JPH0568552A - Conversion of biomaterial to solid phase - Google Patents

Conversion of biomaterial to solid phase

Info

Publication number
JPH0568552A
JPH0568552A JP3211737A JP21173791A JPH0568552A JP H0568552 A JPH0568552 A JP H0568552A JP 3211737 A JP3211737 A JP 3211737A JP 21173791 A JP21173791 A JP 21173791A JP H0568552 A JPH0568552 A JP H0568552A
Authority
JP
Japan
Prior art keywords
particles
water
gelatin
globulin
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3211737A
Other languages
Japanese (ja)
Other versions
JP3207878B2 (en
Inventor
Makoto Nakamura
誠 中村
Masumi Matsushita
真澄 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP21173791A priority Critical patent/JP3207878B2/en
Publication of JPH0568552A publication Critical patent/JPH0568552A/en
Application granted granted Critical
Publication of JP3207878B2 publication Critical patent/JP3207878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To accomplish the subject conversion with little natural flocculation in high conversion-to-solid phase efficiency by converting a protein, etc., to a solid phase on particles consisting of a composite coacervation made up of gelatin and a water-soluble polysaccharide through an imino polymer. CONSTITUTION:An imino polymer is allowed to adsorb, through e.g. a water-soluble epoxy compound, to particles consisting of a composite coacervation made up of gelatin and a water-soluble polysaccharide (e.g. gum arabi), and through this imino polymer, the objective conversion of a biomaterial such as protein, peptide, nucleic acid or cells to a solid phase is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体物質を固相化する方
法に関する。より具体的には、ゼラチン及び水溶性多糖
類の複合コアセルベーションを担体として、これに生体
物質を結合して固相化するための、該担体の表面処理方
法に関する。なお、ここで生体物質とは、抗原、抗体、
酵素等のタンパク質、ペプチド、細胞、核酸をいうもの
とする。
TECHNICAL FIELD The present invention relates to a method for immobilizing a biological substance. More specifically, the present invention relates to a surface treatment method for a carrier, which comprises using a complex coacervation of gelatin and a water-soluble polysaccharide as a carrier and binding a biological substance thereto to immobilize the carrier. Here, the biological substance is an antigen, an antibody,
The term refers to proteins such as enzymes, peptides, cells, and nucleic acids.

【0002】[0002]

【従来の技術】ゼラチンと水溶性多糖類との複合コアセ
ルベーションによってつくられる粒子は、タンパク質固
相化のための優れた担体として知られている。該粒子
は、非特異的なタンパク質等の吸着や自然凝集が少な
く、それ自体に抗原性を持たない点で優れた担体であ
る。このような担体粒子は、例えば特開昭57-153658
号、特開昭57-160465 号、特開昭58-113754 号、特開昭
58-113755 号、特開昭58-113756号、特開昭58-113757
号、特開昭59-35143号、特開昭59-35143号、特開昭59-1
95161 号に記載されている。
BACKGROUND ART Particles produced by complex coacervation of gelatin and water-soluble polysaccharide are known as excellent carriers for protein immobilization. The particles are excellent carriers in that they are less likely to adsorb nonspecific proteins and spontaneously aggregate and have no antigenicity by themselves. Such carrier particles are disclosed, for example, in JP-A-57-153658.
No. 57-160465, No. 58-113754, No. 58-113754
58-113755, JP-A-58-113756, JP-A-58-113757
No. 59, JP-A-59-35143, JP-A-59-35143, JP-A-59-1
It is described in No. 95161.

【0003】上記担体粒への生体物質の固相化には、従
来、タンニン酸、ホルマリン、グルタルアルデヒド、ピ
ルビックアルデヒド、ビス- ジアゾ化ベンジジン、トル
エン-2,4- ジイソシアネート、或いはアミノ基、カルボ
キシル基、水酸基などを活用して固相化する公知の方
法、例えばジアゾカップリング法または酸アジド化法が
用いられている。
Conventionally, tannic acid, formalin, glutaraldehyde, pyruvic aldehyde, bis-diazotized benzidine, toluene-2,4-diisocyanate, or amino group, carboxyl group have been used to immobilize biomaterials on the carrier particles. Well-known methods of solid-phase utilizing groups, hydroxyl groups and the like, for example, diazo coupling method or acid azidation method are used.

