JPH0568393A - Brushless motor driver - Google Patents

Brushless motor driver

Info

Publication number
JPH0568393A
JPH0568393A JP3226970A JP22697091A JPH0568393A JP H0568393 A JPH0568393 A JP H0568393A JP 3226970 A JP3226970 A JP 3226970A JP 22697091 A JP22697091 A JP 22697091A JP H0568393 A JPH0568393 A JP H0568393A
Authority
JP
Japan
Prior art keywords
motor
output
input
rotation direction
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3226970A
Other languages
Japanese (ja)
Other versions
JP3156289B2 (en
Inventor
Toshiaki Kiyoma
利明 清間
Yasuhiro Okada
康弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22697091A priority Critical patent/JP3156289B2/en
Publication of JPH0568393A publication Critical patent/JPH0568393A/en
Application granted granted Critical
Publication of JP3156289B2 publication Critical patent/JP3156289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To provide a sensorless brushless motor driver which can switch the rotational direction of motor quickly. CONSTITUTION:The brushless motor driver comprises a conduction controller 100 for controlling conduction of motor coils 1, 2, 3 according to the output from a counter electromotive force detector 10 for detecting the counter electromotive force of the motor coils 1, 2, 3, a motor speed detector 70, and a rotational direction switcher 50 for varying the conduction phase of the output from the conduction controller 100 according to the output from the speed detector 70 upon receiving of a rotational direction switching command signal. Upon receiving the rotational direction switching command signal, the rotational direction switcher 50 conducts the motor coils 1, 2, 3 with such phase as generating maximum reverse torque and when the motor speed drops, the conduction sequence is switched thus switching the rotational direction quickly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はモータコイルに誘起され
る逆起電圧を基に、モータコイルに通電を行なうブラシ
レスモータの駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brushless motor drive device for energizing a motor coil based on a back electromotive force induced in the motor coil.

【0002】[0002]

【従来の技術】近年、各種駆動用モータはその長寿命
化,高信頼性化,あるいは形状の薄型化などのため、ブ
ラシレスモータが用いられることが多くなってきた。一
般にブラシレスモータは可動子の位置を検出するホール
素子等の位置検出素子が必要であり、より一層の低価格
化,小形化,高信頼性等が必要な分野では位置検出器の
無いいわゆるセンサレスモータが使用されている。一
方、各種駆動用モータはその用途により回転方向を切換
える必要が生じる。以下、従来のセンサレスモータの駆
動装置について図面に基づいて説明する。図5は、従来
のセンサレスモータの駆動装置の回路構成図である。図
5において駆動コイル1〜3の一端N0は共通で、駆動
コイル1の他端U0は駆動トランジスタ4および5のコ
レクタに接続され、駆動コイル2の他端V0は駆動トラ
ンジスタ6および7のコレクタに接続され、駆動コイル
3の他端W0は駆動トランジスタ8および9のコレクタ
に接続され、また前記駆動コイルの共通接続点N0およ
び前記駆動コイルの他端U0,V0,W0はそれぞれ逆起
電圧検出器10の入力側に接続され、逆起電圧検出器1
0の出力側はフィルタ回路20の入力側に接続されてい
る。駆動トランジスタ4,6,8のエミッタは共通でモ
ータ印加電圧源VMに接続され、駆動トランジスタ5,
7,9のエミッタは共通で接地されている。フィルタ回
路20の出力側は電圧制御発振器30の入力側に接続さ
れ、電圧制御発振器30の出力側は論理回路40の入力
側に接続されている。論理回路40の出力CDは逆起電
圧検出器10に入力され、論理回路40の出力U1,U
2,V1,V2,W1,W2はそれぞれ回転方向切換え
器50に入力され、回転方向切換え器50の出力UH,
UL,VH,VL,WH,WLは電力増幅器60を介し
て駆動トランジスタ4,5,6,7,8,9のベースに
それぞれ入力されている。
2. Description of the Related Art In recent years, brushless motors have been increasingly used for various drive motors because of their long life, high reliability, and thin shape. Generally, a brushless motor requires a position detecting element such as a Hall element for detecting the position of a mover, and so-called a sensorless motor without a position detector in fields where further cost reduction, downsizing and high reliability are required. Is used. On the other hand, it is necessary to switch the rotation direction of various drive motors depending on the application. A conventional sensorless motor driving device will be described below with reference to the drawings. FIG. 5 is a circuit configuration diagram of a conventional sensorless motor drive device. In FIG. 5, one ends N 0 of the drive coils 1 to 3 are common, the other end U 0 of the drive coil 1 is connected to the collectors of the drive transistors 4 and 5, and the other end V 0 of the drive coil 2 is the drive transistors 6 and 7. Of the drive coil 3 and the other end W 0 of the drive coil 3 is connected to the collectors of the drive transistors 8 and 9, and the common connection point N 0 of the drive coils and the other ends U 0 , V 0 , W of the drive coil are connected. 0 is connected to the input side of the counter electromotive voltage detector 10, and the counter electromotive voltage detector 1
The output side of 0 is connected to the input side of the filter circuit 20. The emitters of the drive transistors 4, 6 and 8 are commonly connected to the motor applied voltage source VM,
The emitters of 7 and 9 are commonly grounded. The output side of the filter circuit 20 is connected to the input side of the voltage controlled oscillator 30, and the output side of the voltage controlled oscillator 30 is connected to the input side of the logic circuit 40. The output CD of the logic circuit 40 is input to the counter electromotive voltage detector 10, and the outputs U1 and U of the logic circuit 40 are input.
2, V1, V2, W1 and W2 are respectively input to the rotation direction switching unit 50, and the outputs UH,
UL, VH, VL, WH, and WL are input to the bases of the drive transistors 4, 5, 6, 7, 8, and 9 via the power amplifier 60, respectively.

