JPH0570239A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH0570239A
JPH0570239A JP4043966A JP4396692A JPH0570239A JP H0570239 A JPH0570239 A JP H0570239A JP 4043966 A JP4043966 A JP 4043966A JP 4396692 A JP4396692 A JP 4396692A JP H0570239 A JPH0570239 A JP H0570239A
Authority
JP
Japan
Prior art keywords
silicon nitride
partial pressure
carbon
sintered body
equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4043966A
Other languages
Japanese (ja)
Inventor
Tatsuto Takahashi
達人 高橋
Kazuya Yabuta
和哉 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPH0570239A publication Critical patent/JPH0570239A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silicon nitride sintered body suitable for use as a structural material at a part requiring heat resistance and high strength. CONSTITUTION:When a molded body consisting of silicon nitride powder with a silica coating film formed on at least the surface, resin convertible into carbon by thermal decomposition in an atmosphere of nonoxidizing gas and a sintering aid is sintered, the silica coating film is removed immediately before sintering and a silicon nitride sintered body is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温構造用材料の分野
において有用な窒化珪素焼結体の製造方法に関する。さ
らに詳しくは、高温強度を改善しうる窒化珪素焼結体の
製造工程の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body useful in the field of high temperature structural materials. More specifically, the present invention relates to improvement of a manufacturing process of a silicon nitride sintered body which can improve high temperature strength.

【0002】[0002]

【従来の技術】窒化珪素(Si34)焼結体は耐熱性、耐
衝撃性、破壊靭性及び強度に優れており、ガスタービン
部品やディーゼルエンジンの部品など高温での強度を要
求される部位に使用されている。この焼結体の高温強度
を発現、維持向上させるために種々の検討がなされてい
る。
2. Description of the Related Art Sintered silicon nitride (Si 3 N 4 ) is excellent in heat resistance, impact resistance, fracture toughness and strength, and is required to have high strength at high temperatures such as gas turbine parts and diesel engine parts. Used in parts. Various studies have been made to develop, maintain and improve the high temperature strength of this sintered body.

【0003】窒化珪素は共有結合性が高いため容易に固
相焼結できず、助剤を加え焼成温度で液相を生成させ緻
密化する液相焼結法が一般に行われている。そのため、
得られる焼結体は粒界に液相がガラス化したガラス相を
持ち、高温強度をはじめ高温クリープはこの粒界に存在
するガラス相に依存していた。これに対し、このガラス
相の組成を制御し、あるいは熱処理によりガラス相を結
晶化すること、あるいはガラス相そのものの耐熱性をあ
げることが提案されている。しかしながら、添加する助
剤の種類や量の検討だけではガラス相の結晶化や耐熱性
の向上による高温高強度化には限界があった。
Since silicon nitride has a high covalent bond and cannot be easily solid-phase sintered, a liquid-phase sintering method in which an auxiliary agent is added to generate a liquid phase at a firing temperature to densify it is generally used. for that reason,
The obtained sintered body had a glass phase in which the liquid phase was vitrified at the grain boundary, and the high temperature creep including high temperature strength depended on the glass phase existing at this grain boundary. On the other hand, it has been proposed to control the composition of the glass phase, crystallize the glass phase by heat treatment, or increase the heat resistance of the glass phase itself. However, there is a limit to the high temperature and high strength due to the crystallization of the glass phase and the improvement of heat resistance, only by examining the kind and amount of the additive to be added.

【0004】この窒化珪素焼結体内のガラス相の量を除
去もしくは低減させるために、窒化珪素原料粉末を1400
℃〜1800℃の温度で30分〜2時間、非酸化性雰囲気中で
熱処理することによりシリカ及び酸素を取り除き、この
窒化珪素粉末を用いて焼結体を得る方法が知られている
(特公平2-47426号公報)。さらに、この熱処理した窒
化珪素粉末並びに窒化珪素粉末と焼結用添加物との混合
物を熱処理し、粉砕したものを使用する方法も提案され
ている(特公平2-47427号公報)。また、窒化珪素の原
料製造工程において直接窒化法より得られた窒化珪素の
インゴットを1500℃〜1800℃で熱処理しその後、粉砕し
粉末を得る方法も提案されている(特開平2−248308号
公報)。目的は異なるが窒化珪素粉末の表面シリカ層を
積極的にアンモニアやアンモニアと炭化水素の混合ガス
を用いて還元処理を行い、窒化珪素粉末の表面改質を行
う方法も提示されている(特開平1−226768号公報)。
In order to remove or reduce the amount of glass phase in this silicon nitride sintered body, 1400 silicon nitride raw material powder was added.
A method is known in which silica and oxygen are removed by heat treatment in a non-oxidizing atmosphere at a temperature of ℃ to 1800 ℃ for 30 minutes to 2 hours, and a sintered body is obtained by using this silicon nitride powder (Japanese Patent Publication No. 2-47426). Further, a method has also been proposed in which the heat-treated silicon nitride powder and a mixture of the silicon nitride powder and a sintering additive are heat-treated and pulverized (Japanese Patent Publication No. 2-47427). Further, a method has also been proposed in which a silicon nitride ingot obtained by a direct nitriding method in a silicon nitride raw material manufacturing step is heat-treated at 1500 ° C. to 1800 ° C. and then pulverized to obtain a powder (JP-A-2-248308). ). Although the purpose is different, a method has also been proposed in which the surface silica layer of the silicon nitride powder is positively subjected to a reduction treatment using ammonia or a mixed gas of ammonia and a hydrocarbon to modify the surface of the silicon nitride powder (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). No. 1-226768).

【0005】また、シリカ粉末にエポキシ樹脂等の特定
樹脂粉末を加えて還元窒化を行なうα型窒化珪素の製造
方法も知られている(特開昭60-36311号公報)。
There is also known a method for producing α-type silicon nitride in which a specific resin powder such as an epoxy resin is added to silica powder for reduction nitriding (Japanese Patent Laid-Open No. 60-36311).

【0006】一方、複合化の検討もなされており、炭化
珪素の耐酸化性、高温強度とから炭化珪素ウイスカーの
検討、炭化珪素粒添加の検討がなされている(特開昭62
−176958号公報)。また、珪素・炭素・窒素・(酸素)
からなる非晶質粉末を用い、炭化珪素と窒化珪素の界面
が直接に結合した窒化珪素・炭化珪素複合焼結体を作製
する方法も開示されている(特開昭63−159256号公報、
特開平1−257470号公報、「粉体および粉末冶金」第37
巻、第2号、p.352〜356)。特に非晶質粉末中の炭素量
が炭化珪素に換算して25容積%以上になると非晶質粉か
ら生成する炭化珪素粒が0.1μm以上となって粒界に存
在し、高温強度化が図れるとしている。この非晶質粉体
を用い、かつ炭化珪素粉末添加する考案も開示されてい
る(特開平2−160669号公報、特開平3−5374号公
報)。
[0006] On the other hand, studies on compounding have also been made, and studies have been made on silicon carbide whiskers and addition of silicon carbide particles in view of the oxidation resistance and high temperature strength of silicon carbide (Japanese Patent Laid-Open No. 62-62).
-176958). In addition, silicon, carbon, nitrogen, (oxygen)
There is also disclosed a method for producing a silicon nitride / silicon carbide composite sintered body in which an interface between silicon carbide and silicon nitride is directly bonded by using an amorphous powder composed of (Japanese Patent Laid-Open No. 63-159256).
JP-A 1-257470, "Powder and powder metallurgy" No. 37
Vol. 2, p.352-356). In particular, when the amount of carbon in the amorphous powder is 25% by volume or more in terms of silicon carbide, the silicon carbide grains generated from the amorphous powder are 0.1 μm or more and are present at grain boundaries, and high temperature strength can be achieved. I am trying. A device using this amorphous powder and adding silicon carbide powder has also been disclosed (JP-A-2-160669, JP-A-3-5374).

【0007】[0007]

【発明が解決しようとする課題】上述のように、従来の
窒化珪素焼結体中のシリカの低減は原料処理レベルで行
われていたものの、それ以降の焼結体になるまでの各工
程において増加するシリカに対してはその除去及び低減
させることは考えられていなかった。
As described above, the reduction of silica in the conventional silicon nitride sintered body has been carried out at the raw material processing level, but in each step until the subsequent sintered body is obtained. For increasing silica, its removal and reduction was not considered.