【0004】[0004]

【発明が解決しようとする課題】上記のように、ゼラチ
ンと水溶性多糖類との複合コアセルベーションによって
つくられる粒子は、抗原、抗体または酵素のようなタン
パクや、核酸を固相化するための担体として本質的に極
めて優れた素材である。しかしながら、唯一、タンパク
質等の固相化効率が悪いと言う欠点があった。
As described above, particles formed by complex coacervation of gelatin and water-soluble polysaccharides are used for immobilizing proteins such as antigens, antibodies or enzymes, and nucleic acids. It is essentially a very excellent material as a carrier for. However, there is only one drawback that the solid phase immobilization efficiency of proteins and the like is poor.

【0005】この欠点を解決する方法として、特開昭63
-18268号に開示されているように、粒子表面にイミノポ
リマー等のアミノ基含有物質を結合させ、このアミノ基
を橋渡しとしてタンパク質を共有結合させることが考え
られる。
As a method for solving this drawback, Japanese Patent Application Laid-Open No. 63-63
As disclosed in No. -18268, it is considered that an amino group-containing substance such as iminopolymer is bound to the particle surface, and the protein is covalently bound by using this amino group as a bridge.

【0006】しかし、特開昭63-18268号で用いられてい
る担体粒子は、例えばTSK-GEL TOYOPEARL HF75F のよう
に、−OH基を有する合成ポリマー粒子であり、ゼラチ
ンと水溶性多糖類との複合コアセルベーションによって
得られた粒子ではない。従って、特開昭63-18268号の方
法をそのまま適用した場合には、以下のような問題が生
じる。
However, the carrier particles used in JP-A-63-18268 are synthetic polymer particles having an --OH group, such as TSK-GEL TOYOPEARL HF75F, which comprises gelatin and a water-soluble polysaccharide. Not particles obtained by complex coacervation. Therefore, if the method of JP-A-63-18268 is applied as it is, the following problems occur.

【0007】まず、ゼラチンと水溶性多糖類との複合コ
アセルベーションからなる粒子は、特に多糖類に由来す
る−COOH基を有する。このため、イミノポリマー等
を作用させる際に、イミノポリマーがイオン的相互作用
により粒子を強く凝集させてしまうことが予想される。
この点については、TSK-GEL TOYOPEARL HF75F と比較し
た場合だけでなく、アガロース、デキストラン、セルロ
ース等の−OH基を多量に含む一般的なクロマトグラフ
ィー用親水性粒子と比較した場合にも同様である。
First, the particles composed of a complex coacervation of gelatin and a water-soluble polysaccharide have a --COOH group derived especially from the polysaccharide. Therefore, when the imino polymer or the like is made to act, it is expected that the imino polymer strongly agglomerates the particles by ionic interaction.
This point is the same not only when compared with TSK-GEL TOYOPEARL HF75F, but also when compared with hydrophilic particles for general chromatography containing a large amount of -OH groups such as agarose, dextran, and cellulose. ..

【0008】また、イミノポリマー等を粒子に結合させ
るためには、アミノ基と結合性の高いエポキシ基を粒子
表面に導入する必要がある。そして、特開昭63-18268号
の実施例では、強アルカリ条件下で難溶性のエピクロロ
ヒドリン等のエポキシ化合物を作用させている。しか
し、ゼラチンと水溶性多糖類との複合コアセルベーショ
ンからなる粒子は耐アルカリ性に乏しいから、この方法
は好ましい手法とは言えない。
Further, in order to bond the imino polymer or the like to the particles, it is necessary to introduce an epoxy group having a high bonding property with the amino group onto the surface of the particles. In the example of JP-A-63-18268, an epoxy compound such as epichlorohydrin, which is poorly soluble under strong alkaline conditions, is allowed to act. However, since particles composed of complex coacervation of gelatin and water-soluble polysaccharide have poor alkali resistance, this method cannot be said to be a preferable method.

【0009】本発明は上記事情に鑑みてなされたもの
で、その課題は、ゼラチンと水溶性多糖類との複合コア
セルベーションからなる粒子にイミノポリマーを作用さ
せ、自然凝集が少なく且つ固相化効率が高い生体物質の
固相化方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to cause iminopolymers to act on particles composed of complex coacervation of gelatin and a water-soluble polysaccharide to reduce spontaneous aggregation and solid-phase formation. It is to provide a method for immobilizing a biological substance with high efficiency.