【0003】ここでフィルタ回路20と電圧制御発振器
30と論理回路40は通電制御器100を構成してい
る。また、モータの回転方向切換え指令信号は論理回路
40に入力されている。以上のように構成された従来の
センサレスモータの駆動装置について、以下その動作を
説明する。図6は図5における動作説明図であり、駆動
コイル逆起電圧と駆動コイル通電波形の位相関係を示す
ものである。図6(A)は前記逆起電圧(破線部)と前
記通電波形(実線部)の位相関係が最適状態にある場合
であり、同図(B),(C)は位相角ψだけ最適状態か
らずれた場合を示している。ここで図6において、電圧
制御発振器30の出力は論理回路40,電力増幅器5
0,駆動トランジスタ4〜9を通して駆動コイル1〜3
に伝達されている。従って電圧制御発振器30の出力と
駆動コイル1〜3の通電波形には一定の位相関係が存在
する。すなわち電圧制御発振器の発振周波数および位相
を制御することにより、駆動コイル逆起電圧と駆動コイ
ル通電波形の位相差を制御することが可能となる。そこ
で図6(B),(C)に示したように、駆動コイル逆起
電圧と駆動コイル通電波形との間に位相差ψのずれを生
じた場合、その位相誤差ψを逆起電圧検出器10により
検出しフィルタ回路20により電圧レベルに変換しψが
零となるよう電圧制御発振器30の発振周波数および位
相を制御する位相制御ループを設けることにより、図6
(A)に示すような最適通電状態を確保することが可能
となる。
Here, the filter circuit 20, the voltage controlled oscillator 30, and the logic circuit 40 constitute an energization controller 100. The motor rotation direction switching command signal is input to the logic circuit 40. The operation of the conventional sensorless motor driving device configured as described above will be described below. FIG. 6 is a diagram for explaining the operation in FIG. 5, and shows the phase relationship between the drive coil counter electromotive voltage and the drive coil energization waveform. FIG. 6A shows the case where the phase relationship between the back electromotive force (broken line portion) and the energization waveform (solid line portion) is in the optimum state, and FIGS. 6B and 6C show the optimum state for the phase angle ψ. The figure shows the case of deviation. Here, in FIG. 6, the output of the voltage controlled oscillator 30 is the logic circuit 40 and the power amplifier 5.
0, drive coils 1 to 3 through drive transistors 4 to 9
Have been transmitted to. Therefore, there is a certain phase relationship between the output of the voltage controlled oscillator 30 and the energization waveforms of the drive coils 1 to 3. That is, by controlling the oscillation frequency and phase of the voltage controlled oscillator, it becomes possible to control the phase difference between the drive coil counter electromotive voltage and the drive coil energization waveform. Therefore, as shown in FIGS. 6B and 6C, when the phase difference ψ is deviated between the drive coil counter electromotive voltage and the drive coil energization waveform, the phase error ψ is calculated as a counter electromotive voltage detector. By providing a phase control loop for detecting the oscillation frequency and the phase of the voltage controlled oscillator 30 so that ψ becomes zero by detecting by 10 and converted into a voltage level by the filter circuit 20, FIG.
It is possible to secure the optimum energization state as shown in (A).

【0004】次に、モータの回転方向切換えについて説
明する。図7(A)はモータが時計方向(以下CW方向
と称する)に回転している場合のモータコイル1〜3に
誘起される逆起電圧Ue,Ve,Weとモータコイルの
最適通電タイミングUHCW,UVCW,VHCW,VLCW
WHCW,WLCWを示している。同図(B)はモータが反
時計方向(以下CCWと称する)に回転している場合の
モータコイル1〜3に誘起される逆起電圧Ue,Ve,
Weとモータコイルの最適通電タイミングUH CCW,U
CCW,VHCCW,VLCCW,WHCCW,WLCCWを示して
いる。同図(A),(B)が示すようにモータの回転方
向が切り換わると逆起電圧の位相順が入れ代わる。そこ
で、従来のセンサレスモータの駆動装置のCWからCC
Wへの回転方向の切換えは、回転方向切換え指令信号が
論理回路40に入力されると、通電タイミングをU
CW,ULCW,VHCW,VLCW,WHCW,WLCWからそ
れぞれUHCCW,ULCCW,VHCCW,VLCCW,W
CCW,WLCCWに切換えることで行なっていた。図8
は、モータの回転方向がCWからCCWへ切換わる過程
のモータ逆起電圧Ue,Ve,Weと回転方向切換え指
令信号と通電タイミングを示している(本来逆起電圧は
モータの回転数に比例して振幅が変化するが、同図では
簡略している。)。同図は、CW定常回転時(期間
(A)),減速期(期間(B)),およびCCW回転時
(期間(C))の三つの場合に分けることができる。ま
ずCW定常回転数は、U→V→Wの順に通電し、回転方
向切換え指令信号FRがHIGHレベルになると前記F
R信号が論理回路に入力され、W→V→Uの順に通電が
切換えられ、その結果逆トルクが発生しモータは減速す
る。やがてモータは停止し次の瞬間からCCW方向に回
転する(モータの回転方向が変わると逆起電圧の位相順
とピークの極性が逆になる。)。CCWからCWへの切
換えも同様に行われる。
Next, switching of the rotation direction of the motor will be explained.
Reveal In FIG. 7 (A), the motor is clockwise (hereinafter, CW direction).
Motor coil 1 to 3 when rotating)
Induced back electromotive force Ue, Ve, We and the motor coil
Optimal energization timing UHCW, UVCW, VHCW, VLCW
WHCW, WLCWIs shown. In the same figure (B), the motor is
When rotating clockwise (hereinafter referred to as CCW)
Back electromotive force Ue, Ve induced in the motor coils 1 to 3,
Optimal energization timing UH for We and motor coil CCW, U
VCCW, VHCCW, VLCCW, WHCCW, WLCCWShowing
There is. How to rotate the motor as shown in (A) and (B)
When the directions are switched, the phase order of the back electromotive voltages is switched. There
Then, from CW to CC of the conventional sensorless motor drive
When switching the rotation direction to W, the rotation direction switching command signal
When input to the logic circuit 40, the energization timing is changed to U
HCW, ULCW, VHCW, VLCW, WHCW, WLCWKarasou
UHCCW, ULCCW, VHCCW, VLCCW, W
HCCW, WLCCWIt was done by switching to. Figure 8
Is the process of switching the motor rotation direction from CW to CCW.
Motor back electromotive force Ue, Ve, We and rotation direction switching finger
The command signal and energization timing are shown.
The amplitude changes in proportion to the number of rotations of the motor.
It's simple. ). The figure shows the CW steady rotation (period
(A)), deceleration period (period (B)), and CCW rotation
(Period (C)) can be divided into three cases. Well
Without CW, the steady-state rotation speed is determined by energizing in the order of U → V → W
When the direction switching command signal FR becomes HIGH level, the above F
The R signal is input to the logic circuit, and power is turned on in the order of W → V → U.
Switching, resulting in reverse torque and motor deceleration
It Eventually the motor will stop and rotate in the CCW direction from the next moment.
Rotation (when the rotation direction of the motor changes, the phase order of the back electromotive force changes
And the polarities of the peaks are reversed. ). Switching from CCW to CW
The replacement is similarly performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、回転方向切換え指令信号が入力されてか
らモータが実際に逆転するまでの期間にモータコイルに
通電される位相は、最大逆トルクを発生する位相からず
れており、従って逆転までの時間がかかり過ぎるという
問題点を有していた。
However, in the above conventional configuration, the phase energized to the motor coil during the period from the input of the rotation direction switching command signal to the actual reverse rotation of the motor is the maximum reverse torque. There is a problem that the generated phase is deviated, and therefore it takes too much time to reverse.