【0008】窒化珪素自体、天然界には存在しないこと
からもわかるように、熱力学的にも大気雰囲気中で安定
ではなく、窒化珪素は常に酸化してシリカになる特性を
有している。特に、セラミックス焼結体の原料として用
いる窒化珪素粉末はサブミクロン(10-4mmオーダー)の
大きさであり、空気中の水分や酸素で容易に酸化してし
まう。そのため、原料を熱処理した後も焼結体になるま
での各製造工程における窒化珪素の再酸化に対して非酸
化性雰囲気での粉体操作等、格段の注意が必要となり、
そのような環境下でのプロセッシングは実用的でないと
いう問題があった。さらに、何等かの操作により工程の
半ばで窒化珪素が酸化した場合は、そのバッチすべてが
不良となる可能性が大であった。
As can be seen from the fact that silicon nitride itself does not exist in the natural world, it is not thermodynamically stable in the atmosphere, and silicon nitride has a characteristic that it is always oxidized into silica. In particular, the silicon nitride powder used as a raw material for the ceramics sintered body has a size of submicron (10 −4 mm order) and is easily oxidized by moisture and oxygen in the air. Therefore, even after the heat treatment of the raw material, much caution is required such as powder operation in a non-oxidizing atmosphere for re-oxidation of silicon nitride in each manufacturing process until it becomes a sintered body.
There is a problem that processing under such an environment is not practical. Furthermore, when silicon nitride is oxidized in the middle of the process by some operation, there is a high possibility that all the batches will be defective.

【0009】また、ウイスカー又は粉末の炭化珪素を添
加する従来の方法においては、炭化珪素と窒化珪素界面
にはシリカを一成分とするガラス粒界相が存在し、この
ため高温強度の向上するものの十分という段階まで高温
化が図れなかった。一方、珪素・炭素・窒素・(酸素)
からなる非晶質粉末を用いた場合、粒界において窒化珪
素と炭化珪素とが直接結合し、高温強度をもたらすこと
が可能であるが、炭化珪素にして25容積%以上にしない
とこの効果は表れない。窒化珪素材料において、この炭
化珪素の量は窒化珪素焼結体の特性を左右するにもかか
わらず、25容積%以上とかなり高い量にしなければなら
ず、材料特性を設計する面から問題である。さらに、非
晶質粉を用い、かつ炭化珪素粉末を添加した場合、添加
しないものに比べ、高温強度がどうしても低下する問題
があった。
Further, in the conventional method of adding whisker or powdered silicon carbide, there is a glass grain boundary phase containing silica as one component at the interface between silicon carbide and silicon nitride, which improves the high temperature strength. The temperature could not be raised to the point of being sufficient. On the other hand, silicon, carbon, nitrogen, (oxygen)
When an amorphous powder consisting of is used, silicon nitride and silicon carbide can be directly bonded at the grain boundary to provide high-temperature strength. However, this effect cannot be obtained unless silicon carbide is made 25% by volume or more. It does not appear. In the silicon nitride material, although the amount of silicon carbide influences the characteristics of the silicon nitride sintered body, it has to be a considerably high amount of 25% by volume or more, which is a problem from the viewpoint of designing material characteristics. .. Further, when amorphous powder is used and silicon carbide powder is added, there is a problem that the high temperature strength is inevitably lowered as compared with the case where no silicon carbide powder is added.

【0010】本発明は、かかる事態に鑑みてなされたも
のであり、窒化珪素の原料中に含まれるシリカを除去す
るだけでなく、原料混合以降焼結体になるまでの各工程
において増加するシリカに対してもこれを除去し、窒化
珪素の材料特性を変えることなく高温での強度の低下の
少ない優れた窒化珪素を提供することを目的とする。
The present invention has been made in view of the above situation, and not only removes silica contained in a raw material of silicon nitride, but also increases silica in each step from mixing the raw materials to forming a sintered body. In view of the above, it is an object of the present invention to provide an excellent silicon nitride which does not decrease the strength at high temperature without changing the material characteristics of silicon nitride.

【0011】[0011]

【課題を解決するための手段】上記目的は、少なくとも
表面にシリカ被膜が形成されている窒化珪素粉末と焼結
助剤と非酸化性ガス雰囲気下の加熱で熱分解して炭素に
なる樹脂とからなる混合粉末の成形体を焼結する直前に
非酸化性雰囲気中で加熱して該シリカ被膜を除去するこ
とを特徴とする窒化珪素焼結体の製造方法によって達成
された。
Means for Solving the Problems The above-mentioned objects are at least a silicon nitride powder having a silica coating formed on its surface, a sintering aid, and a resin which is thermally decomposed to carbon by heating in a non-oxidizing gas atmosphere. The method for producing a silicon nitride sintered body is characterized in that the silica coating film is removed by heating in a non-oxidizing atmosphere immediately before sintering the molded body of the mixed powder consisting of

【0012】窒化珪素焼結体の製造に使用される原料の
窒化珪素粉末は四窒化三珪素であり、セラミック焼結体
の製造に使用される通常の原料を使用することができ
る。窒化珪素には、非晶質のほかα型及びβ型があるが
そのいずれであってもよい。この窒化珪素粉末は、表面
にシリカ被膜を有するものである。ここで窒化珪素粒表
面のシリカとは珪素酸化物(SiO2、SiO)の非晶
質、結晶相(クリストバライト等)をいう。被膜は全体
に形成されるほか、破砕物のように部分的に形成される
ものであってもよい。一般に窒化珪素原料粉末における
窒化珪素粒に存在する酸素は、粉末表面に吸着した水
分、酸素の他、表面層を形成している珪素酸化物(Si
2、SiO)等、ここではシリカと呼んでいるものでフ
ッ酸で加熱処理することにより除くことができるもの及
び窒化珪素粒内に固溶ないし閉じこめられているものの
3つに分けられる。これらの割合は、表面吸着した酸素
は0.01重量%から0.1重量%、表面層のシリカは0.1重量
%から3.0重量%、粒内に固溶した酸素はシリカに換算
して0.1重量%から2.5重量%である。窒化珪素粉末は、
シリカを除くことによる高温強度化の目的から原料中の
酸素量が少ない方が望ましい。粒径は5nm〜1μm程
度、通常0.1〜0.8μm程度のものでよい。
The raw material silicon nitride powder used for producing the silicon nitride sintered body is trisilicon tetranitride, and the usual raw materials used for producing the ceramic sintered body can be used. Silicon nitride includes α-type and β-type in addition to amorphous, but any of them may be used. This silicon nitride powder has a silica coating on the surface. Here, the silica on the surface of the silicon nitride grains is an amorphous or crystalline phase of silicon oxide (SiO 2 , SiO) (cristobalite, etc.). The coating film may be formed entirely, or may be partially formed like a crushed material. In general, oxygen present in silicon nitride grains in a silicon nitride raw material powder is not only water and oxygen adsorbed on the powder surface but also silicon oxide (Si) forming the surface layer.
O 2, SiO) or the like, where is divided into three although the solid solution or trapped is possible ones and silicon nitride grains be removed by heating with hydrofluoric acid which is called silica. Oxygen adsorbed on the surface is 0.01 wt% to 0.1 wt%, silica in the surface layer is 0.1 wt% to 3.0 wt%, and oxygen dissolved in the grains is 0.1 wt% to 2.5 wt% converted to silica. %. The silicon nitride powder is
It is desirable that the amount of oxygen in the raw material is small for the purpose of strengthening at high temperature by removing silica. The particle size may be about 5 nm to 1 μm, usually about 0.1 to 0.8 μm.

【0013】炭化珪素粉末もセラミックの製造に使用さ
れる通常のものでよい。この炭化珪素粉末も表面に酸化
被膜を有しており、その値も窒化珪素粉末とほぼ同等で
表面吸着している酸素は0.01〜0.1重量%、表面層のシ
リカ0.1〜3.0重量%、そして粒内に固溶した酸素はシリ
カに換算して0.1〜2.5重量%である。炭化珪素粉末も酸
素含有量の少ないものが好ましい。シリカの範囲は窒化
珪素と同様である。炭化珪素はシリカの除去に用いられ
るものと、粒界に存在させるものがあり、前者の粒径は
後者の粒径より細かく、比表面積の大きなものが好まし
い。具体的な粒径は、前者は5nm〜1μm程度、好まし
くは50nm〜0.5μm程度であり、後者は50nm〜10μm程
度、好ましくは0.1μm〜5μm程度である。炭化珪素
の量は、粒界に存在させる量とシリカとの反応に必要な
化学量論的な量との和であり、具体的には前者が0.1〜3
0重量%、好ましくは1〜15重量%、であり、後者が0.1
〜40重量%、好ましくは1〜30重量%である。
The silicon carbide powder may also be the conventional one used in the manufacture of ceramics. This silicon carbide powder also has an oxide film on the surface, the value is almost the same as that of silicon nitride powder, and the surface adsorbed oxygen is 0.01 to 0.1% by weight, the surface layer silica is 0.1 to 3.0% by weight, and the particles are Oxygen solid-dissolved therein is 0.1 to 2.5% by weight in terms of silica. It is preferable that the silicon carbide powder also has a low oxygen content. The range of silica is the same as that of silicon nitride. Some of the silicon carbide is used for removing silica, and some is made to exist at grain boundaries. The former particle size is preferably smaller than the latter particle size and has a large specific surface area. The specific particle size of the former is about 5 nm to 1 μm, preferably about 50 nm to 0.5 μm, and the latter is about 50 nm to 10 μm, preferably about 0.1 μm to 5 μm. The amount of silicon carbide is the sum of the amount present at grain boundaries and the stoichiometric amount required for the reaction with silica. Specifically, the former is 0.1 to 3
0% by weight, preferably 1 to 15% by weight, the latter being 0.1
-40% by weight, preferably 1-30% by weight.

