JPH056843A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH056843A
JPH056843A JP15268791A JP15268791A JPH056843A JP H056843 A JPH056843 A JP H056843A JP 15268791 A JP15268791 A JP 15268791A JP 15268791 A JP15268791 A JP 15268791A JP H056843 A JPH056843 A JP H056843A
Authority
JP
Japan
Prior art keywords
layer
pellet
insulating resin
lead wire
resin liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15268791A
Other languages
Japanese (ja)
Inventor
Yoshinao Ono
義尚 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Toppan Circuit Solutions Toyama Inc
Original Assignee
NEC Toppan Circuit Solutions Toyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Toyama Inc filed Critical NEC Toppan Circuit Solutions Toyama Inc
Priority to JP15268791A priority Critical patent/JPH056843A/en
Publication of JPH056843A publication Critical patent/JPH056843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To shorten the time required for forming an insulating resin layer on an anode extraction wire protrusion face at a pellet by a method wherein, in a state that an insulating resin liquid layer is unhardened, parts other than the anode extraction wire protrusion face at the pellet are immersed in a conductive resin liquid. CONSTITUTION:The tip of an anode extraction wire 1 at a pellet 2 is attached to a holding plate 17; this assembly is incorporated in a batch 18. The pellet 2 is immersed in an electrolytic solution; it is anodized; a tantalum oxide film layer 3 is formed; after that, a semiconductor layer 4 such as manganese dioxide or the like, a graphite layer 5 and a first-layer conductive resin layer 6 are formed. A pellet 16 in which the first-layer conductive resin layer has been formed is immersed in an epoxy-based insulating resin liquid 19 down to an anode extraction wire protrusion face at the pellet in the unit of a batch; an epoxy-based insulating resin liquid layer 21 is formed. After that, in a state that the epoxy-based insulating resin liquid layer 21 is unhardened, parts other than said protrusion face are immersed in an epoxy-based conductive resin liquid 23. Thereby, it is possible to shorten the formation time of an insulating resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解コンデンサの
製造方法に関し、特にペレットの陽極引き出し線突出面
に絶縁性樹脂層を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for forming an insulating resin layer on the protruding surface of an anode lead wire of a pellet.

【0002】[0002]

【従来の技術】従来、固体電解コンデンサは、図2に示
すように、タンタル,アルミニウム等の弁作用を有する
金属粉末に陽極引き出し線1を突出させてプレス成型
し、高温焼結して、ペレット2を形成する。しかる後、
図4に示すように、ペレット2の陽極引き出し線1の先
端を保持板17に抵抗溶接等により、多数取り付ける。
この後、図5に示すように、ペレット2が多数取り付け
られた保持板17をバッチ組みする。次にペレット2を
電解液中に浸漬し、陽極酸化して図2に示すように、誘
電体としての金属酸化皮膜層3を形成させた後、二酸化
マンガン等の半導体層4を形成する。この後、ペレット
の陽極引き出し線突出面15以外の部分に、グラファイ
ト層5を形成し、次に一層目の導電性樹脂層6及び二層
目の導電性樹脂層7を形成して陰極層8を形成する。し
かる後、図3に示す陽極引き出し線突出面15にディス
ペンサーなどにより、ペレット1個単位で絶縁性樹脂液
を塗布し、加熱硬化して、絶縁性樹脂層9を形成する。
次に、ペレットの陽極引き出し線突出面15以外の部分
に無電解ニッケルめっき層10を形成した後、コンデン
サ素子を得る。この後、陽極リード線12を抵抗溶接等
により、陽極引き出し線1に接続した後、無電解ニッケ
ルめっき層10に陰極リード線11をはんだ付けにより
接続する。次にエポキシ系の樹脂14などで外装して固
体電解コンデンサを完成する。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a solid electrolytic capacitor has a positive electrode lead wire 1 protruding from a metal powder having a valve action such as tantalum or aluminum, press-molded, sintered at a high temperature and pelletized. Form 2. After that,
As shown in FIG. 4, many tips of the anode lead wires 1 of the pellet 2 are attached to the holding plate 17 by resistance welding or the like.
After that, as shown in FIG. 5, the holding plates 17 to which a large number of pellets 2 are attached are assembled in a batch. Next, the pellet 2 is immersed in an electrolytic solution and anodized to form a metal oxide film layer 3 as a dielectric, and then a semiconductor layer 4 such as manganese dioxide is formed as shown in FIG. After that, a graphite layer 5 is formed on a portion of the pellet other than the anode lead wire protruding surface 15, and then a first conductive resin layer 6 and a second conductive resin layer 7 are formed to form a cathode layer 8. To form. Then, an insulating resin solution is applied to the anode lead wire protruding surface 15 shown in FIG. 3 in units of pellets by a dispenser or the like, and is heated and cured to form the insulating resin layer 9.
Next, after forming the electroless nickel plating layer 10 on a portion of the pellet other than the anode lead wire protruding surface 15, a capacitor element is obtained. After that, the anode lead wire 12 is connected to the anode lead wire 1 by resistance welding or the like, and then the cathode lead wire 11 is connected to the electroless nickel plating layer 10 by soldering. Then, the solid electrolytic capacitor is completed by being covered with epoxy resin 14 or the like.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の製造方
法では、ペレットの陽極引き出し線突出面15への絶縁
性樹脂層9の形成をディスペンサなどにより、ペレット
1個単位で行うため、絶縁性樹脂層9の形成に多くの時
間を要するという問題点があった。
In the above-described conventional manufacturing method, the insulating resin layer 9 is formed on the protruding surface 15 of the anode lead wire of the pellet by a dispenser or the like in units of one pellet. There is a problem that it takes a lot of time to form the layer 9.