【0006】本発明は上記従来の問題点を解決するもの
で、ホール素子などの位置検出素子を必要とせず、すば
やくモータの回転方向を切換えることができるブラシレ
スモータの駆動装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a drive device for a brushless motor which does not require a position detecting element such as a hall element and can quickly switch the rotation direction of the motor. And

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明のブラシレスモータの駆動装置は、複数相のモ
ータ駆動コイルと、前記駆動コイルの逆起電圧を検出す
る逆起電圧検出器と、前記逆起電圧検出器の出力に応じ
て前記複数相のコイルへの通電を制御する通電制御器
と、モータの速度を検出する速度検出器と、回転方向切
換え指令信号が入力されると前記速度検出器の出力に応
じて前記通電制御器の出力の通電位相を変化させる回転
方向切換え器を有している。
In order to achieve this object, a brushless motor drive device of the present invention comprises a plurality of phases of motor drive coils, and a back electromotive voltage detector for detecting back electromotive voltages of the drive coils. An energization controller that controls energization of the coils of the plurality of phases according to the output of the counter electromotive voltage detector, a speed detector that detects the speed of the motor, and a rotation direction switching command signal when the rotation direction switching command signal is input. It has a rotation direction changer that changes the energization phase of the output of the energization controller according to the output of the speed detector.

【0008】[0008]

【作用】この構成により、モータ駆動コイルに発生する
逆起電圧と同コイルの通電切換え信号の位相差を検出
し、その検出位相差に応じて通電切換え信号を制御する
ことにより、回転子の位置に対して通電切換え信号が一
定位相関係を保持するよう帰還ループすなわち位相制御
ループ(PLL)を構成している。また、モータの回転
方向切換え指令信号が入力されると、まず最大逆トルク
が発生する位相で通電しモータの回転数が十分減速した
ことを検出し、そののち通電切換えの順序を逆にしてモ
ータの回転方向を切換えることができる。
With this configuration, the back electromotive voltage generated in the motor drive coil and the phase difference between the energization switching signals of the coil are detected, and the energization switching signal is controlled in accordance with the detected phase difference to control the position of the rotor. On the other hand, a feedback loop, that is, a phase control loop (PLL) is configured so that the energization switching signal maintains a constant phase relationship. When the motor rotation direction switching command signal is input, it is first detected that the motor is energized at the phase where maximum reverse torque is generated and the motor rotation speed is sufficiently reduced, and then the energization switching order is reversed. The rotation direction of can be switched.

【0009】[0009]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の実施例におけるブラシレス
モータの駆動装置の回路構成図である。図1において、
図5の従来のブラシレスモータの駆動装置と同一機能を
有する部分は同一記号を付し、その説明を省略する。図
1において、速度検出器70にはモータの速度に比例し
た信号MSが入力され、速度検出器70の出力は回転方
向切換え器50に入力され、回転方向切換え指令信号F
Rは回転方向切換え器50に入力され、回転方向切換え
器50には論理回路40の出力U1,U2,V1,V
2,W1,W2が入力され、回転方向切換え器50の出
力UH,UL,VH,VL,WH,WLは電力増幅器6
0を介して駆動トランジスタ4〜9のベースにそれぞれ
入力されている。ここで前記モータの速度に比例した信
号MSはたとえばFG信号のようなものであり、また逆
起電圧から合成したものでも良い。以上のように構成さ
れたブラシレスモータの駆動装置について、以下その動
作を説明する。モータの駆動方法について、一定回転方
向に駆動する場合は従来の方式と同様なので説明を省略
する。
FIG. 1 is a circuit diagram of a brushless motor driving device according to an embodiment of the present invention. In FIG.
Parts having the same functions as those of the conventional brushless motor drive device shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 1, a signal MS proportional to the speed of the motor is input to the speed detector 70, an output of the speed detector 70 is input to the rotation direction switching device 50, and a rotation direction switching command signal F is input.
R is input to the rotation direction switching device 50, and the outputs U1, U2, V1, V of the logic circuit 40 are input to the rotation direction switching device 50.
2, W1 and W2 are input, and the outputs UH, UL, VH, VL, WH and WL of the rotation direction switching device 50 are the power amplifier 6
It is input to the bases of the drive transistors 4 to 9 via 0 respectively. Here, the signal MS proportional to the speed of the motor is, for example, an FG signal, or may be synthesized from the counter electromotive voltage. The operation of the brushless motor driving device configured as described above will be described below. The method of driving the motor is the same as the conventional method when the motor is driven in the constant rotation direction, and thus the description thereof is omitted.