【0010】[0010]

【課題を解決するための手段】本発明による生体物質の
固相化方法は、ゼラチンと水溶性多糖類との複合コアセ
ルベーションからなる粒子に、水溶性エポキシ化合物を
用いるか、又は粒子に直接イミノポリマーを吸着させ、
更にそのイミノポリマーを介して抗原、抗体、酵素等の
タンパクを効率よく固相化することを特徴とする。な
お、本発明はタンパクだけではなく、核酸や細胞等の他
の生体物質の固相化にも有用である。
A method for immobilizing a biological substance according to the present invention uses a water-soluble epoxy compound as a particle composed of complex coacervation of gelatin and a water-soluble polysaccharide, or directly to the particle. Adsorb imino polymer,
Further, it is characterized by efficiently immobilizing proteins such as antigens, antibodies and enzymes through the imino polymer. The present invention is useful not only for proteins but also for immobilizing other biological substances such as nucleic acids and cells.

【0011】発明者らは、上記複合コアセルベーション
からなる粒子について、種々の固相法を検討した。その
結果、強アルカリによる触媒作用なしでも、該粒子に有
効にエポキシ基を導入してイミノポリマーを結合できる
ことを見出だし、本発明を完成するに至った。
The inventors examined various solid phase methods for the particles composed of the above complex coacervation. As a result, they have found that an epoxy group can be effectively introduced into the particles to bind an imino polymer without the catalytic action of a strong alkali, and the present invention has been completed.

【0012】即ち、エポキシ化合物を用いて本発明を実
施する場合は、ジグリシジルエーテル類のように、強ア
ルカリなしでエポキシ化し得る水溶性エポキシ化合物で
あれば、何れのエポキシ化合物を用いてもよい。
That is, when the present invention is carried out using an epoxy compound, any epoxy compound such as diglycidyl ether may be used as long as it is a water-soluble epoxy compound which can be epoxidized without a strong alkali. ..

【0013】また、意外なことに、上記複合コアセルベ
ーションによる粒子においては、エポキシ基を介さずと
も、直接的かつ有効にイミノポリマーを物理吸着でき、
タンパク質を固相化することができる。更に、本発明に
おいては、イミノポリマーによる不都合な自然凝集は殆
んど起こらなかった。
Surprisingly, in the particles obtained by the above-mentioned complex coacervation, the imino polymer can be directly and effectively physically adsorbed without interposing an epoxy group,
The protein can be immobilized. Furthermore, in the present invention, the undesired spontaneous aggregation by the imino polymer hardly occurred.

【0014】エポキシ基の導入やイミノポリマーの結合
に関しては、弱アルカリ性または中性条件下で処理する
のが良い。強アルカリ条件によるエポキシ化は、粒子の
材質を考慮すると分散性の悪化を招く恐れがあるからで
ある。
Regarding the introduction of the epoxy group and the bonding of the imino polymer, it is preferable to carry out the treatment under weak alkaline or neutral conditions. This is because epoxidation under strong alkaline conditions may cause deterioration of dispersibility in consideration of the material of the particles.

【0015】本発明における担体粒子に使用できる水溶
性多糖類としては、アラビアゴム、カルボキシセルロー
ス、アルギン酸ナトリウム、キチン、デキストラン、デ
ンプンといった増粘剤が挙げられる。また、本発明で使
用するゼラチンとしては、酸性ゼラチンの方が分散安定
性等に寄与するので好ましい。
Examples of the water-soluble polysaccharide that can be used for the carrier particles in the present invention include thickeners such as gum arabic, carboxycellulose, sodium alginate, chitin, dextran and starch. Further, as gelatin used in the present invention, acidic gelatin is preferable since it contributes to dispersion stability and the like.

【0016】本発明の固相化に用いる担体粒子のサイズ
については、分析項目や測定法、その他の条件に応じて
あらゆる粒径のものを用いることができ、何れの場合に
も同様の効果を達成し得る。
Regarding the size of the carrier particles used for the immobilization of the present invention, those having any particle size can be used depending on the analysis item, the measuring method and other conditions, and in any case, the same effect can be obtained. Can be achieved.

