JPH0568866B2 - - Google Patents

Info

Publication number
JPH0568866B2
JPH0568866B2 JP61315203A JP31520386A JPH0568866B2 JP H0568866 B2 JPH0568866 B2 JP H0568866B2 JP 61315203 A JP61315203 A JP 61315203A JP 31520386 A JP31520386 A JP 31520386A JP H0568866 B2 JPH0568866 B2 JP H0568866B2
Authority
JP
Japan
Prior art keywords
semiconductor
type region
substrate
photoelectric conversion
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61315203A
Other languages
Japanese (ja)
Other versions
JPS62202568A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP61315203A priority Critical patent/JPS62202568A/en
Publication of JPS62202568A publication Critical patent/JPS62202568A/en
Publication of JPH0568866B2 publication Critical patent/JPH0568866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明は基板上に設けられた半導体の一主表面
にのみ+電極となるP型の領域と−電極となるN
型の領域とを選択的に設け、作製の容易かつ構造
の簡単な光電変換装置に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention provides a P-type region that serves as a + electrode and an N-type region that serves as a - electrode only on one main surface of a semiconductor provided on a substrate.
The present invention relates to a photoelectric conversion device that is easy to manufacture and has a simple structure by selectively providing mold regions.

『従来の技術』 従来、光電変換装置に関してはPNまたはPIN
接合を単結晶の珪素基板に形成した太陽電池、ま
たはフオトセルが知られている。しかしこのPN
またはPIN接合は単結晶の珪素基板の表面と裏面
にその+電極または−電極を有し、その接合面は
基板の主面に実質的に平行に設け、この接合面に
光が多量に照射されるように工夫がなされていた
にすぎなかつた。
"Conventional technology" Conventionally, photoelectric conversion devices used PN or PIN.
2. Description of the Related Art Solar cells or photocells in which a junction is formed on a single crystal silicon substrate are known. But this PN
Alternatively, a PIN junction has positive or negative electrodes on the front and back surfaces of a single-crystal silicon substrate, and the bonding surface is provided substantially parallel to the main surface of the substrate, and a large amount of light is irradiated onto this bonding surface. It was simply a matter of devising a way to make it work.

『発明が解決しようとする問題点』 これら従来の光電変換装置は半導体基板の主面
に平行に接合面を設けていた為、電界のかかる方
向と光照射面が垂直となつてしまい光照射強度が
電界のかかる方向で一様ではなく、効率よく電
子・ホールを発生させることはできなかつた。
``Problems to be solved by the invention'' These conventional photoelectric conversion devices had a bonding surface parallel to the main surface of the semiconductor substrate, so the direction in which the electric field was applied was perpendicular to the light irradiation surface, resulting in light irradiation intensity. The electric field was not uniform in the direction in which it was applied, and it was not possible to efficiently generate electrons and holes.

また、単結晶基板は極めてへきかいしやすく高
価であり、加工がしにくく、光電変換装置を集積
化して複数個を直列または並列に配列させること
ができない等多くの欠点を有していた。
In addition, single crystal substrates have many drawbacks, such as being extremely easily cracked and expensive, difficult to process, and unable to integrate photoelectric conversion devices and arrange a plurality of them in series or parallel.

本発明は非単結晶半導体中で電子・ホールを効
率よく発生させること、また更に半導体を非単結
晶として加工しやすくさせることを目的としてい
る。
The present invention aims to efficiently generate electrons and holes in a non-single-crystal semiconductor, and also to make it easier to process the semiconductor into a non-single-crystal semiconductor.

『問題点を解決する為の手段』 本発明は、透光性基板の光入射面に対して反対
面上に設けられた非単結晶半導体の少なくとも上
部にP型の領域とN型の領域とを選択的に光照射
面に対して平行に配したことを特徴とする光電変
換装置により、上記の目的を達成したものであ
る。
"Means for Solving the Problems" The present invention provides a P-type region and an N-type region at least in the upper part of a non-single crystal semiconductor provided on a surface opposite to the light incident surface of a transparent substrate. The above object has been achieved by a photoelectric conversion device characterized by selectively disposing parallel to the light irradiation surface.

『作用』 上記のような構造、即ち同一光照射面より、P
型の領域、N型の領域をその半導体の深さ方向に
形成したことにより、P型の領域とN型の領域間
での電界方向での光強度が一定となる。またP型
の領域あるいはN型の領域と真性半導体層との接
合面を極めて狭くし、接合界面でのキヤリアの再
結合の割合を減らすことにより光電変換効率の向
上を計ろうとしたものである。
``Action'' With the above structure, that is, from the same light irradiation surface, P
By forming the type region and the N type region in the depth direction of the semiconductor, the light intensity in the electric field direction between the P type region and the N type region becomes constant. Another attempt was made to improve the photoelectric conversion efficiency by making the junction surface between the P-type region or the N-type region and the intrinsic semiconductor layer extremely narrow and reducing the rate of carrier recombination at the junction interface.

