-29 2007-06-27 陕西科技大学 Method for synthesizing Al203/TiAl composite material
CN100432255C (en) * 2006-01-18 2008-11-12 陕西科技大学 Preparation method of highly dispersed AI2O3 particle reinforced Ti-Al based composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323178C (en) * 2005-09-29 2007-06-27 陕西科技大学 Method for synthesizing Al203/TiAl composite material
CN100432255C (en) * 2006-01-18 2008-11-12 陕西科技大学 Preparation method of highly dispersed AI2O3 particle reinforced Ti-Al based composite material

Also Published As

Publication number Publication date
JP2877999B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US4097275A (en) Cemented carbide metal alloy containing auxiliary metal, and process for its manufacture
US4673550A (en) TiB2 -based materials and process of producing the same
JP3069354B2 (en) Composite comprising a matrix containing an intermetallic substance
US3999952A (en) Sintered hard alloy of multiple boride containing iron
US5194237A (en) TiC based materials and process for producing same
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
EP1711342B1 (en) Wear resistant materials
EP0535055A1 (en) Metal carbides and derived composites
JPH0261521B2 (en)
US5454999A (en) Composite silicide/silicon carbide mechanical alloy
IE60082B1 (en) Method for producing self-supporting ceramic bodies with graded properties
US5015440A (en) Refractory aluminides
Dallaire et al. The influence of composition and process parameters on the microstructure of TiC-Fe multiphase and multilayer coatings
EP0591305B1 (en) Cermets based on transition metal borides, their production and use
US2763918A (en) Process of making a ferroalloying material and product obtained thereby
JPH08501828A (en) Beta 21S titanium-based master alloy for alloys and method for producing the master alloy
JP2877999B2 (en) Method for producing TiAl-based composite intermetallic compound
US5340531A (en) Refractory metal reinforced MoSi2 /SiC composite with matched thermal coefficients of expansion
JP3793813B2 (en) High strength titanium alloy and method for producing the same
CA1073474A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2003531959A (en) In-situ powder metallurgy manufacturing method of wear resistant composite material
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

LAPS Cancellation because of no payment of annual fees