【0014】樹脂は、非酸化性ガス雰囲気下の加熱で熱
分解して炭素を生成するものであれば特に制限されない
が、炭素を生成する歩留まりの高いものが好ましい。こ
の点でフェノール樹脂、エポキシ樹脂、アクリルニトリ
ル樹脂、ポリアミドイミド樹脂等の如き環状化合物を重
合単位とする樹脂等が適当であり、フェノール樹脂が特
に好ましい。これらの樹脂は、非酸化性ガス雰囲気下の
300〜1200℃の温度で加熱することにより、H2O、CH
4、H2、CO等のガスに分解、重合し最終的に炭素とな
る。一方、ポリエチレン樹脂等は加熱によって生成する
メタン、エタン等が揮散して炭素がほとんど残留しない
ので好ましくない。また、塩化ビニル樹脂のように水
素、炭素及び酸素以外の元素を含んでいて、窒化珪素の
焼結に悪影響を及ぼすものも好ましくない。樹脂の添加
量は、炭素化後の炭素量が化学量論的に窒化珪素粉末表
面に存在するシリカを還元するに足りる量以上混合され
ていればよい。しかし、現実には反応速度の面から量論
比以上に添加する必要があるが、その量が多すぎると還
元窒化後に残留炭素分が多くなりすぎ、焼結工程で焼結
性の悪化を招く。具体的には添加量は外掛け0.4重量%
〜30重量%、好ましくは0.6重量%〜20重量%である。
樹脂は粉末として添加することも可能であるが、溶剤に
溶かして添加することによって、より均一に窒化珪素と
混合させることができるので好ましい。溶剤は各樹脂ご
とに公知のもののなかから適宜選択すればよい。本発明
の方法においては、樹脂の代わりに炭素粉末自体を用い
てもよいが、この場合、固体粒子間の混合であるため炭
素粒子が均一分散されない。その結果、シリカの還元窒
化が均一に起きず、焼結体の組織が不均一になったり、
シリカの還元窒化に化学量論的に必要な炭素量よりはる
かに多い炭素粉末が必要になるという問題がある。さら
に、還元窒化処理後の焼結工程まで未反応炭素分が残留
炭素として残り、焼結を阻害あるいは条件によっては窒
化珪素と反応するという問題がある。
The resin is not particularly limited as long as it is thermally decomposed to produce carbon by heating in a non-oxidizing gas atmosphere, but a resin having a high yield of producing carbon is preferable. In this respect, a resin containing a cyclic compound as a polymerized unit such as a phenol resin, an epoxy resin, an acrylonitrile resin, or a polyamideimide resin is suitable, and a phenol resin is particularly preferable. These resins are used under non-oxidizing gas atmosphere.
By heating at a temperature of 300-1200 ℃, H 2 O, CH
4 , decomposed and polymerized into gases such as H 2 , CO and finally become carbon. On the other hand, polyethylene resin and the like are not preferable because methane and ethane generated by heating are volatilized and carbon hardly remains. In addition, it is not preferable that the resin contains elements other than hydrogen, carbon and oxygen, such as vinyl chloride resin, which adversely affects the sintering of silicon nitride. The amount of the resin added may be such that the amount of carbon after carbonization is stoichiometrically sufficient to reduce silica present on the surface of the silicon nitride powder. However, in reality, it is necessary to add more than the stoichiometric ratio from the viewpoint of reaction rate, but if the amount is too large, the residual carbon content becomes too large after reduction nitriding, which causes deterioration of sinterability in the sintering process. .. Specifically, the amount added is 0.4% by weight on the outside.
-30% by weight, preferably 0.6% -20% by weight.
The resin can be added as a powder, but it is preferable to dissolve the resin in a solvent and add it so that the resin can be more uniformly mixed with silicon nitride. The solvent may be appropriately selected from known solvents for each resin. In the method of the present invention, the carbon powder itself may be used instead of the resin, but in this case, since the solid particles are mixed, the carbon particles are not uniformly dispersed. As a result, the reduction and nitriding of silica does not occur uniformly, and the structure of the sintered body becomes uneven,
There is a problem in that carbon powder much larger than the stoichiometrically necessary amount of carbon is required for the reductive nitriding of silica. Further, there is a problem that unreacted carbon content remains as residual carbon until the sintering step after the reduction nitriding treatment, which inhibits sintering or reacts with silicon nitride depending on conditions.

【0015】焼結助剤も慣用のものであることができ
る。代表的な焼結助剤としては、アルミナ、マグネシ
ア、カルシア、スピネル、イットリア、希土類酸化物な
どの酸化物、窒化アルミニウムなどの窒化物、さらにこ
れらの前駆体となるアルコキシド、ゾルを用いることが
できる。助剤の量も常法に従うことができ、一般に0.1
重量%〜35重量%、通常は2重量%〜12重量%の範囲で
ある。
The sintering aid can also be conventional. As typical sintering aids, alumina, magnesia, calcia, spinel, yttria, oxides such as rare earth oxides, nitrides such as aluminum nitride, and alkoxides or sols that are precursors thereof can be used. .. The amount of auxiliaries can also follow conventional methods, generally 0.1
% By weight, typically 35% by weight, usually 2% by weight to 12% by weight.

【0016】窒化珪素粉末に対する樹脂及び焼結助剤の
添加順序及び混合方法は、要はこれらの均一混合状態が
得られれば特に限定されない。炭化珪素粉末を添加する
場合も同様である。
The order of addition of the resin and the sintering aid to the silicon nitride powder and the mixing method are not particularly limited as long as a uniform mixed state of these can be obtained. The same applies when silicon carbide powder is added.

【0017】原料粉末を所定形状に成形する成形法に
は、一般に用いられる射出成形、押し出し成形、泥漿鋳
込み、一軸プレス、CIP等適当な方法が利用される。
As a molding method for molding the raw material powder into a predetermined shape, generally used suitable methods such as injection molding, extrusion molding, sludge casting, uniaxial pressing, CIP and the like are used.

【0018】窒化珪素粉末と樹脂とさらに必要により添
加される炭化珪素粉末よりなる混合粉末の成形体を焼結
直前に非酸化性雰囲気で加熱して、窒化珪素粒子及び炭
化珪素粒子の表面に形成されているシリカ被膜を除去す
る。加熱温度の下限値はシリカを除去の媒体になるCO
ガスの蒸気圧が非酸化性ガス流下で適切かどうか、また
このシリカの還元窒化反応は吸熱反応であることから反
応速度的に低すぎると処理時間等の経済性の面から問題
があり、この二面から決まる。一方、加熱温度の上限
は、助剤とシリカ及び窒化珪素とが反応し液相生成を開
始する温度より低いことが望ましい。液相が生成すると
この液相を介した焼結が進行し、かつ連続的にこの液相
からシリカ成分が除去することにより、一度始まった焼
結が中途で止まることを意味する。これは最終的に焼結
体を不均質なものにする。したがって、助剤及びガス流
量によって異なるが1000℃から1700℃の温度範囲で、好
ましくは1350〜1650℃が望ましい。処理温度が1000℃未
満であると、図1に示したようにCOガスの蒸気圧が低
くなりすぎ処理時間が現実的でなくなり、1700℃以上で
はシリカと助剤と窒化珪素とが反応し液相が生成する。
A molded body of a mixed powder consisting of silicon nitride powder, resin, and silicon carbide powder which is added if necessary is heated in a non-oxidizing atmosphere immediately before sintering to form on the surfaces of silicon nitride particles and silicon carbide particles. The silica coating that has been applied is removed. The lower limit of the heating temperature is CO, which is a medium for removing silica.
If the vapor pressure of the gas is appropriate under a non-oxidizing gas flow, and since the reduction and nitriding reaction of silica is an endothermic reaction, if the reaction rate is too low, there is a problem from the economical aspect such as processing time. Determined from two sides. On the other hand, the upper limit of the heating temperature is preferably lower than the temperature at which the auxiliary agent reacts with silica and silicon nitride to start liquid phase formation. When the liquid phase is generated, it means that the sintering through the liquid phase progresses, and the silica component is continuously removed from the liquid phase, so that the sintering once started stops halfway. This finally makes the sintered body inhomogeneous. Therefore, although depending on the auxiliary agent and the gas flow rate, a temperature range of 1000 ° C to 1700 ° C, preferably 1350 to 1650 ° C is desirable. If the treatment temperature is lower than 1000 ° C, the vapor pressure of CO gas becomes too low as shown in Fig. 1, and the treatment time becomes unrealistic. At temperatures above 1700 ° C, silica reacts with the auxiliary agent and silicon nitride, and the liquid Phases form.