以下に実施例に従い本発明を説明する。 The present invention will be described below with reference to Examples.

『実施例』 第1図は本発明の製作工程を示す縦断面図であ
る。第1図Aにおいて、基板1は導電性または絶
縁性基板である。この基板は安価であり以降の被
膜形成工程に対し機械的強度並びに対熱性を有し
ていることがその要件である。この為本実施例に
おいては、ガラス基板を主として用いた。この基
板1の上面に室温〜500℃の温度にてプラズマ
CVD法により、SiH4:20SCCM、圧力:0.01〜
0.3TORRで約60分間Depoを行い、エネルギーバ
ンド巾約2.3eV、膜厚2500Åの第1の半導体43
を形成した。この際原料ガスに必要に応じてC、
O、Nを5〜50atm%添加してエネルギーバンド
巾を変化させた。さらにこの第1の半導体43上
に第2の半導体2を形成した。この際原料ガスに
必要に応じてC、O、Nを含むガスを添加してエ
ネルギーバンド巾を変化させ、エネルギーバンド
巾1.6ev、膜厚1μmの第2の半導体を形成した。
``Example'' FIG. 1 is a longitudinal sectional view showing the manufacturing process of the present invention. In FIG. 1A, substrate 1 is a conductive or insulating substrate. The requirements for this substrate are that it is inexpensive and has mechanical strength and heat resistance for the subsequent film forming process. Therefore, in this example, a glass substrate was mainly used. Plasma is applied to the upper surface of this substrate 1 at a temperature of room temperature to 500°C.
By CVD method, SiH4: 20SCCM, pressure: 0.01~
Deposition was performed for about 60 minutes at 0.3 TORR, and the first semiconductor 43 with an energy band width of about 2.3 eV and a film thickness of 2500 Å was deposited.
was formed. At this time, if necessary, add C to the raw material gas.
The energy band width was changed by adding 5 to 50 atm% of O and N. Furthermore, the second semiconductor 2 was formed on this first semiconductor 43. At this time, a gas containing C, O, and N was added to the raw material gas as necessary to change the energy band width, and a second semiconductor having an energy band width of 1.6 ev and a film thickness of 1 μm was formed.

さらに第2の半導体2上に、第3の半導体3を
第1の半導体43と同じ作製条件で形成させた。
Furthermore, a third semiconductor 3 was formed on the second semiconductor 2 under the same manufacturing conditions as the first semiconductor 43.

これら第1の半導体、第2の半導体および第3
の半導体は、P型、N型のド−パントを添加しな
い限り実質的に真性の半導体であつた。
These first semiconductor, second semiconductor and third semiconductor
The semiconductor was essentially an intrinsic semiconductor unless P-type or N-type dopants were added.

次に、この半導体を光電変換装置に必要な部分
のみを残すようにエツチングを行つた後、半導体
層の上表面および側周辺に第3の半導体に対しマ
スク作用を有する絶縁膜として例えば酸化珪素ま
たは窒化珪素を500〜2000Åの厚さにプラズマ
CVD法により形成した。本実施例ではSiH4
NH3を用いて窒化珪素被膜を形成した。
Next, after etching this semiconductor so as to leave only the portion necessary for the photoelectric conversion device, an insulating film having a masking effect on the third semiconductor is formed on the upper surface and around the sides of the semiconductor layer using, for example, silicon oxide or Plasma silicon nitride to a thickness of 500-2000Å
Formed by CVD method. In this example, SiH 4 ,
A silicon nitride film was formed using NH3 .

さらに第1図Bのように+電極および−電極に
なる部分に対し開口7,8をフオトエツチング法
により絶縁膜4を選択的に除去して形成した。こ
の開口の巾は2〜20μm特に5〜7μmと巾を狭く
して櫛型とし、開口7,8間の距離11は第2の
半導体の膜厚とほぼ同一としたが、この距離は半
導体中の再励起によつて発生した電子・ホールの
拡散距離より短くその1/4〜1/2とするのが好まし
かつた。
Furthermore, as shown in FIG. 1B, openings 7 and 8 were formed by selectively removing the insulating film 4 in the portions that would become the + and - electrodes by photo-etching. The width of this opening was narrowed to 2 to 20 μm, especially 5 to 7 μm, and was shaped like a comb, and the distance 11 between the openings 7 and 8 was approximately the same as the film thickness of the second semiconductor. It is preferable that the diffusion length be 1/4 to 1/2 shorter than the diffusion distance of electrons and holes generated by re-excitation of the .