【0004】本発明の目的は、ペレットの陽極引き出し
線面への絶縁性樹脂の形成に要する時間を大幅に少なく
することができる固体電解コンデンサの製造方法を提供
することにある。
An object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor which can significantly reduce the time required to form an insulating resin on the anode lead wire surface of a pellet.

【0005】[0005]

【課題を解決するための手段】本発明の固体電解コンデ
ンサの製造方法は、ペレットを多数取り付けた保持板を
バッチに組み込んだ状態で、導電性樹脂層を少なくとも
一層を形成後、ペレットを絶縁性樹脂液にペレットの陽
極引き出し線突出面まで浸漬して絶縁性樹脂液層を形成
し、その後、この絶縁性樹脂液層が未硬化の状態で導電
性樹脂液にペレットの陽極引き出し線突出面以外の部分
を浸漬する工程を備えている。
According to the method for producing a solid electrolytic capacitor of the present invention, in a state where a holding plate having a large number of pellets attached thereto is incorporated in a batch, at least one conductive resin layer is formed, and then the pellets are insulated. An insulating resin liquid layer is formed by immersing the pellet in the resin solution up to the protruding surface of the anode lead wire of the pellet. The step of immersing the part is provided.

【0006】[0006]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例を説明するための絶縁性樹
脂及び導電性樹脂塗布工程を示す断面図並びに形成され
たペレットの断面図である。また図2は本発明の一実施
例により製造されたタンタル固体電解コンデンサの断面
図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an insulating resin and conductive resin coating step and a cross-sectional view of a formed pellet for explaining an embodiment of the present invention. FIG. 2 is a sectional view of a tantalum solid electrolytic capacitor manufactured according to an embodiment of the present invention.