【0019】還元窒化処理時の非酸化性雰囲気として
は、例えば、窒素、アルゴン、アンモニアガス等があげ
られる。この非酸化性雰囲気において窒素ガス分圧を炭
素の共存下において窒化珪素と炭化珪素とが平衡に存在
するときの平衡分圧以上、すなわち図1の線より上に保
つことが好ましい。窒素ガス分圧がこの平衡分圧未満に
なると、窒化珪素が炭素と反応し、炭化珪素の生成が起
こるからである。次に、非酸化性雰囲気中のCOガス分
圧を非酸化性雰囲気中の窒素ガス分圧下での分圧より低
く、例えば窒素ガス分圧が平衡分圧の場合は、図1の線
より下に保つことが好ましい。COガス分圧がこの分圧
以上になると、シリカが分解してCOガスを生成する反
応が円滑に進行しなくなるからである。
Examples of the non-oxidizing atmosphere during the reduction nitriding treatment include nitrogen, argon and ammonia gas. In this non-oxidizing atmosphere, the partial pressure of nitrogen gas is preferably maintained at or above the equilibrium partial pressure when silicon nitride and silicon carbide exist in equilibrium in the presence of carbon, that is, above the line in FIG. This is because when the partial pressure of nitrogen gas is less than this equilibrium partial pressure, silicon nitride reacts with carbon to generate silicon carbide. Next, the CO gas partial pressure in the non-oxidizing atmosphere is lower than the partial pressure under the nitrogen gas partial pressure in the non-oxidizing atmosphere. For example, when the nitrogen gas partial pressure is an equilibrium partial pressure, the CO2 partial pressure below the line in FIG. It is preferable to keep This is because if the partial pressure of CO gas exceeds this partial pressure, the reaction of decomposing silica and generating CO gas does not proceed smoothly.

【0020】シリカと炭素粉末あるいは炭化珪素粉末と
の反応生成物であるCOガスを被処理体から積極的に除
去するには、COガスが不飽和な非酸化性ガス流中に被
処理体にさらすことが望ましいが、ガス流量が多すぎる
と被処理体の固定、経済面から望ましくなく、したがっ
て非酸化性雰囲気ガスの速度は0.0001〜200cm/秒が望ま
しい。
To positively remove CO gas, which is a reaction product of silica and carbon powder or silicon carbide powder, from the object to be processed, the CO gas is applied to the object to be processed in a non-oxidizing gas flow in which the CO gas is unsaturated. It is desirable to expose, but if the gas flow rate is too high, it is not desirable from the standpoint of fixing the object to be treated and economically. Therefore, the velocity of the non-oxidizing atmosphere gas is preferably 0.0001 to 200 cm / sec.

【0021】熱処理時間は加熱温度、被処理体の形と大
きさ、その他種々の条件によって大きく変わるが、通常
10分間〜50時間程度である。
The heat treatment time varies greatly depending on the heating temperature, the shape and size of the object to be treated, and various other conditions.
It is about 10 minutes to 50 hours.

【0022】被膜をどの程度除去するかは窒化珪素焼結
体の用途等によって決定される。シリカ被膜の除去は焼
結の直前に行なう。この直前とは、その後にシリカ被膜
が形成されないよう取計らわれていれば足りる。また、
シリカ被膜除去処理が行なわれた成形体は原則としてそ
のまま焼結工程にはいり、該成形体の形状は焼結される
ものの形状と同一である。
The extent to which the film is removed is determined by the application of the silicon nitride sintered body. The silica coating is removed immediately before sintering. Just before this, it is sufficient if it is arranged so that the silica film is not formed thereafter. Also,
As a general rule, the molded body that has undergone the silica film removal treatment directly enters the sintering step, and the shape of the molded body is the same as the shape of the sintered body.

【0023】焼結は、公知の方法から適宜選択して行な
えばよく、通常は非酸化性雰囲気で行なわれるが、その
際、窒素ガス分圧を炭素と窒化珪素と炭化珪素が平衡に
存在するときの平衡分圧以上に保つことが好ましい。ま
た、焼結後の降温中も非酸化性雰囲気中の窒素ガス分圧
を炭素と窒化珪素と炭化珪素が平衡に存在するときの平
衡分圧以上に保つことが好ましい。シリカ被膜を除去し
た後、窒素分圧を炭素と窒化珪素と炭化珪素が平衡に存
在する圧より高く設定することにより、窒化珪素焼結体
の発熱体、ルツボからの汚染を防止することができる。
Sintering may be carried out by appropriately selecting from known methods. Usually, it is carried out in a non-oxidizing atmosphere. At this time, the partial pressure of nitrogen gas is such that carbon, silicon nitride and silicon carbide are in equilibrium. It is preferable to maintain at least the equilibrium partial pressure. Also, it is preferable to maintain the partial pressure of nitrogen gas in the non-oxidizing atmosphere at the equilibrium partial pressure when carbon, silicon nitride and silicon carbide are in equilibrium even during the temperature reduction after sintering. After removing the silica coating, the nitrogen partial pressure is set to be higher than the pressure at which carbon, silicon nitride, and silicon carbide are in equilibrium to prevent contamination of the silicon nitride sintered body from the heating element and crucible. ..

【0024】図2に、珪素、窒素、炭素及び酸素の共存
系における凝縮相の1400℃での熱力学的安定図を示す。
図の横軸は酸素分圧、縦軸が窒素分圧である。図中に
は、面で表せる窒化珪素(Si34)、シリカ(Si
2)、炭化珪素(SiC)の三つの凝縮相安定領域があ
り、面を作る境界線、図中のab、bc、bd線はそれぞれの
二つの凝縮相が安定なところで窒素分圧が決まれば酸素
分圧が決まり、またその逆に酸素分圧が決まれば窒素分
圧が決まる。三つの凝縮相が一点で交わるところ、図2
中のb点では窒素分圧、酸素分圧は一義的に決まる。S
i34(s)/SiO2(s)の平衡を表す式は(1)式で表され
る。一方、Si34(s)/SiC(s)の平衡を表す式は(2)式
で表される。 3SiO2(s, l)+2N2(g)=Si34(s)+3O2(g) (1) Si34(s)+3C(s)=3SiC(s)+2N2(g) (2)
FIG. 2 shows a thermodynamic stability diagram at 1400 ° C. of the condensed phase in the coexisting system of silicon, nitrogen, carbon and oxygen.
The horizontal axis of the figure is the oxygen partial pressure, and the vertical axis is the nitrogen partial pressure. In the figure, silicon nitride (Si 3 N 4 ) and silica (Si
O 2 ), silicon carbide (SiC) have three condensed phase stable regions, and the nitrogen partial pressure is determined at the boundary lines that form the surface, ab, bc, and bd lines in the figure where the two condensed phases are stable. If the oxygen partial pressure is determined, and vice versa, the nitrogen partial pressure is determined. Figure 2 where three condensed phases meet at one point
At point b, the nitrogen partial pressure and oxygen partial pressure are uniquely determined. S
The equation representing the equilibrium of i 3 N 4 (s) / SiO 2 (s) is represented by the equation (1). On the other hand, the equation representing the equilibrium of Si 3 N 4 (s) / SiC (s) is represented by the equation (2). 3SiO 2 (s, l) + 2N 2 (g) = Si 3 N 4 (s) + 3O 2 (g) (1) Si 3 N 4 (s) + 3C (s) = 3SiC (s) + 2N 2 (g) ( 2)

【0025】1400℃では、窒素分圧が0.56atm以下にな
ると(2)式の反応が右へ進み、炭化珪素が生成する。図
1にこの平衡窒素分圧と温度の関係を示す。従って、非
酸化性雰囲気中で窒素ガス分圧を図1に示すこの分圧よ
り高く保って焼結又は降温する。
At 1400 ° C., when the nitrogen partial pressure becomes 0.56 atm or less, the reaction of the formula (2) proceeds to the right and silicon carbide is produced. FIG. 1 shows the relationship between the equilibrium nitrogen partial pressure and temperature. Therefore, the nitrogen gas partial pressure is kept higher than the partial pressure shown in FIG.