【0011】図2は本発明のモータの回転方向切換え方
法を説明する動作原理図であり、モータの逆起電圧U
e,Ve,Weと、回転方向切換え指令信号FRと、モ
ータコイルの通電切換え信号UH,VH,WH,UL,
VL,WLの位相関係を示すものである。図2におい
て、期間(A)はモータがCW方向に効率良く回転して
いる状態(FRはLOWレベル)で、期間(B)は回転
方向切換え指令信号がHIGHレベルとなり、モータに
最大逆トルクが発生するように通電位相が変化しモータ
が減速している状態(モータの回転方向は依然CW)で
あり、期間(C)はモータの回転方向が切換わりCCW
方向に効率良く回転している状態を示している。ここで
図1において、速度検出器70の出力は回転方向切換え
器50に入力され、回転方向切換え指令信号FRは回転
方向切換え器50に入力され、回転方向切換え回路50
の出力は電力増幅器60を介して駆動トランジスタのベ
ースに入力されている。したがってモータの回転方向切
換え指令信号が入力されると、まず最大逆トルクが発生
する位相で通電しモータの回転数が十分減速したことを
検出し、そののち通電切換えの順序を逆にすることです
ばやくモータの回転方向を切換えることができる。速度
検出器70および回転方向切換え器50の具体的な構成
としては、例えば図3に示したようなものが考えられ
る。
FIG. 2 is a diagram showing the principle of operation for explaining the motor rotating direction switching method according to the present invention.
e, Ve, We, rotation direction switching command signal FR, and motor coil energization switching signals UH, VH, WH, UL,
It shows a phase relationship between VL and WL. In FIG. 2, during the period (A), the motor is efficiently rotating in the CW direction (FR is at the LOW level), and during the period (B), the rotation direction switching command signal is at the HIGH level, and the maximum reverse torque is applied to the motor. The energization phase is changed so that the motor is decelerating (the rotation direction of the motor is still CW), and during the period (C), the rotation direction of the motor is switched to CCW.
It shows a state in which it is efficiently rotating in the direction. Here, in FIG. 1, the output of the speed detector 70 is input to the rotation direction switching device 50, the rotation direction switching command signal FR is input to the rotation direction switching device 50, and the rotation direction switching circuit 50.
Is output to the base of the drive transistor via the power amplifier 60. Therefore, when the motor rotation direction switching command signal is input, it is first detected that the motor is energized in the phase in which the maximum reverse torque is generated and the motor rotation speed is sufficiently decelerated, and then the energization switching order is reversed. The rotation direction of the motor can be switched quickly. As specific configurations of the speed detector 70 and the rotation direction switch 50, for example, those shown in FIG. 3 can be considered.

【0012】図3において、図1と同一機能を有する部
分は同一記号を付す。すなわちモータの回転速度に比例
した信号MSは、周波数/電圧変換回路(以下F/V回
路と称す)71に入力され、F/V回路71の出力は比
較器72の入力端子の一方に入力にされ、比較器72の
入力端子の他方は基準電源73を介して接地されてい
る。比較器72の出力Tは、Dフリップフロップ(以下
DFFと称す)61のクロック端子に入力され、DFF
の出力QはエクスクルーシブORゲート(以下EXOR
ゲートと称す)62とNANDゲート120,122,
124,126の一方の入力端子に入力されると共にイ
ンバータ132を介してNANDゲート119,12
1,123,125の一方の入力端子に入力されてい
る。回転方向切換え指令信号FRはDFF61のデータ
入力端子に入力されると共にEXORゲート62の他方
の入力端子に入力されている。EXORゲート62の出
力AはNANDゲート102,104,106,10
8,110,112の一方の入力端子に入力されると共
にインバータ131を介してNANDゲート101,1
03,105,107,109,111の一方の入力端
子に入力されている。モータコイルの通電タイミングで
ある論理回路40の出力U1はNANDゲート101,
104の他方の入力端子に入力され、同様に論理回路4
0の出力U2はNANDゲート102,103の他方の
入力端子に、論理回路40の出力V1はNANDゲート
105,108の他方の入力端子に、論理回路40の出
力V2はNANDゲート106,107の他方の入力端
子に、論理回路40の出力W1はNANDゲート10
9,112の他方の入力端子に、論理回路40の出力W
2はNANDゲート110,111の他方の入力端子に
それぞれ入力されている。
In FIG. 3, parts having the same functions as in FIG. 1 are given the same symbols. That is, the signal MS proportional to the rotation speed of the motor is input to the frequency / voltage conversion circuit (hereinafter referred to as F / V circuit) 71, and the output of the F / V circuit 71 is input to one of the input terminals of the comparator 72. The other input terminal of the comparator 72 is grounded via the reference power source 73. The output T of the comparator 72 is input to the clock terminal of a D flip-flop (hereinafter referred to as DFF) 61, and the DFF
Output Q is an exclusive OR gate (hereinafter EXOR
62) and NAND gates 120, 122,
NAND gates 119 and 12 are input to one of the input terminals of 124 and 126 and via an inverter 132.
It is input to one of the input terminals of 1, 123 and 125. The rotation direction switching command signal FR is input to the data input terminal of the DFF 61 and the other input terminal of the EXOR gate 62. The output A of the EXOR gate 62 is the NAND gates 102, 104, 106, 10
NAND gates 101, 1 are input to one of the input terminals of 8, 110, 112 and via an inverter 131.
It is input to one of the input terminals of 03, 105, 107, 109 and 111. The output U1 of the logic circuit 40, which is the energization timing of the motor coil, is the NAND gate 101,
It is input to the other input terminal of 104, and similarly, the logic circuit 4
The output U2 of 0 is to the other input terminal of the NAND gates 102 and 103, the output V1 of the logic circuit 40 is to the other input terminal of the NAND gates 105 and 108, and the output V2 of the logic circuit 40 is the other of the NAND gates 106 and 107. Output W1 of the logic circuit 40 to the input terminal of the NAND gate 10
The output W of the logic circuit 40 is applied to the other input terminals of the terminals 9 and 112.
2 is input to the other input terminals of the NAND gates 110 and 111, respectively.