【0007】まず、図2に示すように、タンタル粉末に
陽極引き出し線を突出させてプレス成型し、高温焼結し
て直径1.1×高さ1.0mmの円柱状のペレット2を
形成した。しかる後、図4に示すようにペレット2の陽
極引き出し線1の先端を保持板17に抵抗溶接等により
取り付けた。次に、図5に示すようにこの保持板17の
バッチ18に組み込んだ。この後、図1に示すようにペ
レット2を電解液中に浸漬し、陽極酸化してタンタル酸
化皮膜層3を形成した後、二酸化マンガン等の半導体層
4,グラファイト層5,一層目の導電性樹脂層6を形成
した。次に図1(a)に示すように、バッチ単位で、一
層目の導電性樹脂層まで形成したペレット16をエポキ
シ系の絶縁性樹脂液19に、ペレットの陽極引き出し線
突出面15まで浸漬し、エポキシ系の絶縁性樹脂液層2
1を形成した。図1(b)は表面に絶縁樹脂層の形成さ
れたペレットである。この後、図1(c)に示すように
エポキシ系の絶縁性樹脂液層21が未硬化の状態で、エ
ポキシ系の導電性樹脂液23に、ペレットの陽極引き出
し線突出面15以外の部分を浸漬した。この時、導電性
樹脂液23中に浸漬されたペレットの陽極引き出し線突
出面15以外の部分のエポキシ系の絶縁性樹脂液層21
はエポキシ系の導電性樹脂液23に溶解し、ペレットの
陽極引き出し線突出面以外の部分には、エポキシ系の導
電性樹脂液層25のみが形成された。次に加熱硬化して
厚さ0.005〜0.02mmのエポキシ系の絶縁性樹
脂層9及び二層目のエポキシ系の導電性樹脂層7を形成
し、陰極層8を形成した。
First, as shown in FIG. 2, an anode lead wire was projected on tantalum powder, press-molded, and sintered at a high temperature to form a cylindrical pellet 2 having a diameter of 1.1 mm and a height of 1.0 mm. .. Thereafter, as shown in FIG. 4, the tip of the anode lead wire 1 of the pellet 2 was attached to the holding plate 17 by resistance welding or the like. Next, as shown in FIG. 5, the holding plate 17 was incorporated into a batch 18. Thereafter, as shown in FIG. 1, the pellet 2 is immersed in an electrolytic solution and anodized to form a tantalum oxide film layer 3, and then a semiconductor layer such as manganese dioxide 4, a graphite layer 5, and a first-layer conductive layer. The resin layer 6 was formed. Next, as shown in FIG. 1A, the pellets 16 formed up to the conductive resin layer of the first layer are immersed in an epoxy-based insulating resin solution 19 up to the anode lead wire protruding surface 15 of the pellets in batch units. , Epoxy type insulating resin liquid layer 2
1 was formed. FIG. 1B shows a pellet having an insulating resin layer formed on its surface. Thereafter, as shown in FIG. 1C, in a state where the epoxy-based insulating resin liquid layer 21 is in an uncured state, the epoxy-based conductive resin liquid 23 is applied to a portion other than the anode lead wire protruding surface 15 of the pellet. Soaked. At this time, the epoxy-based insulating resin liquid layer 21 of the portion other than the anode lead wire protruding surface 15 of the pellet immersed in the conductive resin liquid 23
Was dissolved in the epoxy-based conductive resin liquid 23, and only the epoxy-based conductive resin liquid layer 25 was formed on the portion other than the protruding surface of the anode lead wire of the pellet. Next, it was heat-cured to form an epoxy-based insulating resin layer 9 and a second epoxy-based conductive resin layer 7 having a thickness of 0.005 to 0.02 mm, and a cathode layer 8 was formed.

【0008】しかる後、無電解ニッケルめっき層10を
形成し、定格電圧4V,公称静電容量2.2μFのコン
デンサ素子を得た。この後、陽極リード線12を抵抗溶
接等により、陽極引き出し線1に接続した後、無電解ニ
ッケルめっき層10に、陰極リード線11をはんだ付け
により接続した。次にエポキシ系の樹脂14で外装し
て、本発明により製造されたタンタル固体電解コンデン
サを得た。以上本発明によるペレット陽極引き出し線突
出面15の絶縁性樹脂層9の形成方法と従来の形成方法
を比較すると、絶縁性樹脂層9の形成に要する時間は、
表1に示すように、本発明による形成方法が大幅に少な
くなっている。
After that, an electroless nickel plating layer 10 was formed to obtain a capacitor element having a rated voltage of 4 V and a nominal electrostatic capacity of 2.2 μF. After that, the anode lead wire 12 was connected to the anode lead wire 1 by resistance welding or the like, and then the cathode lead wire 11 was connected to the electroless nickel plating layer 10 by soldering. Next, the tantalum solid electrolytic capacitor manufactured according to the present invention was obtained by covering with epoxy resin 14. Comparing the method for forming the insulating resin layer 9 on the protruding surface 15 of the pellet anode lead wire according to the present invention with the conventional method, the time required for forming the insulating resin layer 9 is
As shown in Table 1, the number of forming methods according to the present invention is significantly reduced.

【0009】[0009]

【表1】 [Table 1]

【0010】また、本発明によるタンタル固体電解コン
デンサと従来のタンタル固体電解コンデンサと比較試験
を行った結果、直流電圧5V1分印加後の漏れ電流は図
6のヒストグラムに示す如く差はなく、また、周波数1
20Hzにおける誘電正接も図7のヒストグラムに示す
如く差はない。なお図6,図7において(a)は従来
例,(b)は実施例により製造された製品の結果であ
る。
Further, as a result of performing a comparative test with the tantalum solid electrolytic capacitor according to the present invention and the conventional tantalum solid electrolytic capacitor, there is no difference in the leakage current after applying a DC voltage of 5 V for 1 minute as shown in the histogram of FIG. Frequency 1
There is no difference in the dielectric loss tangent at 20 Hz as shown in the histogram of FIG. 6 and 7, (a) is the result of the conventional example, and (b) is the result of the product manufactured by the embodiment.