【0026】[0026]

【作用】従来、窒化珪素粒表面及び炭化珪素粒表面に酸
化相の存在はどうしても避けられず、窒化珪素と炭化珪
素の界面にシリカを一成分とする層が存在し、これによ
り高温高強度化の改善がなされないことが問題であっ
た。
In the past, the presence of an oxidative phase was unavoidable on the surface of silicon nitride grains and the surface of silicon carbide grains, and a layer containing silica as a component was present at the interface between silicon nitride and silicon carbide. The problem was that no improvement was made.

【0027】本発明においては、焼結工程前の成形体中
の窒化珪素に含まれるシリカを炭素還元することにより
シリカを被処理体から除去する。炭素源としての樹脂を
添加しなくても炭化珪素を利用して熱処理によってシリ
カを除去できるが、その場合、粒界に存在させるために
添加する炭化珪素粒もシリカと反応してしまうため、特
に添加する炭化珪素粉末がサブミクロン微粉の時に問題
となる。
In the present invention, silica contained in silicon nitride in the compact before the sintering step is carbon-reduced to remove the silica from the object to be treated. Silica can be removed by heat treatment using silicon carbide without adding a resin as a carbon source, but in that case, since the silicon carbide particles added to exist at the grain boundaries also react with silica, This is a problem when the added silicon carbide powder is submicron fine powder.

【0028】原理的にシリカの除去は(3)式に示すよう
に、炭素とシリカの反応により生成する高い蒸気圧を持
つCOガスを除去することにより行われる。 3SiO2(s, l)+6C(s)+2N2(g)=Si34(s)+6CO(g) (3)
In principle, silica is removed by removing CO gas having a high vapor pressure generated by the reaction between carbon and silica, as shown in equation (3). 3SiO 2 (s, l) + 6C (s) + 2N 2 (g) = Si 3 N 4 (s) + 6CO (g) (3)

【0029】ここで検討する系は窒化珪素、炭化珪素、
シリカ、炭素の4凝縮相が関与する系である。これら凝
集相の1400℃での熱力学的安定図を図2に示す。
The system studied here is silicon nitride, silicon carbide,
It is a system that involves four condensed phases of silica and carbon. The thermodynamic stability diagram of these aggregated phases at 1400 ° C. is shown in FIG.

【0030】炭素存在下で窒化珪素と炭化珪素が共存す
るときの関係は(4)式で表せる。この共存関係を保つた
めには、非酸化性雰囲気中の窒素ガス分圧を図2のa・
b線で表せるこの平衡分圧に保つことが必要である。14
00℃では0.56atmの窒素分圧が必要である。 3SiC(s)+2N2=Si34(s)+3C(s) (4)
The relationship when silicon nitride and silicon carbide coexist in the presence of carbon can be expressed by equation (4). In order to maintain this coexistence relationship, the partial pressure of nitrogen gas in the non-oxidizing atmosphere is set to a.
It is necessary to maintain this equilibrium partial pressure that can be represented by the b line. 14
A nitrogen partial pressure of 0.56 atm is required at 00 ° C. 3SiC (s) + 2N 2 = Si 3 N 4 (s) + 3C (s) (4)

【0031】図1にこの窒素ガス分圧の温度との関係を
示す。この3凝縮相にシリカが加わったときの1400℃で
の平衡関係は図2のb点であらわされる。この時の蒸気
圧の大きい蒸気種としてCOガスがある。このCOガス
と凝縮相の関係は(3)式で表せる。COガス分圧と温度
の関係を図1に示す。COガスは(3)式から窒素ガス分
圧が高くなると高くなるが、窒素ガス分圧を高くすると
(4)式により炭化珪素が窒素ガスと反応し、窒化珪素が
生成する。したがって、(3)式の反応が終了するまで窒
素ガスが図1に示す平衡窒素ガス分圧より若干高く保つ
ことが望ましい。
FIG. 1 shows the relationship between the partial pressure of nitrogen gas and the temperature. The equilibrium relationship at 1400 ° C. when silica is added to these three condensed phases is represented by point b in FIG. At this time, CO gas is a vapor species having a large vapor pressure. The relationship between this CO gas and the condensed phase can be expressed by equation (3). The relationship between the partial pressure of CO gas and the temperature is shown in FIG. CO gas becomes higher as the nitrogen gas partial pressure becomes higher according to equation (3), but when the nitrogen gas partial pressure becomes higher,
According to the equation (4), silicon carbide reacts with nitrogen gas to generate silicon nitride. Therefore, it is desirable to keep the nitrogen gas slightly higher than the equilibrium nitrogen gas partial pressure shown in FIG. 1 until the reaction of the equation (3) is completed.

【0032】本発明に係わる窒化珪素焼結体は、従来原
料やその後の焼結までに至る各工程において不可避的に
起こる窒化珪素原料粉末の酸化により生成したシリカを
焼結直前で除去、低減し、かつシリカのシリコンを窒化
珪素として被処理体内に留めている。それによって、液
相生成温度が上昇して焼結温度を高め、かつ窒化珪素の
歩留まりが低下することなく、良好で緻密な焼結体を得
ている。これにより、従来では焼結体の使用環境下で液
相の生成により、強度が低下する温度を高めることが可
能となり、高温構造用材料として高い高温強度を持つ材
料を得ている。本発明の方法においては、シリカを還元
する炭素源として樹脂を用い、この樹脂を熱分解するこ
とにより、炭素を均一に被処理体中に分散することがで
き、より少ない炭素量でより均一に窒化還元処理に行う
ことができた。
The silicon nitride sintered body according to the present invention removes and reduces silica immediately before sintering, which is produced by the oxidation of the silicon nitride raw material powder which is unavoidable in each step of the conventional raw material and the subsequent sintering. In addition, silicon of silica is retained as silicon nitride in the object to be processed. Thereby, the liquid phase generation temperature rises to raise the sintering temperature, and the yield of silicon nitride does not decrease, so that a good and dense sintered body is obtained. As a result, it has become possible to increase the temperature at which the strength decreases due to the generation of a liquid phase in the environment where the sintered body is used, and a material having high high-temperature strength has been obtained as a high-temperature structural material. In the method of the present invention, a resin is used as a carbon source for reducing silica, and by thermally decomposing this resin, carbon can be uniformly dispersed in the object to be treated, and a smaller amount of carbon makes it more uniform. It was possible to perform nitriding reduction treatment.

【0033】炭化珪素を加える場合には、窒化珪素と直
接結合した炭化珪素粒を窒化珪素の粒界に存在させるた
めに適宜の大きさ、かつ適量の炭化珪素を粉末として添
加し、焼結工程の直前にあらかじめ混合段階で添加した
樹脂から生成する炭素を用いて炭化珪素と窒化珪素粉末
のシリカを窒素ガス中で還元し、かつ窒化し熱処理し、
炭化珪素粒の表面に存在するシリカを取り除くとともに
窒化珪素粒のシリカも取り除く。これにより焼結過程に
おいて、ヘテロエピタキシャル成長により、炭化珪素粒
表面に窒化珪素を生成させる。
In the case of adding silicon carbide, silicon carbide particles directly bonded to silicon nitride are added as powder in an appropriate size and in an appropriate amount so as to exist at the grain boundaries of silicon nitride, and the sintering step is performed. Immediately before the step of reducing the silicon carbide and silica of silicon nitride powder in nitrogen gas using carbon generated from the resin previously added in the mixing step, and nitriding and heat-treating,
The silica existing on the surface of the silicon carbide particles is removed and also the silica of the silicon nitride particles is removed. Thereby, in the sintering process, silicon nitride is generated on the surface of the silicon carbide grains by heteroepitaxial growth.

【0034】この炭化珪素を加える場合の焼結は、公知
の方法から適宜選択して行なえばよいが、炉内雰囲気は
図3に示す曲線(1)と曲線(2)に囲まれる窒素ガス分圧を
保ちながら行う必要がある。焼結後の降温も図3に示す
曲線(1)と曲線(2)に囲まれる窒素ガス分圧を保ちながら
行なうことが好ましい。
Sintering in the case of adding silicon carbide may be carried out by appropriately selecting from known methods, but the atmosphere in the furnace is the nitrogen gas portion surrounded by the curves (1) and (2) shown in FIG. It is necessary to do it while maintaining pressure. It is preferable that the temperature drop after sintering is also performed while maintaining the partial pressure of nitrogen gas surrounded by the curve (1) and the curve (2) shown in FIG.