【0013】NANDゲート101,102の出力はN
ANDゲート113の入力端子にそれぞれ入力されてい
る。同様にNANDゲート103,104の出力はNA
NDゲート114の入力端子に、NANDゲート10
5,106の出力はNANDゲート115の入力端子
に、NANDゲート107,108の出力はNANDゲ
ート116の入力端子に、NANDゲート109,11
0の出力はNANDゲート117の入力端子に、NAN
Dゲート111,112の出力はNANDゲート118
の入力端子に、NANDゲート119,120の出力は
NANDゲート127の入力端子に、NANDゲート1
21,122の出力はNANDゲート128の入力端子
に、NANDゲート123,124の出力はNANDゲ
ート129の入力端子に、NANDゲート125,12
6の出力はNANDゲート130の入力端子にそれぞれ
入力されている。NANDゲート115の出力はNAN
Dゲート119,124の他方の入力端子に入力され、
NANDゲート116の出力はNANDゲート121,
126の他方の入力端子に入力され、NANDゲート1
17の出力はNANDゲート120,123の他方の入
力端子に入力され、NANDゲート118の出力はNA
NDゲート122,125の他方の入力端子に入力され
ている。
The outputs of the NAND gates 101 and 102 are N
They are respectively input to the input terminals of the AND gate 113. Similarly, the outputs of the NAND gates 103 and 104 are NA
The NAND gate 10 is connected to the input terminal of the ND gate 114.
The outputs of the NAND gates 115 and 106 are connected to the input terminals of the NAND gate 115, and the outputs of the NAND gates 107 and 108 are connected to the input terminals of the NAND gate 116.
The output of 0 is input to the input terminal of the NAND gate 117 by the NAN.
The outputs of the D gates 111 and 112 are the NAND gate 118.
Output of the NAND gates 119 and 120 to the input terminal of the NAND gate 127.
The outputs of 21 and 122 are input to the NAND gate 128, the outputs of NAND gates 123 and 124 are input to the NAND gate 129, and the NAND gates 125 and 12 are output.
The outputs of 6 are input to the input terminals of the NAND gate 130, respectively. The output of the NAND gate 115 is NAN
Input to the other input terminal of the D gates 119 and 124,
The output of the NAND gate 116 is the NAND gate 121,
NAND gate 1 is input to the other input terminal of 126
The output of the NAND gate 118 is input to the other input terminals of the NAND gates 120 and 123, and the output of the NAND gate 118 is NA.
It is input to the other input terminals of the ND gates 122 and 125.

【0014】NANDゲート113,114,127,
128,129,130の出力は回転切換え器の出力U
H,UL,VH,VL,WH,WLをそれぞれ構成して
いる。以上のように構成された速度検出器および回転方
向切換え器について、以下その動作を説明する。図4に
おいて、モータの速度に比例した信号MSはF/V回路
71を介して比較器72に入力され、比較器72はF/
V回路71の出力電圧レベルと、基準電圧源73の電圧
レベルとを比較した結果Tを出力する。したがって基準
電圧源73の電圧レベルを所定の値にすることによりモ
ータが任意の回転数より低くなったときだけHIGHレ
ベルになるような比較結果Tを得ることができる。図4
は速度検出器および回転方向切換え器の動作説明図であ
り、モータコイルに発生する逆起電圧Ue,Ve,We
と、CW方向にモータが回転している場合の通電切換え
タイミングU1,U2,V1,V2,W1,W2と、回
転方向切換え指令信号FRと、速度検出器70の出力T
と、モータコイルの通電切換え信号UH,VH,WH,
UL,VL,WL,DFF61の出力QおよびEXOR
ゲート62の出力Aの位相関係を示している。同図にお
いてまず回転方向切換え指令信号FRがLOWレベルの
とき、モータはCW方向に定常回転数にて駆動されてい
るとすると、比較器72の出力TはLOWレベルを継続
し、すなわちDFF61の出力QもLOWレベルを継続
する。
NAND gates 113, 114, 127,
The outputs of 128, 129 and 130 are the output U of the rotation switching device.
H, UL, VH, VL, WH, and WL are respectively configured. The operation of the speed detector and rotation direction changer configured as described above will be described below. In FIG. 4, the signal MS proportional to the speed of the motor is input to the comparator 72 via the F / V circuit 71, and the comparator 72 outputs F / V.
A result T obtained by comparing the output voltage level of the V circuit 71 and the voltage level of the reference voltage source 73 is output. Therefore, by setting the voltage level of the reference voltage source 73 to a predetermined value, it is possible to obtain the comparison result T such that the motor goes to the HIGH level only when the motor speed becomes lower than an arbitrary number of revolutions. Figure 4
FIG. 4 is an operation explanatory view of the speed detector and the rotation direction changer, and the counter electromotive voltages Ue, Ve, We generated in the motor coil are shown.
And energization switching timings U1, U2, V1, V2, W1 and W2 when the motor is rotating in the CW direction, the rotation direction switching command signal FR, and the output T of the speed detector 70.
And motor coil energization switching signals UH, VH, WH,
Output Q and EXOR of UL, VL, WL, DFF61
The phase relationship of the output A of the gate 62 is shown. In the figure, first, when the rotation direction switching command signal FR is at the LOW level, assuming that the motor is driven in the CW direction at the steady rotation speed, the output T of the comparator 72 continues at the LOW level, that is, the output of the DFF 61. Q also keeps the LOW level.