【0011】[0011]

【発明の効果】以上説明したように本発明は、ペレット
を多数取り付けた保持板をバッチに組み込んだ状態で、
導電性樹脂層を少なくとも一層を形成後、ペレットを絶
縁性樹脂液にペレットの陽極引き出し線突出面まで浸漬
して絶縁性樹脂液層を形成し、その後、この絶縁性樹脂
液層が未硬化の状態で、導電性樹脂液にペレットの陽極
引き出し線突出面以外の部分を浸漬することで、ペレッ
トの陽極引き出し線突出面に絶縁性樹脂層を形成するた
め、絶縁性樹脂層を形成するのに要する時間を大幅に少
なくできるという効果を要する。
As described above, according to the present invention, a holding plate having a large number of pellets attached is assembled in a batch,
After forming at least one conductive resin layer, the pellet is immersed in an insulating resin liquid to the anode lead wire protruding surface of the pellet to form an insulating resin liquid layer, and then this insulating resin liquid layer is uncured. In this state, the insulating resin layer is formed on the protruding surface of the anode lead wire of the pellet by immersing the portion other than the protruding surface of the anode lead wire of the pellet in the conductive resin liquid. The effect is that the time required can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための主要工程の
構成を示す断面図およびその工程終了後のタンタル固体
電解コンデンサの断面図で(a)は絶縁性樹脂液への浸
漬状況,(b)は(a)工程終了後の素子状況,(c)
は導電性樹脂液への浸漬状況,(d)は(c)工程終了
後の素子状況を示す図である。
FIG. 1 is a cross-sectional view showing a configuration of main steps for explaining an embodiment of the present invention and a cross-sectional view of a tantalum solid electrolytic capacitor after the step is finished, in which (a) is a state of immersion in an insulating resin liquid, (B) is the state of the element after the step (a) is completed, (c)
FIG. 4A is a diagram showing a state of immersion in a conductive resin liquid, and FIG.

【図2】本発明方法及び従来の製造方法により製造され
たタンタル固体電解コンデンサの断面図である。
FIG. 2 is a sectional view of a tantalum solid electrolytic capacitor manufactured by the method of the present invention and a conventional manufacturing method.

【図3】本発明及び従来の製造方法により一層目の導電
性樹脂層まで形成したペレットの平面図及び正面図であ
る。
3A and 3B are a plan view and a front view of a pellet in which a conductive resin layer as a first layer is formed by the present invention and a conventional manufacturing method.

【図4】ペレットを多数取り付けた保持板の斜視図であ
る。
FIG. 4 is a perspective view of a holding plate to which a large number of pellets are attached.

【図5】ペレットを多数取り付けた保持板を組み込んだ
バッチの斜視図である。
FIG. 5 is a perspective view of a batch incorporating a holding plate to which a large number of pellets are attached.

【図6】従来例および本発明の一実施例による製品の漏
れ電流分布図で、(a)は従来例(b)は実施例のもの
である。
FIG. 6 is a leakage current distribution chart of a conventional example and a product according to an embodiment of the present invention, in which (a) is the conventional example and (b) is the example.

【図7】従来例および本発明の一実施例による製品の誘
電正接の分布図であり、(a)は従来例,(b)は実施
例のものである。
7A and 7B are distribution diagrams of dielectric loss tangents of a conventional example and a product according to an example of the present invention. FIG. 7A is a conventional example and FIG. 7B is an example.

【符号の説明】[Explanation of symbols]

1 陽極引き出し線 2 ペレット 3 タンタル酸化皮膜層 4 半導体層 5 グラファイト層 6 一層目の導電性樹脂層 7 二層目の導電性樹脂層 8 陰極層 9 絶縁性樹脂層 10 無電解ニッケルめっき層 11 陰極リード線 12 陽極リード線 13 はんだ層 14 樹脂 15 ペレットの陽極引き出し線突出面 16 一層目の導電性樹脂層まで形成したペレット 17 保持板 18 バッチ 19 絶縁性樹脂液 20 絶縁性樹脂液槽 21 絶縁性樹脂液層 22 絶縁性樹脂液層まで形成したペレット 23 導電性樹脂液 24 導電性樹脂液槽 25 導電性樹脂液層 1 anode lead wire 2 pellets 3 tantalum oxide film layer 4 semiconductor layer 5 graphite layer 6 first conductive resin layer 7 second conductive resin layer 8 cathode layer 9 insulating resin layer 10 electroless nickel plating layer 11 cathode Lead wire 12 Anode lead wire 13 Solder layer 14 Resin 15 Anode protruding wire protruding surface of pellets 16 Pellets formed up to the first conductive resin layer 17 Holding plate 18 Batch 19 Insulating resin liquid 20 Insulating resin liquid tank 21 Insulation Resin liquid layer 22 Pellets formed up to insulating resin liquid layer 23 Conductive resin liquid 24 Conductive resin liquid tank 25 Conductive resin liquid layer