【0035】[0035]

【実施例】【Example】

実施例1 表面にシリカ被膜が形成されている窒化珪素粉末95重量
部、酸化イットリウム粉末5重量部及びフェノール樹脂
10重量部からなる原料粉末を混合し、20×80×15mmの棒
状の試料を40MPaで一軸プレス後、300MPaのCIP
(冷間等方加圧)して成形した。これを1400℃の窒素ガ
スの大気圧、COガスの存在しない0.1cm/秒のガス流中
で1時間加熱処理した。これを1400℃で60atmまで加圧
し、その後1950℃、80atmの窒素雰囲気中で2時間焼結
し、冷却も昇温と同じ圧力に徐々に圧力を下げ冷却し焼
結体を得た。この焼結体をアルキメデス法により密度を
求め、理論密度との比から相対密度(%TD)を求めた。
さらに、この焼結体によりJISに定められた試験法に
準じ3×4×40mmの試験片を複数作製し、1400℃におい
て4点曲げ試験を行った。表1にこれらの試験の結果を
示す。
Example 1 95 parts by weight of silicon nitride powder having a silica coating formed on the surface, 5 parts by weight of yttrium oxide powder, and phenol resin
After mixing 10 parts by weight of raw material powder, a 20 × 80 × 15 mm rod-shaped sample was uniaxially pressed at 40 MPa and then CIP at 300 MPa.
(Cold isotropic pressing) and molded. This was heat-treated for 1 hour in a nitrogen gas atmosphere at 1400 ° C. in a gas flow of 0.1 cm / sec in the absence of CO gas. This was pressurized to 1400 ° C. up to 60 atm, then sintered in a nitrogen atmosphere at 1950 ° C. and 80 atm for 2 hours, and the cooling was gradually lowered to the same pressure as the temperature rise to obtain a sintered body. The density of this sintered body was obtained by the Archimedes method, and the relative density (% TD) was obtained from the ratio with the theoretical density.
Further, a plurality of 3 × 4 × 40 mm test pieces were produced from this sintered body according to the test method defined in JIS, and a 4-point bending test was performed at 1400 ° C. Table 1 shows the results of these tests.

【0036】[0036]

【表1】 [Table 1]

【0037】比較例1 実施例1において樹脂を添加せず、焼結前に還元窒化処
理を施していない他は、すべて同様の操作にて同じ形状
の焼結体を作成した。これらの焼結体についても、実施
例1と同様に密度測定と1400℃における4点曲げ強度を
実施した。結果を表1に示す。還元窒化処理を行うこと
により1400℃の熱間強度が上昇することが明らかに分か
る。
Comparative Example 1 A sintered body having the same shape was prepared by the same operation except that the resin was not added in Example 1 and the reduction nitriding treatment was not performed before sintering. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 1. It can be clearly seen that the hot strength at 1400 ° C is increased by the reduction nitriding treatment.

【0038】比較例2 実施例1において、樹脂の変わりに炭素粉末(カーボン
ブラック)を5重量部添加する他は、すべて同様の操作
にて、同じ形状の焼結体を作成した。これらの焼結体に
ついても、実施例1と同様に密度測定と1400℃における
4点曲げ強度を実施した。結果を表1に示す。
Comparative Example 2 A sintered body having the same shape was prepared in the same manner as in Example 1, except that 5 parts by weight of carbon powder (carbon black) was added instead of the resin. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 1.

【0039】炭素添加による還元窒化処理を行うことに
より、1400℃の熱間強度が上昇することが明らかに分か
る。また、炭素粉末を添加するのに比べ樹脂添加の還元
窒化の場合、炭素の分散が効果的に行われたと思われる
焼結後の密度の上昇とそれによる強度の向上がみられ
る。
It is clearly understood that the hot strength at 1400 ° C. is increased by performing the reduction nitriding treatment by adding carbon. In addition, in the case of resin-added reductive nitriding, as compared with the case of adding carbon powder, an increase in density after sintering, which is considered to be effective in dispersing carbon, and an increase in strength due to this are observed.

【0040】比較例3 実施例1において熱処理後、これを1950℃、30atmの窒
素雰囲気中で2時間焼結した。その結果、実施例1にお
いては見られない焼結体切断面における発熱体、ルツボ
からのカーボンの汚染による染みが観察された。
Comparative Example 3 After the heat treatment in Example 1, this was sintered for 2 hours at 1950 ° C. in a nitrogen atmosphere of 30 atm. As a result, stains due to carbon contamination from the heating element and crucible on the cut surface of the sintered body, which were not found in Example 1, were observed.

【0041】比較例4 実施例1において焼成後、ガス圧力を下げ1500℃で大気
圧まで減圧しながら冷却した。焼結体切断面は変色は認
められなかったが、焼結体表面は発熱体、ルツボから蒸
気及びガスの給排気によるカーボン粉の飛沫により窒化
珪素と反応し、一部淡黄緑色に変色していた。なお、実
施例1ではこのような焼結体表面の変色は観察されなか
った。
Comparative Example 4 After firing in Example 1, the gas pressure was lowered and cooling was performed at 1500 ° C. while reducing the pressure to atmospheric pressure. No discoloration was observed on the cut surface of the sintered body, but the surface of the sintered body reacted with silicon nitride due to the splash of carbon powder generated by the supply and exhaust of steam and gas from the heating element and crucible, and partly changed to a pale yellow-green color. Was there. In addition, in Example 1, such discoloration on the surface of the sintered body was not observed.

【0042】実施例2〜8 表2に示した組成、処理条件にて、実施例1とすべて同
様の操作にて同じ形状の焼結体を作成した。ただし、熱
処理後にそれぞれの被処理体を実施例2では46atm、実
施例3では64atm、実施例4では71atm、実施例5では60
atm、実施例6では63atm、実施例7では67atm、実施例
8では60atmまで加圧し、その後焼成する。実施例8で
は熱処理後の被処理体を1850℃で2時間焼結し、冷却も
昇温と同じ圧力に徐々に圧力を下げ冷却し焼結体を得
た。これらの焼結体についても、実施例1と同様に密度
測定と1400℃における4点曲げ強度を実施した。結果を
表3に示す。
Examples 2 to 8 Sintered bodies having the same shape were prepared by the same operations as in Example 1 under the compositions and processing conditions shown in Table 2. However, after heat treatment, the respective objects to be treated were 46 atm in Example 2, 64 atm in Example 3, 71 atm in Example 4, and 60 in Example 5.
Atm, 63 atm in Example 6, 67 atm in Example 7, and 60 atm in Example 8 were pressurized and then fired. In Example 8, the target object after the heat treatment was sintered at 1850 ° C. for 2 hours, and the cooling was gradually reduced to the same pressure as the temperature rising to be cooled to obtain a sintered body. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 3.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】比較例5 実施例8において炭素源を添加せず、焼結前に還元窒化
処理を施していない他は、すべて同様の操作にて同じ形
状の焼結体を作成した。これらの焼結体についても、実
施例1と同様に密度測定と1400℃における4点曲げ強度
を実施した。結果を表4に示す。炭素添加による還元窒
化処理を行うことにより1400℃の熱間強度が上昇するこ
とが明らかに分かる。
Comparative Example 5 A sintered body of the same shape was prepared by the same operation except that the carbon source was not added in Example 8 and the reduction nitriding treatment was not performed before sintering. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 4. It is clear that the hot strength at 1400 ℃ is increased by the reduction nitriding treatment by adding carbon.

【0046】[0046]

【表4】 [Table 4]

【0047】比較例6 実施例8において、樹脂の変わりにカーボンブラックを
3重量部用いる他は、すべて同様の操作にて同じ形状の
焼結体を作成した。これらの焼結体についても、実施例
1と同様に密度測定と1400℃における4点曲げ強度を実
施した。結果を表4に示す。カーボンブラックを樹脂に
変えることにより、1400℃の熱間強度が上昇することが
表3との比較から明らかに分かる。
Comparative Example 6 A sintered body of the same shape was prepared by the same procedure as in Example 8 except that 3 parts by weight of carbon black was used instead of the resin. With respect to these sintered bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 1. The results are shown in Table 4. It can be clearly seen from the comparison with Table 3 that the hot strength at 1400 ° C. is increased by changing the carbon black to a resin.