【0017】固相化後の粒子は、従来の粒子試薬と同様
に種々の目的に用いられる。また、必要に応じて凍結乾
燥を行うことにより、長期の保存が可能となる。更に、
粒子自体は無色であるから、固相化の前後いずれかの段
階で染色処理を施すことができる。なお、ポリエチレン
イミン類の有効処理濃度については、多少のばらつきを
考慮しても、0.1 %(W/V)以上で充分な固相化効率
の向上を示すものである。
The solid-phased particles are used for various purposes like conventional particle reagents. In addition, by performing freeze-drying as necessary, long-term storage becomes possible. Furthermore,
Since the particles themselves are colorless, the dyeing treatment can be performed at any stage before or after solid phase immobilization. The effective treatment concentration of polyethyleneimines is 0.1% (W / V) or more, showing a sufficient improvement in solid phase immobilization efficiency, even if some variation is taken into consideration.

【0018】[0018]

【実施例】【Example】

実施例1:ゼラチン担体粒子の作製 Example 1: Preparation of gelatin carrier particles

【0019】まず、ゼラチンに水を添加し、加温して溶
解した。続いて水酸化ナトリウム水溶液を添加し、pH
を8.5に調節することにより、5重量%のゼラチン溶
液を調製した。なお、この実施例では、ゼラチンとして
酸性ゼラチンを用いた。一方、アラビアゴムに水を加
え、完全に溶解させた後にろ過することにより、4重量
%のアラビアゴム溶液を調整した。さらに、メタノール
に水を添加することにより、40重量%メタノール溶液
を調製した。
First, water was added to gelatin and heated to dissolve it. Then add sodium hydroxide aqueous solution to adjust the pH.
Was adjusted to 8.5 to prepare a 5% by weight gelatin solution. In this example, acidic gelatin was used as gelatin. On the other hand, 4% by weight gum arabic solution was prepared by adding water to gum arabic, completely dissolving it, and then filtering. Furthermore, a 40 wt% methanol solution was prepared by adding water to methanol.

【0020】次に、上記で調製した夫々の溶液を加温し
た後に混合した。この混合液に酢酸を徐々に添加し、p
Hを低下させることにより粒子を形成させた。続いてこ
の溶液を冷却し、グルタルアルデヒドを添加して1昼夜
放置することにより、ゼラチン/アラビアゴムの分子間
を架橋して不溶化させた。その後、粒子懸濁液を遠心
し、上澄みを吸引して廃棄することにより担体粒子を得
た。得られた担体粒子を、遠心機を用いて水で洗浄した
後、ホルムアルデヒドを加えて5日間放置することによ
り、粒子をさらに不溶化した。上記の方法により、約1
0μmの粒径を有する無色透明なゼラチン担体粒子を得
た。 実施例2:ポリエチレンイミンによる表面活性化ゼラチ
ン担体粒子の作製
Next, the respective solutions prepared above were heated and then mixed. Acetic acid was gradually added to this mixed solution, and p
Particles were formed by lowering H. Subsequently, this solution was cooled, glutaraldehyde was added, and the mixture was allowed to stand for one day and night to crosslink the gelatin / acacia gum molecules to make them insoluble. Then, the particle suspension was centrifuged, and the supernatant was suctioned and discarded to obtain carrier particles. The obtained carrier particles were washed with water using a centrifuge, formaldehyde was added, and the mixture was allowed to stand for 5 days to further insolubilize the particles. By the above method, about 1
Colorless and transparent gelatin carrier particles having a particle size of 0 μm were obtained. Example 2: Preparation of surface-activated gelatin carrier particles with polyethyleneimine

【0021】実施例1で得られたゼラチン担体粒子を、
遠心機を用いて水で洗浄した後、エポキシ試薬(1,4-bu
thanediol diglycidyl ether)を添加し、加温して反応
させた。その後、遠心機を用いて水で洗浄した。
The gelatin carrier particles obtained in Example 1 were
After washing with water using a centrifuge, use an epoxy reagent (1,4-bu
thanediol diglycidyl ether) was added and heated to react. Then, it wash | cleaned with water using a centrifuge.