Claims (1)

【特許請求の範囲】 【請求項1】 弁作用を有する金属粉末に陽極引き出し
線を突出させプレス成型しプレス成型粉体を形成する工
程と、該プレス成型粉体を高温焼結し高温焼結体(以下
ペレットと称す)を形成する工程と、該焼結体の表面に
誘電体としての金属酸化皮膜層を形成する工程と、半導
体層を形成する工程と、前記ペレットの陽極引き出し線
突出面以外の部分にグラファイト層を形成し、次に導電
性樹脂層を複数層形成して、陰極層を形成する工程と、
前記ペレットの陽極引き出し突出面に絶縁性樹脂層を形
成する工程と、陽極リード線及び陰極リード線を接続す
る工程と、絶縁性樹脂で外装する工程とからなる固体電
解コンデンサの製造方法において、前記導電性樹脂層を
少なくとも一層形成後、ペレットを絶縁性樹脂液にペレ
ットのリード線突出面まで浸漬する工程と、その後、ペ
レットの絶縁性樹脂液層が未硬化の状態で導電性樹脂液
にペレットの陽極引き出し線突出面以外の部分を浸漬す
る工程とを有することを特徴とする固体電解コンデンサ
の製造方法。
Claim: What is claimed is: 1. A step of forming a press-molding powder by press-molding a metal powder having a valve action with an anode lead wire protruding, and a step of sintering the press-molding powder at a high temperature. A step of forming a body (hereinafter referred to as a pellet), a step of forming a metal oxide film layer as a dielectric on the surface of the sintered body, a step of forming a semiconductor layer, and an anode lead wire protruding surface of the pellet. A step of forming a graphite layer in a portion other than the above, then forming a plurality of conductive resin layers to form a cathode layer,
In the method for producing a solid electrolytic capacitor, which comprises a step of forming an insulating resin layer on the anode extraction protruding surface of the pellet, a step of connecting an anode lead wire and a cathode lead wire, and a step of covering with an insulating resin, After forming at least one conductive resin layer, the step of immersing the pellets in the insulating resin liquid up to the lead wire protruding surface of the pellets, and then the pellets in the conductive resin liquid in the uncured state of the insulating resin liquid layer And a step of immersing a part other than the protruding surface of the anode lead-out wire.
JP15268791A 1991-06-25 1991-06-25 Manufacture of solid electrolytic capacitor Pending JPH056843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15268791A JPH056843A (en) 1991-06-25 1991-06-25 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15268791A JPH056843A (en) 1991-06-25 1991-06-25 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH056843A true JPH056843A (en) 1993-01-14

Family

ID=15545936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15268791A Pending JPH056843A (en) 1991-06-25 1991-06-25 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH056843A (en)

Similar Documents

Publication Publication Date Title
US7221555B2 (en) Surface mount MELF capacitor
TWI269328B (en) Solid electrolytic capacitor and method of producing the same
JPH01225112A (en) Method of manufacture of aluminum electrolytic capacitor and capacitor with unified anode obtained by the method
JP3557564B2 (en) Multilayer solid electrolytic capacitors
JPH056843A (en) Manufacture of solid electrolytic capacitor
JPH09180964A (en) Manufacture of solid-state electrolytic chip capacitor
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
TW201419336A (en) Improved process for the production of solid-state electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP3306200B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP2001358038A (en) Method of manufacturing tantalum electrolytic capacitor
JPH0260208B2 (en)
JPH07106204A (en) Solid electrolytic capacitor
JPH06252001A (en) Solid electrolytic capacitor and its manufacture
JPH09266136A (en) Chip-shaped solid-state electrolytic capacitor
JPS62568B2 (en)
JP6309198B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH02207519A (en) Manufacture of solid electrolytic capacitor
JPH09293646A (en) Tantalum solid electrolytic capacitor
JPH0590095A (en) Chip type solid electrolytic capacitor and its manufacture
JPH07183167A (en) Manufacture of solid electrolytic capacitor
JPH03215924A (en) Manufacture of solid electrolytic capacitor
JPH09171941A (en) Manufacture of solid electrolytic chip capacitor
JPH11145005A (en) Manufacture of solid state electrolytic capacitor
JPH09213572A (en) Solid state electrolytic capacitor