【0015】回転方向切換え指令信号FRがLOWレベ
ル、かつDFF61の出力QがLOWレベルの場合EX
ORゲート62の出力AはLOWレベルとなり、その結
果NANDゲート102,104,106,108,1
10,112の出力は他方の入力レベルにかかわらずH
IGHレベルとなる。一方、NANDゲート101,1
03,105,107,109,111の一方の入力は
EXORゲートの反転信号すなわちHIGHレベルが入
力される。NANDゲート101の他方の入力端子には
モータコイルの通電タイミングU1が接続されており、
一方の入力はHIGHレベルだから前記NANDゲート
の出力は前記U1の反転信号となり、NANDゲート1
13に入力される。前記NANDゲートの他方の入力は
HIGHレベルだから前記NANDゲートの出力は、前
記U1の反転、すなわち前記U1となる。同様にNAN
Dゲート114,115,116,117,118の出
力はそれぞれU2,V1,V2,W1,W2となる。ま
た同様にDFF61の出力QがLOWレベルの場合NA
NDゲート127,128,129,130の出力はそ
れぞれV1,V2,W1,W2となる。ここでNAND
ゲート113,114,127,128,129,13
0の出力は、回転方向切換え回路の出力UH,UL,V
H,VL,WH,WLを構成している。すなわち、UH
=U1,UL=U2,VH=V1,VL=V2,WH=
W1,WL=W2となり、モータは効率良くCW方向に
駆動される。
EX when the rotation direction switching command signal FR is LOW level and the output Q of the DFF 61 is LOW level
The output A of the OR gate 62 becomes LOW level, and as a result, the NAND gates 102, 104, 106, 108, 1
The output of 10,112 is H regardless of the input level of the other.
It becomes the IGH level. On the other hand, NAND gates 101, 1
One of the inputs 03, 105, 107, 109 and 111 receives the inverted signal of the EXOR gate, that is, the HIGH level. A motor coil energization timing U1 is connected to the other input terminal of the NAND gate 101,
Since one input is at the HIGH level, the output of the NAND gate becomes an inverted signal of U1 and the NAND gate 1
13 is input. Since the other input of the NAND gate is at the HIGH level, the output of the NAND gate is the inversion of the U1, that is, the U1. Similarly NAN
The outputs of the D gates 114, 115, 116, 117 and 118 are U2, V1, V2, W1 and W2, respectively. Similarly, when the output Q of the DFF 61 is LOW level, NA
The outputs of the ND gates 127, 128, 129 and 130 are V1, V2, W1 and W2, respectively. NAND here
Gates 113, 114, 127, 128, 129, 13
The output of 0 is the output of the rotation direction switching circuit UH, UL, V
H, VL, WH, and WL are configured. That is, UH
= U1, UL = U2, VH = V1, VL = V2, WH =
Since W1 and WL = W2, the motor is efficiently driven in the CW direction.

【0016】次に回転方向切換え指令信号FRがHIG
Hレベルになると、EXORゲート62の出力AはHI
GHレベルとなり、NANDゲート101,103,1
05,107,109,111の一方の入力はLOWレ
ベルとなり、他方の入力にかかわらずNANDゲート1
01,103,105,107,109,111の出力
はHIGHレベルとなり、NANDゲート113,11
4,115,116,117,118の一方の入力もH
IGHレベルとなる。またNANDゲート102,10
4,106,108,110,112の一方の入力はH
IGHレベルとなり、その出力はそれぞれU2,U1,
V2,V1,W2,W1の反転信号となり、NANDゲ
ート113,114,115,116,117,118
の出力はそれぞれU2,U1,V2,V1,W2,W1
となる。DFF61の出力QはLOWレベルを継続して
いるので回転方向切換え回路の出力UH,UL,VH,
VL,WH,WLはそれぞれU2,U1,V2,V1,
W2,W1となる。したがってモータには最大の逆トル
クが発生し、急激に減速する。やがてモータの回転数が
所定の回転数(十分低い回転数)まで低下すると、速度
検出器の出力TがHIGHレベルとなり、DFF61の
データ入力(F/R信号)はHIGHなのでDFF61
の出力QはHIGHレベルとなる。
Next, the rotation direction switching command signal FR becomes HIG.
When it becomes H level, the output A of the EXOR gate 62 becomes HI.
It becomes the GH level, and the NAND gates 101, 103, 1
One of the inputs of 05, 107, 109, and 111 becomes LOW level, and the NAND gate 1 regardless of the other input.
The outputs of 01, 103, 105, 107, 109, and 111 become HIGH level, and the NAND gates 113 and 11
One of the inputs of 4, 115, 116, 117 and 118 is also H
It becomes the IGH level. In addition, the NAND gates 102 and 10
One of the inputs of 4, 106, 108, 110 and 112 is H
IGH level, the output is U2, U1, respectively
It becomes an inverted signal of V2, V1, W2, W1 and becomes NAND gates 113, 114, 115, 116, 117, 118.
Output of U2, U1, V2, V1, W2, W1 respectively
Becomes Since the output Q of the DFF 61 continues to be LOW level, the outputs UH, UL, VH,
VL, WH, WL are U2, U1, V2, V1, respectively.
W2 and W1. Therefore, the maximum reverse torque is generated in the motor and the motor decelerates rapidly. When the number of rotations of the motor eventually drops to a predetermined number of rotations (sufficiently lower number of rotations), the output T of the speed detector becomes HIGH level, and the data input (F / R signal) of DFF61 is HIGH, so DFF61
Output Q becomes HIGH level.