【0022】次に、ポリエチレンイミン3%水溶液を添
加し、加温して反応させた。続いて、遠心機を用いて界
面活性剤を含有する水で洗浄した。こうして、ポリエチ
レンイミンにより表面活性化されたゼラチン担体粒子を
得た。 実施例3:ポリエチレンイミンによる表面活性化担体粒
子を用いたグロブリン固相化粒子の作製
Next, a 3% aqueous solution of polyethyleneimine was added and heated to react. Subsequently, it was washed with water containing a surfactant using a centrifuge. Thus, gelatin carrier particles surface-activated with polyethyleneimine were obtained. Example 3: Preparation of globulin-immobilized particles using surface-activated carrier particles with polyethyleneimine

【0023】実施例2で得られたポリエチレンイミンに
よる表面活性化担体粒子を、遠心機を用いて界面活性剤
を含有する水で洗浄した。これにグルタルアルデヒドを
含有するPBSを添加し、室温で反応させた。その後、
遠心機を用いて界面活性剤を含有する水で洗浄した。
The polyethyleneimine surface-activated carrier particles obtained in Example 2 were washed with a surfactant-containing water using a centrifuge. PBS containing glutaraldehyde was added thereto and reacted at room temperature. afterwards,
It was washed with water containing a surfactant using a centrifuge.

【0024】次に、ヤギグロブリンを含有するPBSを
添加し、加温することにより、粒子表面にグロブリンを
吸着させた。その後、粒子懸濁液を遠心し、この上澄み
中に残存しているグロブリンの濃度を測定することによ
り、担体粒子へのグロブリン固相化効率を求めた。 比較例1:グルタルアルデヒドによる表面活性化ゼラチ
ン担体粒子の作製
Next, PBS containing goat globulin was added and heated to adsorb globulin on the particle surface. Then, the particle suspension was centrifuged, and the concentration of globulin remaining in the supernatant was measured to determine the globulin immobilization efficiency on the carrier particles. Comparative Example 1: Preparation of surface-activated gelatin carrier particles with glutaraldehyde

【0025】上記実施例1によるゼラチン担体粒子のう
ち、ホルムアルデヒドによる不溶化処理を行っていない
ものを遠心機を用いて水で水浄した。続いて、グルタル
アルデヒド溶液を添加し、加温して反応させた。その
後、遠心機を用いて水で洗浄し、グルタルアルデヒドに
よる表面活性化ゼラチン粒子を得た。 比較例2:グルタルアルデヒドによる表面活性化担体粒
子を用いたグロブリン固相化粒子の作製
Among the gelatin carrier particles obtained in Example 1 above, those which had not been insolubilized with formaldehyde were washed with water using a centrifuge. Subsequently, a glutaraldehyde solution was added, and the mixture was heated and reacted. Then, it was washed with water using a centrifuge to obtain glutaraldehyde surface-activated gelatin particles. Comparative Example 2: Preparation of globulin-immobilized particles using surface-activated carrier particles with glutaraldehyde

【0026】上記比較例1で得られたグルタルアルデヒ
ドによる表面活性化担体粒子に、ヤギグロブリンを含有
する炭酸水素ナトリウム水溶液を添加し、加温すること
により、粒子表面にグロブリンを吸着させた。その後、
粒子懸濁液を遠心し、この上澄み中に残存しているグロ
ブリンの濃度を測定することにより、担体粒子へのグロ
ブリン固相化効率を求めた。 比較例3:タンニン酸による表面活性化ゼラチン担体粒
子の作製
To the surface-activated carrier particles with glutaraldehyde obtained in Comparative Example 1 above, an aqueous sodium hydrogencarbonate solution containing goat globulin was added and heated to adsorb globulin on the surface of the particles. afterwards,
The particle suspension was centrifuged, and the concentration of the globulin remaining in this supernatant was measured to determine the globulin immobilization efficiency on the carrier particles. Comparative Example 3: Preparation of surface activated gelatin carrier particles with tannic acid

【0027】実施例1で得られたゼラチン担体粒子を、
遠心機を用いて水で洗浄した後に、タンニン酸を含有す
るリン酸緩衝生理的食塩水(以下PBSと略す)を添加
し、加温して反応させた。その後、遠心機を用いてPB
Sで洗浄することにより、タンニン酸による表面活性化
ゼラチン担体粒子を得た。 比較例4:タンニン酸による表面活性化担体粒子を用い
たグロブリン固相化粒子の作製
The gelatin carrier particles obtained in Example 1 were
After washing with water using a centrifuge, phosphate buffered saline containing tannic acid (hereinafter abbreviated as PBS) was added, and the mixture was heated and reacted. After that, using a centrifuge, PB
By washing with S, surface-activated gelatin carrier particles with tannic acid were obtained. Comparative Example 4: Preparation of globulin-immobilized particles using surface-activated carrier particles with tannic acid