次に開口部7,8より、それぞれボロンB、フ
オスフインPを拡散法、イオン注入法等によりド
ーパントを1018cm-3〜3mol%の濃度にドープし第
1図Cのように、P型の領域9、N型領域10を
第3の半導体層中に形成した。
Next, dopants such as boron B and phosphine P are doped through the openings 7 and 8 to a concentration of 10 18 cm -3 to 3 mol % by diffusion, ion implantation, etc., as shown in Figure 1C. Region 9 and N-type region 10 were formed in the third semiconductor layer.

次ぎに第1図DのようにP型の領域9N型の領
域10の各々の上面にアルミニウムを1μm蒸着
し、オーミツクコンタクト電極14および、それ
より延在して基板上に外部接続端子16,17を
形成した。
Next, as shown in FIG. 1D, aluminum is vapor-deposited to a thickness of 1 μm on the upper surface of each of the P-type region 9 and the N-type region 10 to form an ohmic contact electrode 14 and an external connection terminal 16 extending therefrom on the substrate. 17 was formed.

第1図DのA−A′の破線に従つてそのエネル
ギーバンドダイヤグラムを考察するとその一例と
して第2図Aを得た。+電極14、P型の領域9、
実質的に真性の第3の半導体2N型の領域10、
−電極15にそれぞれ対応して14,9,2,1
0,15が記されている。
When the energy band diagram is considered along the dashed line A-A' in FIG. 1D, FIG. 2A is obtained as an example thereof. + electrode 14, P-type region 9,
a substantially intrinsic third semiconductor 2N type region 10;
- 14, 9, 2, 1 corresponding to electrode 15, respectively;
0,15 are written.

この第2図Aより明らかな如く、ホールは14
へ、また電子は15へと拡散して行き、もしホー
ルの一部が10へと拡散した場合、撥ね返されて
しまい−電極近傍での再結合を禁止している。同
様なことが+電極でも起こつている。
As is clear from this Figure 2 A, there are 14 holes.
The electrons also diffuse to 15, and if some of the holes diffuse to 10, they are repelled - prohibiting recombination near the electrode. A similar thing happens with the + electrode.

本発明において半導体材料としては、珪素を含
む半導体のみではなく−族、−族の化合
物半導体でもよく、その構造も非単結晶ならば、
いわゆるアモルフアス、セミアモルフアス、多結
晶でもよい、またその作製方法も公知の化学気相
反応法でよい。
In the present invention, the semiconductor material may be not only a silicon-containing semiconductor but also a - group or - group compound semiconductor, and if its structure is also non-single crystal,
It may be so-called amorphous, semi-amorphous, or polycrystalline, and its production method may be a known chemical vapor phase reaction method.

また本実施例においては、第3の半導体まで3
層積層させたが半導体層は1層あるいは2層とし
て実施しても良い。
In addition, in this embodiment, up to the third semiconductor
Although the layers are stacked, the semiconductor layer may be one or two layers.

『発明の効果』 本発明は代表的には第1図Dのような構造を持
つ光電変換装置であります。光照射面に対しP型
の領域のN型の領域間に発生する電界方向が平行
であり、P型あるいはN型の領域と真性半導体層
との接合面が狭いため接合界面でのキヤリアの再
結合を減らすことが可能となるため、高効率の光
電変換装置であつた。
``Effects of the Invention'' The present invention is a photoelectric conversion device typically having a structure as shown in Figure 1D. The direction of the electric field generated between the P-type region and the N-type region is parallel to the light irradiation surface, and the junction surface between the P-type or N-type region and the intrinsic semiconductor layer is narrow, so carrier regeneration at the junction interface is prevented. Since it was possible to reduce coupling, it was a highly efficient photoelectric conversion device.

また半導体を非単結晶としたことにより、半導
体を加工しやすくなつた。
Also, by making the semiconductor non-single crystal, it has become easier to process the semiconductor.

その他の特徴としては、外部取り出し電極を基
板上に設けているため一基板上の光電変換装置を
複数個集積化して直、並列接続をすることがで
き、同一基板上に逆流防止ダイオードをも同一半
導体により作製できる。
Other features include the provision of external lead-out electrodes on the substrate, which allows multiple photoelectric conversion devices to be integrated on one substrate and connected in series or parallel, and backflow prevention diodes can also be connected on the same substrate. It can be made from semiconductors.

電極が一表面にのみ形成されている為、半導体
作製の際、その熱的ストレスを考慮する必要はな
い。
Since the electrode is formed only on one surface, there is no need to consider thermal stress during semiconductor manufacturing.