【0048】実施例9 表面にシリカ皮膜が形成されている窒化珪素粉末90重量
部及び炭化珪素粉末5重量部及び酸化イットリウム粉末
5重量部及び炭素源としてフェノール樹脂を10重量部か
らなる原料粉末を混合し、20×80×15mmの棒状の試料を
40MPaで一軸プレス後、300MPaのCIP(冷間等方
加圧)して成形した。これを1400℃の窒素ガスの0.6atm
の減圧下、COガスの存在しない0.1cm/秒のガス流中で
1時間加熱処理した。これを、その後焼結工程において
窒素分圧を1400℃で0.1atm、1600℃で1atm、1800℃で1
0atm、1950℃で30atmと温度上昇に伴い窒素ガス分圧を
徐々に高め、1950℃、2時間焼結し、冷却も昇温と同じ
圧力を下げ冷却し焼結体を得た。この焼結体をアルキメ
デス法により密度を求め、理論密度との比から相対密度
(%TD)を求めた。さらに、この焼結体よりJISに定
められた試験法に準じ3×4×40mmの試験片を複数作製
し、1400℃において4点曲げ試験を行った。表5にこれ
らの結果を示す。
Example 9 A raw material powder consisting of 90 parts by weight of a silicon nitride powder having a silica film formed on its surface, 5 parts by weight of a silicon carbide powder, 5 parts by weight of a yttrium oxide powder, and 10 parts by weight of a phenol resin as a carbon source was prepared. Mix and mix a 20 × 80 × 15 mm rod-shaped sample
After uniaxial pressing at 40 MPa, CIP (cold isotropic pressing) at 300 MPa was performed for molding. This is 0.6atm of nitrogen gas at 1400 ℃
Under a reduced pressure of 1 hour, in a gas flow of 0.1 cm / sec in the absence of CO gas, heat treatment was performed for 1 hour. Then, in the sintering process, the nitrogen partial pressure was 0.1 atm at 1400 ° C, 1 atm at 1600 ° C and 1 atm at 1800 ° C.
The nitrogen gas partial pressure was gradually increased as the temperature increased to 30 atm at 0 atm and 1950 ° C., and the sintering was performed at 1950 ° C. for 2 hours. The density of this sintered body was obtained by the Archimedes method, and the relative density (% TD) was obtained from the ratio with the theoretical density. Further, a plurality of 3 × 4 × 40 mm test pieces were produced from this sintered body according to the test method defined in JIS, and a 4-point bending test was performed at 1400 ° C. Table 5 shows these results.

【0049】[0049]

【表5】 [Table 5]

【0050】比較例7 実施例9において樹脂を添加せず、焼結前に還元窒化処
理を施していない他は、すべて同様の操作にて同じ形状
の焼結体を作成した。これらの焼結体についても、実施
例9と同様に密度測定と1400℃における4点曲げ強度を
実施した。結果を表5に示す。熱処理を行うことにより
1400℃の熱間強度が上昇することが明らかに分かる。
Comparative Example 7 A sintered body having the same shape was prepared by the same operation except that the resin was not added in Example 9 and the reduction nitriding treatment was not performed before sintering. Also for these sintered bodies, the density measurement and the four-point bending strength at 1400 ° C. were performed in the same manner as in Example 9. The results are shown in Table 5. By performing heat treatment
It is clearly seen that the hot strength at 1400 ° C increases.

【0051】比較例8 実施例9において、樹脂の変わりに炭素粉末(カーボン
ブラック)を添加する他は、すべて同様の操作にて同じ
形状の焼結体を作成した。これらの焼結体についても、
実施例9と同様に密度測定と1400℃における4点曲げ強
度を実施した。結果を表5に示す。
Comparative Example 8 A sintered body of the same shape was prepared by the same procedure as in Example 9 except that carbon powder (carbon black) was added instead of the resin. Also for these sintered bodies,
Density measurement and 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 9. The results are shown in Table 5.

【0052】還元窒化処理を行うことにより、1400℃の
熱間強度が上昇することが明らかに分かる。
It can be clearly seen that the reduction nitriding treatment increases the hot strength at 1400 ° C.

【0053】比較例9 実施例1において熱処理後、これを1950℃、全圧10atm
の雰囲気中で2時間焼結した。SiOガス及びCOガス
さらには他の蒸気の存在により、雰囲気中の窒素ガス分
圧が窒化珪素と金属シリコンとが平衡に存在するときの
平衡分圧になった結果、窒化珪素焼結体は一部シリコン
化した。
Comparative Example 9 After the heat treatment in Example 1, this was heated to 1950 ° C. and the total pressure was 10 atm.
Was sintered for 2 hours in the atmosphere. Due to the presence of SiO gas, CO gas, and other vapors, the partial pressure of nitrogen gas in the atmosphere becomes an equilibrium partial pressure when silicon nitride and metallic silicon exist in equilibrium. Partly siliconized.

【0054】比較例10 実施例1において熱処理後、これを80atmまで加圧し、1
950℃、80atmの雰囲気中で2時間焼結した。この時の相
対密度は65%TDと被処理体中の炭化珪素の分解により炭
素が生成し焼結を阻害し、その結果緻密化しなかった。
Comparative Example 10 After heat treatment in Example 1, this was pressurized to 80 atm and
Sintering was performed for 2 hours in an atmosphere of 950 ° C. and 80 atm. The relative density at this time was 65% TD, and carbon was generated due to the decomposition of silicon carbide in the object to be treated, which hindered sintering, and as a result, it did not become densified.

【0055】比較例11 実施例1において焼成後、30atmに封止し冷却した。焼
結体切断面は変色は認められなかったが、焼結体表面で
炭化珪素が分解し、炭素が表面に析出し黒色を呈した。
Comparative Example 11 After firing in Example 1, it was sealed at 30 atm and cooled. No discoloration was observed on the cut surface of the sintered body, but silicon carbide was decomposed on the surface of the sintered body and carbon was deposited on the surface to give a black color.

【0056】実施例10〜16 表6に示した組成、表7に示した処理条件にて実施例9
とすべて同様の操作にて同じ形状の焼結体を作成した。
ただし、実施例16では熱処理後の被処理体を1850℃、15
atmの窒素雰囲気中で2時間焼結し、焼結体を得た。こ
れらの焼結体についても、実施例9と同様に密度測定と
1400℃における4点曲げ強度を実施した。結果を表4に
示す。
Examples 10 to 16 Example 9 was carried out under the composition shown in Table 6 and the treatment conditions shown in Table 7.
By the same operation as above, a sintered body having the same shape was prepared.
However, in Example 16, the object to be treated after the heat treatment was
Sintering was performed for 2 hours in a nitrogen atmosphere of atm to obtain a sintered body. With respect to these sintered bodies, density measurement and measurement were performed in the same manner as in Example 9.
Four-point bending strength at 1400 ° C was carried out. The results are shown in Table 4.

【0057】[0057]

【表6】 [Table 6]

【0058】[0058]

【表7】 [Table 7]

【0059】[0059]

【表8】 [Table 8]

【0060】比較例9 実施例16において、炭素源を添加せず焼結前に還元窒化
処理を施していない他は、すべて同様の操作にて同じ形
状の焼結体を作成した。これらの焼結体についても、実
施例9と同様に密度測定と1400℃における4点曲げ強度
を実施した。結果を表9に示す。樹脂添加による還元窒
化処理を行うことにより、1400℃の熱間強度が上昇する
ことが明らかに分かる。
Comparative Example 9 A sintered body of the same shape was prepared by the same procedure as in Example 16 except that the carbon source was not added and the reduction nitriding treatment was not performed before sintering. Also for these sintered bodies, the density measurement and the four-point bending strength at 1400 ° C. were performed in the same manner as in Example 9. The results are shown in Table 9. It is clear that the hot strength at 1400 ° C is increased by performing the reduction nitriding treatment by adding the resin.

【0061】比較例10 実施例16において、樹脂の変わりにカーボンブラックを
用いる他は、すべて同様の操作にて同じ形状の結晶体を
作成した。これらの結晶体についても、実施例9と同様
に密度測定と1400℃における4点曲げ強度を実施した。
結果を表5に示す。
Comparative Example 10 A crystal having the same shape was prepared by the same procedure as in Example 16 except that carbon black was used instead of the resin. With respect to these crystal bodies, the density measurement and the 4-point bending strength at 1400 ° C. were carried out in the same manner as in Example 9.
The results are shown in Table 5.

【0062】カーボンブラックを樹脂に変えることによ
り、1400℃の熱間強度が上昇することが表9との比較か
ら明らかに分かる。
It can be clearly seen from the comparison with Table 9 that the hot strength at 1400 ° C. is increased by changing the carbon black to a resin.