【0028】比較例3で得られたタンニン酸による表面
活性化担体粒子に、ヤギグロブリンを含有するPBSを
添加し、加温することにより、粒子表面にグロブリンを
吸着させた。その後、えられた粒子懸濁液を遠心し、こ
の上澄み中に残存しているグロブリンの濃度を測定する
ことにより、担体粒子へのグロブリン固相化効率を求め
た。 比較例5:ポリスチレンラテックス粒子を用いたグロブ
リン固相化粒子の作製
PBS containing goat globulin was added to the surface-activated carrier particles with tannic acid obtained in Comparative Example 3 and heated to adsorb the globulin on the surface of the particles. Then, the obtained particle suspension was centrifuged, and the concentration of globulin remaining in this supernatant was measured to determine the globulin immobilization efficiency on the carrier particles. Comparative Example 5: Preparation of globulin-immobilized particles using polystyrene latex particles

【0029】ポリスチレンラテックス粒子(日本合成ゴ
ム社製 IMMUTEX H1004)を、遠心機を用いて水で洗浄し
た。続いて、ヤギグロブリンを含有するPBSを添加
し、加温することにより、粒子表面にグロブリンを吸着
させた。その後、粒子懸濁液を遠心し、この上澄み中に
残存しているグロブリンの濃度を測定することにより、
担体粒子へのグロブリン固相化効率を求めた。上記実施
例3および比較例2,4,5により得られたグロブリン
固相化効率は、下記の表1に示す通りであった。 表1 グロブリン固相化効率 実施例3 比較例2 比較例4 比較例5 固相化効率 75.6% 33.8% 27.0% 22.3%
Polystyrene latex particles (IMMUTEX H1004 manufactured by Japan Synthetic Rubber Co., Ltd.) were washed with water using a centrifuge. Subsequently, PBS containing goat globulin was added and heated to adsorb globulin on the particle surface. After that, by centrifuging the particle suspension and measuring the concentration of globulin remaining in this supernatant,
The efficiency of immobilization of globulin on carrier particles was determined. The globulin immobilization efficiencies obtained in Example 3 and Comparative Examples 2, 4, and 5 were as shown in Table 1 below. Table 1 Globulin immobilization efficiency Example 3 Comparative example 2 Comparative example 4 Comparative example 5 Immobilization efficiency 75.6% 33.8% 27.0% 22.3%

【0030】表1の結果から明らかなように、ポリエチ
レンイミンによる表面活性化ゼラチン担体粒子(実施例
3)は、従来既知の方法(比較例2,4,5)と比較し
て、2倍以上のグロブリンを固相化することができた。 実施例4:エポキシ試薬およびポリエチレンイミン濃度
の影響
As is clear from the results shown in Table 1, the surface-activated gelatin carrier particles with polyethyleneimine (Example 3) were more than double the amount obtained by the conventionally known method (Comparative Examples 2, 4, 5). Was able to be immobilized. Example 4: Effect of Epoxy Reagent and Polyethyleneimine Concentration

【0031】実施例1で得られたゼラチン担体粒子を、
遠心機を用いて水で洗浄した後、エポキシ試薬(1,4-bu
thanediol diglycidyl ether)を添加し、加温して反応
させた。一方、洗浄後のゼラチン粒子にエポキシ試薬を
添加せず、そのまま加温する系も併せて実験した。その
後、遠心機を用いて粒子を水で洗浄した。
The gelatin carrier particles obtained in Example 1 were
After washing with water using a centrifuge, use an epoxy reagent (1,4-bu
thanediol diglycidyl ether) was added and heated to react. On the other hand, an experiment was also conducted with a system in which the gelatin particles after washing were heated without adding an epoxy reagent. Then, the particles were washed with water using a centrifuge.