構造が極めて簡単であり、また半導体の上、側
周辺を窒化珪素膜により被覆してあるため外部汚
染に対する信頼性にすぐれている。
The structure is extremely simple, and since the top and sides of the semiconductor are covered with a silicon nitride film, it has excellent reliability against external contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による構造を有する光電変換装
置の作製工程を示す縦断面図である。第2図は第
1図Dのエネルギーバンド図である。 1……基板、2……第1の非単結晶半導体、3
……第2の非単結晶半導体、4……絶縁膜。
FIG. 1 is a longitudinal sectional view showing the manufacturing process of a photoelectric conversion device having a structure according to the present invention. FIG. 2 is an energy band diagram of FIG. 1D. DESCRIPTION OF SYMBOLS 1...Substrate, 2...First non-single crystal semiconductor, 3
...Second non-single crystal semiconductor, 4...Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1 真性または実質的に真性の半導体を設け、該
半導体の一主面側にのみP型の半導体領域とN型
の半導体領域とを電子・ホールの拡散距離よりも
短くかつ互いに離間して配置せしめ、前記一主面
側とは反対側の他の主面側に光照射をして、前記
真性または実質的に真性の半導体で発生した電子
およびホールを前記NおよびP型の半導体領域に
集めることを特徴とする光電変換装置。
1. An intrinsic or substantially intrinsic semiconductor is provided, and a P-type semiconductor region and an N-type semiconductor region are arranged only on one main surface side of the semiconductor so as to be shorter than the diffusion distance of electrons and holes and spaced apart from each other. , irradiating light onto the other main surface opposite to the one main surface to collect electrons and holes generated in the intrinsic or substantially intrinsic semiconductor in the N and P type semiconductor regions; A photoelectric conversion device characterized by:
JP61315203A 1986-12-26 1986-12-26 Photoelectric conversion device Granted JPS62202568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315203A JPS62202568A (en) 1986-12-26 1986-12-26 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315203A JPS62202568A (en) 1986-12-26 1986-12-26 Photoelectric conversion device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17147879A Division JPS5696879A (en) 1979-12-30 1979-12-30 Manufacture of photoelectric converter

Publications (2)

Publication Number Publication Date
JPS62202568A JPS62202568A (en) 1987-09-07
JPH0568866B2 true JPH0568866B2 (en) 1993-09-29

Family

ID=18062645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315203A Granted JPS62202568A (en) 1986-12-26 1986-12-26 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS62202568A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5463690A (en) * 1978-05-22 1979-05-22 Yamazaki Shunpei Photovoltaic force generating semiconductor and method of producing same
JPS5477088A (en) * 1977-12-01 1979-06-20 Toshiba Corp Semiconductor photo detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143180A (en) * 1977-05-18 1978-12-13 Energy Conversion Devices Inc Amorphous semiconductor structure and method of producing same
JPS5477088A (en) * 1977-12-01 1979-06-20 Toshiba Corp Semiconductor photo detector
JPS5463690A (en) * 1978-05-22 1979-05-22 Yamazaki Shunpei Photovoltaic force generating semiconductor and method of producing same

Also Published As

Publication number Publication date
JPS62202568A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
US10490685B2 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US4431858A (en) Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby
AU2007248865B2 (en) Solar cell having doped semiconductor heterojunction contacts
US4253881A (en) Solar cells composed of semiconductive materials
AU655092B2 (en) Method for manufacture of a solar cell and solar cell
US20160111582A1 (en) Modular interdigitated back contact photovoltaic cell structure on opaque substrate and fabrication process
US4451838A (en) Semiconductor photoelectric conversion device
US4781765A (en) Photovoltaic device
KR100908711B1 (en) Thin Film Silicon Solar Cells
CN103811572A (en) Photoelectric device and method of manufacturing same
KR102547804B1 (en) Bifacial silicon solar cell and method for manufacturing the same
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
JP3193287B2 (en) Solar cell
JPH0864851A (en) Photovoltaic element and fabrication thereof
JP2023163098A (en) Solar cell and production method thereof, and photovoltaic module
JP3346907B2 (en) Solar cell and method of manufacturing the same
JPH0568866B2 (en)
JPH02377A (en) Photoelectric converting device
JPH0249030B2 (en)
JPH044757B2 (en)
JPS5935189B2 (en) Koden Henkan Soshinoseizouhouhou
JP2661286B2 (en) Photoelectric conversion device
JP3158028B2 (en) Solar cell and method of manufacturing the same
JPS58157176A (en) Solar battery element
JPH0230190B2 (en)