【0063】[0063]

【表9】 [Table 9]

【0064】[0064]

【発明の効果】以上のように、本発明によれば、焼結工
程前の成形体中に存在するシリカを熱分解して炭素化す
る樹脂を用いた還元窒化珪素処理によって除去もしくは
低減することにより、1400℃というような高温において
も高強度に優れた窒化珪素焼結体が得られる。かつ、焼
結体において重量減少の少ないものを得ることができ
る。従って、セラミックガスタービンエンジンのよう
に、耐熱性と高強度を要求される部位の構造用材料を提
供でき、従来の高温での強度低下という問題が解消す
る。
As described above, according to the present invention, silica present in a molded body before the sintering step can be removed or reduced by a reduction silicon nitride treatment using a resin that thermally decomposes to carbonize. As a result, a silicon nitride sintered body excellent in high strength can be obtained even at a high temperature of 1400 ° C. In addition, it is possible to obtain a sintered body with a small weight loss. Therefore, it is possible to provide a structural material for a portion that requires high heat resistance and high strength, such as a ceramic gas turbine engine, and solves the conventional problem of strength reduction at high temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素共存下において、窒化珪素と炭化珪素が平
衡関係にある時の平衡窒素ガス分圧及び、窒化珪素と炭
化珪素が平衡関係にある時の平衡窒素ガス分圧で発生す
るCOガスの分圧を示す図である。
FIG. 1 is a CO gas generated in the presence of carbon by equilibrium nitrogen gas partial pressure when silicon nitride and silicon carbide are in an equilibrium relationship and by equilibrium nitrogen gas partial pressure when silicon nitride and silicon carbide are in an equilibrium relationship. It is a figure which shows the partial pressure of.

【図2】炭素が存在する時のシリカの還元窒化処理に関
与する凝集相の1400℃での熱力学的安定図である。
FIG. 2 is a thermodynamic stability diagram at 1400 ° C. of an aggregate phase involved in a reduction nitriding treatment of silica in the presence of carbon.

【図3】窒化珪素の金属シリコンへの分解を抑制するた
めの平衡窒素ガス分圧平衡窒素分圧と、窒化珪素と炭素
とが反応し炭化珪素と窒素ガスとなる時の平衡窒素ガス
分圧を示す図である。
FIG. 3 is an equilibrium nitrogen gas partial pressure for suppressing the decomposition of silicon nitride into metallic silicon, and an equilibrium nitrogen gas partial pressure when silicon nitride and carbon react to form silicon carbide and nitrogen gas. FIG.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面にシリカ被膜が形成され
ている窒化珪素粉末と焼結助剤と非酸化性ガス雰囲気下
の加熱で熱分解して炭素になる樹脂とからなる混合粉末
の成形体を焼結する直前に非酸化性雰囲気中で加熱して
該シリカ被膜を除去することを特徴とする窒化珪素焼結
体の製造方法
1. A molded body of a mixed powder comprising at least a silicon nitride powder having a silica coating formed on its surface, a sintering aid, and a resin which is thermally decomposed into carbon when heated in a non-oxidizing gas atmosphere. A method for producing a silicon nitride sintered body, characterized in that the silica coating is removed by heating in a non-oxidizing atmosphere immediately before sintering.
【請求項2】 混合粉末がさらに炭化珪素粉末を含む請
求項1に記載の製造方法
2. The manufacturing method according to claim 1, wherein the mixed powder further contains silicon carbide powder.
【請求項3】 該加熱温度が1000〜1700℃である請求項
1又は2に記載の製造方法
3. The production method according to claim 1, wherein the heating temperature is 1000 to 1700 ° C.
【請求項4】 非酸化性雰囲気中の窒素ガス分圧を窒化
珪素が炭素と反応して炭化珪素を生成する平衡分圧以上
に保つことを特徴とする請求項3に記載の製造方法
4. The production method according to claim 3, wherein the partial pressure of nitrogen gas in the non-oxidizing atmosphere is maintained at an equilibrium partial pressure at which silicon nitride reacts with carbon to form silicon carbide.
【請求項5】 非酸化性雰囲気中のCOガス分圧を前記
の窒素ガス分圧下での分圧より低く保つ請求項4に記載
の製造方法
5. The manufacturing method according to claim 4, wherein the partial pressure of CO gas in the non-oxidizing atmosphere is kept lower than the partial pressure under the partial pressure of nitrogen gas.
【請求項6】 非酸化性雰囲気が非酸化性ガス流中にお
くことである請求項4に記載の製造方法
6. The manufacturing method according to claim 4, wherein the non-oxidizing atmosphere is placed in a non-oxidizing gas flow.
【請求項7】 シリカ被膜を除去した後、窒素ガス分圧
を炭素と窒化珪素と炭化珪素が平衡に存在するときの平
衡分圧以上に保ち非酸化性雰囲気中で焼結することを特
徴とする請求項1に記載の窒化珪素焼結体の製造方法
7. After removing the silica coating, the nitrogen gas partial pressure is maintained at a pressure equal to or higher than the equilibrium partial pressure when carbon, silicon nitride, and silicon carbide are in equilibrium, and sintering is performed in a non-oxidizing atmosphere. The method for manufacturing a silicon nitride sintered body according to claim 1.
【請求項8】 焼結後、非酸化性雰囲気中の窒素ガス分
圧を炭素と窒化珪素と炭化珪素が平衡に存在するときの
平衡分圧以上に保ち降温することを特徴とする請求項1
又は7に記載の窒化珪素焼結体の製造方法
8. After the sintering, the nitrogen gas partial pressure in the non-oxidizing atmosphere is kept at a temperature equal to or higher than the equilibrium partial pressure when carbon, silicon nitride and silicon carbide are in equilibrium, and the temperature is lowered.
Or the method for manufacturing a silicon nitride sintered body according to 7.
【請求項9】 シリカ被膜を除去した後、窒素ガス分圧
を窒化珪素と金属シリコンとが平衡に存在するときの平
衡分圧以上であって、炭化珪素が窒化珪素と炭素に分解
するときの平衡分圧以下に保ち、非酸化性雰囲気中で焼
結することを特徴とする請求項2に記載の窒化珪素焼結
体の製造方法
9. After removing the silica coating, the partial pressure of nitrogen gas is equal to or higher than the equilibrium partial pressure when silicon nitride and metallic silicon exist in equilibrium, and when silicon carbide decomposes into silicon nitride and carbon. The method for producing a silicon nitride sintered body according to claim 2, wherein the sintering is performed in a non-oxidizing atmosphere while keeping the equilibrium partial pressure or less.
【請求項10】 焼結後、非酸化性雰囲気中の窒素ガス分
圧を窒化珪素と金属シリコンとが平衡に存在するときの
平衡分圧以上であって、炭化珪素が窒化珪素と炭素に分
解するときの平衡分圧以下に保ち、降温することを特徴
とする請求項2又は9に記載の窒化珪素焼結体の製造方
10. After sintering, the nitrogen gas partial pressure in a non-oxidizing atmosphere is equal to or higher than the equilibrium partial pressure when silicon nitride and metallic silicon exist in equilibrium, and silicon carbide decomposes into silicon nitride and carbon. The method for producing a silicon nitride sintered body according to claim 2 or 9, characterized in that the temperature is lowered below the equilibrium partial pressure when
JP4043966A 1991-02-28 1992-02-28 Production of silicon nitride sintered body Pending JPH0570239A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3452791 1991-02-28
JP3-36361 1991-03-01
JP3636191 1991-03-01
JP3-34527 1991-03-01

Publications (1)

Publication Number Publication Date
JPH0570239A true JPH0570239A (en) 1993-03-23

Family

ID=26373345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4043966A Pending JPH0570239A (en) 1991-02-28 1992-02-28 Production of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0570239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (en) * 2023-11-14 2023-12-15 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117229067A (en) * 2023-11-14 2023-12-15 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding
CN117229067B (en) * 2023-11-14 2024-02-23 中南大学 Method for preparing silicon nitride ceramics by low-pressure nitridation-embedding

Similar Documents

Publication Publication Date Title
Lee Fabrication of Si3N4/SiC composite by reaction‐bonding and gas‐pressure sintering
JPH0570239A (en) Production of silicon nitride sintered body
JPH0570238A (en) Production of silicon nitride sintered body
JP2007320778A (en) High-denseness silicon carbide ceramic and its production method
JPH0570240A (en) Production of silicon nitride sintered body
JPH1179848A (en) Silicon carbide sintered compact
JPH0570235A (en) Production of silicon nitride sintered body
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPH0570237A (en) Production of silicon nitride sintered body
JP3005650B2 (en) Chemically modified silicon carbide ceramic powder and method for producing silicon carbide ceramic
JPH0570236A (en) Production of silicon nitride sintered body
JPH04275978A (en) Production of silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JPH08508458A (en) Heat treatment of nitrogen ceramics
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH03174364A (en) Silicon nitride-based sintered body
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JP2793635B2 (en) Silicon nitride powder composition
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JP3536494B2 (en) Nitrogen-containing silane compounds
JP2543353B2 (en) Method for producing silicon nitride based sintered body
JPS59152270A (en) Manufacture of silicon nitride-containing sintered body
JPH05186270A (en) Production of silicon nitride-silicon carbide composite sintered material