【0032】次に、エポキシ処理した粒子およびエポキ
シ処理しなかった粒子の双方に、ポリエチレンイミン濃
度 0,0.1 ,0.2 ,0.5 ,1.0 ,2.0 ,5.0 ,10.0%の
水溶液を添加し、加温して反応させた。更に、遠心機を
用いてこれら粒子を界面活性剤を含有する水で洗浄し、
ポリエチレンイミンによる表面活性化ゼラチン担体粒子
を得た。これにグルタルアルデヒドを含有するPBSを
添加し、室温で反応させた。その後、遠心機を用いて界
面活性剤を含有する水で洗浄した。
Next, an aqueous solution having a polyethyleneimine concentration of 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0% was added to both the epoxy-treated particles and the non-epoxy-treated particles, and the mixture was heated. It was made to react. Further, using a centrifuge, these particles are washed with water containing a surfactant,
Surface activated gelatin carrier particles with polyethyleneimine were obtained. PBS containing glutaraldehyde was added thereto and reacted at room temperature. Then, it was washed with water containing a surfactant using a centrifuge.

【0033】次に、ヤギグロブリンを含有するPBSを
添加し、加温して粒子表面にグロブリンを吸着させた。
その後、粒子懸濁液を遠心し、その上澄み中に残存して
いるグロブリンの濃度を測定することにより、担体粒子
へのグロブリン固相化効率を求めた。上記実施例4によ
って得られたグロブリン固相化効率を表2に示す。 表2 グロブリン固相化効率 PEI濃度(%) 0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 エポキシ処理 有(%) 25.3 70.0 59.9 67.3
72.5 72.8 32.4 78.2 無(%) 24.8 56.1 59.4 65.7
62.9 72.8 79.0 75.2
Next, PBS containing goat globulin was added and heated to adsorb globulin on the particle surface.
Then, the particle suspension was centrifuged, and the concentration of globulin remaining in the supernatant was measured to determine the globulin immobilization efficiency on the carrier particles. Table 2 shows the globulin immobilization efficiency obtained in Example 4 above. Table 2 Globulin immobilization efficiency PEI concentration (%) 0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 Epoxy treatment Yes (%) 25.3 70.0 59.9 67.3
72.5 72.8 32.4 78.2 None (%) 24.8 56.1 59.4 65.7
62.9 72.8 79.0 75.2

【0034】すなわち、ポリエチレンイミンによる表面
活性化処理において、その中間処理としてエポキシ処理
を行う、行わないにかかわらず、タンパク質を高効率に
固相化できる粒子を作製できた。また、ポリエチレンイ
ミンを0.5%以上の濃度で使用することにより、十分
高効率な粒子を作製できた。
That is, in the surface activation treatment with polyethyleneimine, particles capable of immobilizing the protein with high efficiency could be prepared regardless of whether or not the epoxy treatment was performed as the intermediate treatment. Further, by using polyethyleneimine at a concentration of 0.5% or more, particles with sufficiently high efficiency could be produced.

【0035】[0035]

【発明の効果】以上詳述したように、本発明に従えば、
ゼラチンと水溶性多糖類との複合コアセルベーションか
らなる粒子に、必要に応じて水溶性エポキシ化合物を用
いた後、イミノポリマーを吸着させる。更に、そのイミ
ノポリマーを介して抗原、抗体等のタンパク質を固相化
することによって、分散安定性に優れ、且つきわめて効
率のよいタンパク質の固相化を実現することができる。
As described in detail above, according to the present invention,
An imino polymer is adsorbed on a particle composed of a complex coacervation of gelatin and a water-soluble polysaccharide, if necessary after using a water-soluble epoxy compound. Furthermore, by immobilizing proteins such as antigens and antibodies via the imino polymer, it is possible to achieve immobilization of proteins with excellent dispersion stability and extremely high efficiency.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 33/68 7055−2J // C12N 5/02 7236−4B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 33/68 7055-2J // C12N 5/02 7236-4B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゼラチンと水溶性多糖類との複合コアセ
ルベーションからなる粒子に、イミノポリマーを介して
タンパク質、ペプチド、核酸または細胞を固相化するこ
とを特徴とする生体物質の固相化方法。
1. Immobilization of a protein, peptide, nucleic acid or cell on a particle composed of complex coacervation of gelatin and a water-soluble polysaccharide via an imino polymer. Method.
【請求項2】 前記イミノポリマーを、前記粒子に吸着
させて使用することを特徴とする請求項1に記載の生体
物質の固相化方法。
2. The method for immobilizing a biological substance according to claim 1, wherein the iminopolymer is used by being adsorbed on the particles.
【請求項3】 前記イミノポリマーを、水溶性エポキシ
化合物を介して結合させて使用することを特徴とする請
求項1に記載の生体物質の固相化方法。
3. The method for immobilizing a biological substance according to claim 1, wherein the imino polymer is used by being bound via a water-soluble epoxy compound.
JP21173791A 1991-08-23 1991-08-23 Method for immobilizing biological material Expired - Fee Related JP3207878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21173791A JP3207878B2 (en) 1991-08-23 1991-08-23 Method for immobilizing biological material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21173791A JP3207878B2 (en) 1991-08-23 1991-08-23 Method for immobilizing biological material