【0017】DFF61の出力QがHIGHレベルとな
ると、EXORゲート62の出力AはLOWレベルとな
り、NANDゲート102,104,106,108,
110,112の一方の入力はLOWレベルとなり、他
方の入力にかかわらずNANDゲート102,104,
106,108,110,112の出力はHIGHレベ
ルとなり、NANDゲート113,114,115,1
16,117,118の一方の入力もHIGHレベルと
なる。またNANDゲート101,103,105,1
07,109,111の一方の入力はHIGHレベルと
なり、その出力はそれぞれU2,U1,V2,V1,W
2,W1の反転信号となり、NANDゲート113,1
14,115,116,117,118の出力はそれぞ
れU1,U2,V1,V2,W1,W2となる。またD
FF61の出力QがHIGHレベルになると、NAND
ゲート119,121,123,125の一方の入力は
LOWレベルとなり、他方の入力にかかわらずその出力
はHIGHレベルとなる。またNANDゲート120,
122,124,126の一方の入力はHIGHレベル
となり、他方の入力にはそれぞれW1,W2,V1,V
2が入力されているので、NANDゲート127,12
8,129,130の出力すなわち回転方向切換え回路
の出力UH,UL,VH,VL,WH,WLはそれぞれ
U1,U2,W1,W2,V1,V2となる。
When the output Q of the DFF 61 becomes HIGH level, the output A of the EXOR gate 62 becomes LOW level, and the NAND gates 102, 104, 106, 108 ,.
One of the inputs 110 and 112 becomes LOW level, and the NAND gates 102, 104,
The outputs of 106, 108, 110, 112 become HIGH level, and the NAND gates 113, 114, 115, 1
One of the inputs 16, 117 and 118 also becomes HIGH level. In addition, NAND gates 101, 103, 105, 1
One of the inputs 07, 109 and 111 becomes HIGH level, and the outputs thereof are U2, U1, V2, V1 and W, respectively.
2, W1 becomes an inverted signal, and NAND gates 113, 1
The outputs of 14, 115, 116, 117 and 118 are U1, U2, V1, V2, W1 and W2, respectively. Also D
When the output Q of FF61 becomes HIGH level, NAND
One of the inputs of the gates 119, 121, 123 and 125 is at the LOW level, and its output is at the HIGH level regardless of the other input. In addition, the NAND gate 120,
One of the inputs 122, 124, 126 becomes HIGH level, and the other inputs have W1, W2, V1, V respectively.
Since 2 is input, NAND gates 127, 12
Outputs 8, 129, 130, that is, outputs UH, UL, VH, VL, WH, WL of the rotation direction switching circuit are U1, U2, W1, W2, V1 and V2, respectively.

【0018】したがって、モータは効率良くCCW方向
に駆動され、モータの回転方向が短時間に切換えられ
る。CCW方向からCW方向への回転方向の切換えも同
様に行われる。以上のように本実施例によれば、モータ
駆動コイルに誘起される逆起電圧を逆起電圧検出器によ
り検出しフィルタ回路を介して電圧レベルに平滑し前記
電圧レベルで電圧制御発振器を発振させ、前記発振周波
数を基に通電タイミングを合成し駆動トランジスタを介
してモータコイルに通電を行うことにより、ホール素子
等の位置検出素子等を必要とせず効率良くモータを駆動
でき、かつモータの回転方向切換え指令信号が入力され
ると、回転方向切換え器により最大逆トルクが発生する
位相でモータコイルに通電し、モータの速度を速度検出
器により検出した結果を前記回転方向切換え器に入力す
ることで適切なタイミングで通電順序を切換えてすばや
く回転方向を切換えることができる。
Therefore, the motor is efficiently driven in the CCW direction, and the rotation direction of the motor is switched in a short time. Switching of the rotation direction from the CCW direction to the CW direction is similarly performed. As described above, according to the present embodiment, the counter electromotive voltage induced in the motor drive coil is detected by the counter electromotive voltage detector, smoothed to the voltage level through the filter circuit, and the voltage controlled oscillator is oscillated at the voltage level. By combining the energization timing based on the oscillation frequency and energizing the motor coil through the drive transistor, the motor can be efficiently driven without the need for position detection elements such as Hall elements, and the rotation direction of the motor When the switching command signal is input, the motor coil is energized in the phase in which the maximum reverse torque is generated by the rotation direction changer, and the result of detecting the motor speed by the speed detector is input to the rotation direction changer. The energizing order can be switched at an appropriate timing to quickly switch the rotation direction.

【0019】[0019]

【発明の効果】以上の説明で明らかなように本発明のブ
ラシレスモータの駆動装置は、複数相のモータ駆動コイ
ルと、前記駆動コイルの逆起電圧を検出する逆起電圧検
出器と、前記逆起電圧検出器の出力に応じて前記複数相
のコイルへの通電を制御する通電制御器と、モータの速
度を検出する速度検出器と、回転方向切換え指令信号が
入力されると前記速度検出器の出力に応じて前記通電制
御器の出力の通電位相を変化させ出力する回転方向切換
え器を設けることにより、ホール素子等の位置検出器を
必要とせず効率良くモータが駆動でき、かつモータの回
転方向切換え指令信号が入力されると、回転方向切換え
器により最大逆トルクが発生する位相でモータコイルに
通電し、モータの速度を速度検出器により検出した結果
を前記回転方向切換え器に入力することで適切なタイミ
ングで通電順序を切換えてすばやく回転方向を切換える
ことができる。
As is apparent from the above description, the brushless motor drive device of the present invention includes a plurality of motor drive coils, a back electromotive voltage detector for detecting back electromotive voltages of the drive coils, and An energization controller that controls energization to the coils of the plurality of phases according to the output of the electromotive voltage detector, a speed detector that detects the speed of the motor, and the speed detector when a rotation direction switching command signal is input. By providing a rotation direction changer that changes and outputs the energization phase of the output of the energization controller according to the output of the motor, it is possible to drive the motor efficiently without requiring a position detector such as a hall element, and to rotate the motor. When the direction switching command signal is input, the motor coil is energized in the phase in which the maximum reverse torque is generated by the rotation direction switch, and the result of motor speed detected by the speed detector By entering the example device switching the supply order at an appropriate timing can be switched quickly rotational direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブラシレスモータの駆動装置の回路構
成図
FIG. 1 is a circuit configuration diagram of a brushless motor driving device of the present invention.

【図2】図1のモータの回転方向切換え方法の動作原理
説明図
FIG. 2 is an explanatory diagram of the operating principle of the rotation direction switching method of the motor of FIG.

【図3】速度検出器および回転方向切換え器の具体的回
路構成図
FIG. 3 is a specific circuit configuration diagram of a speed detector and a rotation direction changer.

【図4】図3の回路の動作説明図4 is an explanatory diagram of the operation of the circuit of FIG.

【図5】従来のブラシレスモータの駆動装置の回路構成
FIG. 5 is a circuit configuration diagram of a conventional brushless motor drive device.

【図6】図5の装置の動作説明図6 is an explanatory diagram of the operation of the apparatus of FIG.

【図7】(A)はモータの回転方向切換え方法を説明す
るための、モータがCW方向回転時の逆起電圧と通電位
相の図 (B)はモータの回転方向切換え方法を説明するため
の、モータがCCW方向回転時の逆起電圧と通電位相の
FIG. 7A is a diagram of a back electromotive voltage and a conduction phase when the motor rotates in the CW direction, for explaining the motor rotation direction switching method. FIG. 7B is a diagram for explaining the motor rotation direction switching method. , Diagram of back electromotive force and energization phase when motor rotates in CCW direction

【図8】モータの回転方向切換え時の通電タイミングの
FIG. 8 is a diagram of energization timing when switching the rotation direction of the motor.

【符号の説明】[Explanation of symbols]

1〜3 駆動コイル 4〜9 駆動トランジスタ 10 逆起電圧検出器 50 回転方向切換え器 60 電力増幅器 70 速度検出器 100 通電制御器 1 to 3 Drive coil 4 to 9 Drive transistor 10 Back electromotive voltage detector 50 Rotation direction switcher 60 Power amplifier 70 Speed detector 100 Energization controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数相のモータ駆動コイルと、前記駆動コ
イルの逆起電圧を検出する逆起電圧検出器と、前記逆起
電圧検出器の出力に応じて前記複数相のコイルへの通電
を制御する通電制御器と、モータの速度を検出する速度
検出器と、回転方向切換え指令信号が入力されると前記
速度検出器の出力に応じて前記通電制御器の出力である
通電位相を切換える回転方向切換え器を備えたブラシレ
スモータの駆動装置。
1. A multi-phase motor drive coil, a back electromotive voltage detector for detecting a back electromotive voltage of the drive coil, and energization to the multi-phase coils according to the output of the back electromotive voltage detector. An energization controller for controlling, a speed detector for detecting the speed of the motor, and a rotation for switching the energization phase which is the output of the energization controller according to the output of the speed detector when a rotation direction switching command signal is input. Brushless motor drive with direction changer.
JP22697091A 1991-09-06 1991-09-06 Drive device for brushless motor Expired - Lifetime JP3156289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22697091A JP3156289B2 (en) 1991-09-06 1991-09-06 Drive device for brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22697091A JP3156289B2 (en) 1991-09-06 1991-09-06 Drive device for brushless motor

Publications (2)

Publication Number Publication Date
JPH0568393A true JPH0568393A (en) 1993-03-19
JP3156289B2 JP3156289B2 (en) 2001-04-16

Family

ID=16853477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22697091A Expired - Lifetime JP3156289B2 (en) 1991-09-06 1991-09-06 Drive device for brushless motor

Country Status (1)

Country Link
JP (1) JP3156289B2 (en)

Also Published As

Publication number Publication date
JP3156289B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US5206567A (en) Apparatus for reliably activating sensorless and brushless DC motor
JP3912190B2 (en) Brushless motor drive device and motor using the same
KR20040068872A (en) Apparatus for controlling electric motor
EP1219013B1 (en) State advance controller commutation loop for brushless d.c. motors
JPH10150798A (en) Stepping motor controller
US6196650B1 (en) Sensorless motor driving circuit having a comparative phase lock loop arrangement
US5751131A (en) Dynamic rate feedback PM motor starting technique
JPH02273098A (en) Stepping motor drive system
JP3156289B2 (en) Drive device for brushless motor
JP2722750B2 (en) Drive device for brushless motor
JP3331630B2 (en) Sensorless motor driving method and device thereof
JP4203156B2 (en) Motor control method
JP2704424B2 (en) Speed control method of DC brushless motor
JP3547890B2 (en) Sensorless DC motor drive without commutator
JPH05122983A (en) Controller for permanent magnet motor
JP2005176457A (en) Position detecting circuit of brushless motor
JP2925787B2 (en) Motor stop circuit
JPS62290382A (en) Two-phase motor drive
JP3783359B2 (en) Motor drive circuit
JPH04261388A (en) Starting method of brushless motor
JP2000217388A (en) Motor drive
JP4522059B2 (en) Motor driving apparatus and motor driving method
JP2722644B2 (en) Stop device for brushless motor
JPH0681552B2 (en) Stepping motor step-out detection method
JPS5829387A (en) Driving method for commutatorless motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11