Publications (2)

Publication Number Publication Date
JPH0568552A true JPH0568552A (en) 1993-03-23
JP3207878B2 JP3207878B2 (en) 2001-09-10

Family

ID=16610754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21173791A Expired - Fee Related JP3207878B2 (en) 1991-08-23 1991-08-23 Method for immobilizing biological material

Country Status (1)

Country Link
JP (1) JP3207878B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077182A1 (en) * 2000-04-07 2001-10-18 Matsushita Electric Industrial Co., Ltd. Antibody/carrier complex, process for producing the same, method of controlling antigen-antibody reaction by using the same and immunoassay method
DE102004061840B4 (en) * 2004-01-15 2015-10-01 Denso Corporation Speed and rotational position determining device for a loader
US9858190B2 (en) 2015-01-27 2018-01-02 International Business Machines Corporation Maintaining order with parallel access data streams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077182A1 (en) * 2000-04-07 2001-10-18 Matsushita Electric Industrial Co., Ltd. Antibody/carrier complex, process for producing the same, method of controlling antigen-antibody reaction by using the same and immunoassay method
DE102004061840B4 (en) * 2004-01-15 2015-10-01 Denso Corporation Speed and rotational position determining device for a loader
US9858190B2 (en) 2015-01-27 2018-01-02 International Business Machines Corporation Maintaining order with parallel access data streams

Also Published As

Publication number Publication date
JP3207878B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US4421896A (en) Method of coupling a protein to a polymer particle containing hydrazide groups in a polymer latex and the products formed therefrom
JPH06502156A (en) Solid surfaces coated with a hydrophilic outer layer containing covalently bound biopolymers, methods for producing such surfaces, and conjugates therefor
CA1243968A (en) Carboxyl anchored immobilized antibodies
US3994870A (en) Purification of hepatitis B surface antigen
CN110240704B (en) Preparation method and application of targeted enzyme immobilization carrier based on magnetic molecular imprinting technology
CN112175225A (en) Polyethylene glycol modified solid phase surface and preparation method and application thereof
JP2002511587A (en) Method for immobilizing biological molecules on a support surface
CN111983221B (en) Surface-modified magnetic bead and preparation method and application thereof
JPH08503066A (en) Method of chemical bonding to solid phase
EP0859793B1 (en) Conjugation of ligand to immobilized protein in organic solvent
Scouten Matrices and activation methods for cell adhesion/immobilization studies
JPH0568552A (en) Conversion of biomaterial to solid phase
CN101901656B (en) Preparation method of magnetic particle with surface modified isothiocyanato active group
EP1352957A1 (en) Carriers for covalent immobilization of enzymes
AU4898499A (en) Coating of solid surfaces with activated polyhydroxypolymers
JPS63145308A (en) Crosslinked polyacrylamide-sulfhydryl gel and sulfhydryl functional derivative thereof and production thereof
JP7009822B2 (en) Detection method using fibrous substance
JPH05340948A (en) Transovarial antibody fixed carrier and fixing method
JPH0586100A (en) Modified solid substrate for immobilizing protein by covalent bond and its manufacture
JPH05261281A (en) Carrier for immobilizing bioactive substance and its production
CN117571983B (en) Alkaline phosphatase rapid labeling kit and method
CN112326953A (en) Method for directionally labeling polybiotin by using antibody
JPH09504532A (en) Chromatographic method for producing virus inactivated fraction containing factor VIII
JPS6232363A (en) Method and device for detecting antinuclear antibody
JPH0634633A (en) Hen's egg antibody fixation carrier and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees