JPH0567828A - Ultraviolet pulsed gas laser with pre-discharge electrode - Google Patents

Ultraviolet pulsed gas laser with pre-discharge electrode

Info

Publication number
JPH0567828A
JPH0567828A JP22574291A JP22574291A JPH0567828A JP H0567828 A JPH0567828 A JP H0567828A JP 22574291 A JP22574291 A JP 22574291A JP 22574291 A JP22574291 A JP 22574291A JP H0567828 A JPH0567828 A JP H0567828A
Authority
JP
Japan
Prior art keywords
preionization
electrodes
laser
electrode
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22574291A
Other languages
Japanese (ja)
Inventor
Motohiro Arai
基尋 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22574291A priority Critical patent/JPH0567828A/en
Publication of JPH0567828A publication Critical patent/JPH0567828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To prevent a failure of arc discharge while realizing a long operation of gas laser by adjusting the spacing between pre-discharge electrodes through an electrical or optical measurement of the spacing. CONSTITUTION:A pulsed gas laser includes a voltage probe 1 for detecting the voltage between first and second ionizing electrodes 2 and 3, and a positioning mechanism 4 for the electrodes. A maximum voltage between the electrodes 2 and 3 before an arc discharge starts is detected by a signal processor 5, and this signal is used by the positioning mechanism 4 to adjust the position of the electrode 2 in such a manner that the electrode spacing becomes constant. Instead of the probe, a monitor camera may be used to measure the electrode spacing through a window opened in the side wall of the laser cavity. Since the spacing between the pre-discharge electrodes is maintained constant, a long period of laser operation is possible, and laser gas and associated parts last long.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、予備電離電極間の間隔
を調整する手段を備えた紫外線予備電離パルスガスレー
ザ(以下ガスレーザと略記する)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet preionization pulsed gas laser (hereinafter abbreviated as gas laser) having means for adjusting the distance between preionization electrodes.

【0002】[0002]

【従来の技術】ガスレーザの一種であるエキシマレーザ
の構造例を図6に示す。このガスレーザについては、文
献「電子情報通信学会研究会資料」OQE85−84
(1985年)に詳細に記載されている。この従来例で
は、レーザガスを封じ込めるレーザ容器、高電圧のエネ
ルギーを蓄えるメインコンデンサとメインコンデンサを
放電させそのエネルギーをピーキングコンデンサに移行
させるスパークギャップ、ピーキングコンデンサに移行
したエネルギーによりレーザガスを励起する放電を起こ
させる放電電極および空隙を介して対向する第1の予備
電離電極21および第2の予備電離電極22からなる予
備電離電極対が複数個配置されている予備電離部などか
ら構成されている。このガスレーザにおいて、レーザ光
を発振させるためには、放電電極間のレーザガスを均一
なグロー放電で励起しなければならない。放電電極間に
均一なグロー放電を起こさせるためには、放電に先立ち
予めレーザガスを予備電離させておく方法が用いられて
おり、そのために空隙を介して対向している第1の予備
電離電極21および第2の予備電離電極22間のアーク
放電で発生する紫外線を用い放電電極間のレーザガスを
予備電離している。
2. Description of the Related Art FIG. 6 shows an example of the structure of an excimer laser which is a kind of gas laser. Regarding this gas laser, refer to the document "The Institute of Electronics, Information and Communication Engineers Research Society Material" OQE85-84.
(1985). In this conventional example, a laser container for containing a laser gas, a main capacitor for storing high-voltage energy and a spark gap for discharging the main capacitor to transfer the energy to a peaking capacitor, and a discharge for exciting the laser gas by the energy transferred to the peaking capacitor are generated. It is composed of a discharge electrode to be activated and a preliminary ionization part in which a plurality of pairs of preliminary ionization electrodes composed of a first preliminary ionization electrode 21 and a second preliminary ionization electrode 22 facing each other via a gap are arranged. In this gas laser, in order to oscillate a laser beam, the laser gas between the discharge electrodes must be excited by a uniform glow discharge. In order to cause a uniform glow discharge between the discharge electrodes, a method of pre-ionizing the laser gas prior to the discharge is used. Therefore, the first pre-ionization electrode 21 facing each other through a gap is used. And the laser gas between the discharge electrodes is preionized by using the ultraviolet rays generated by the arc discharge between the second preionization electrodes 22.

【0003】[0003]

【発明が解決しようとする課題】ところで、ガスレーザ
を長時間動作させると、第1の予備電離電極21および
第2の予備電離電極22が、アーク放電の電流によりス
パッタされ、時間の経過とともにその間隙が広がり、ア
ーク放電が起こり難くなる。このアーク放電が起こらな
いと、レーザガスを励起する放電がアーク放電になった
り、アーク放電を含め放電そのものが起こらないなどの
問題が生じる。この結果、レーザ出力が得られず、メイ
ンコンデンサに蓄えられたエネルギーの大半がスパーク
ギャップで消費されるために、スパークギャップの寿命
が極端に短くなる。さらに放電電極間の放電がアーク放
電になると、このアーク放電により放電電極がスパッタ
され、放電電極およびレーザガスの劣化が極端に速くな
る。従来、このような問題に対しては、その都度装置を
停止し、レーザ容器内を開放して予備電離電極間の間隙
調整を行っていた。
By the way, when the gas laser is operated for a long time, the first preionization electrode 21 and the second preionization electrode 22 are sputtered by the electric current of the arc discharge, and the gap between them grows over time. Spread and arc discharge hardly occurs. If this arc discharge does not occur, there arises a problem that the discharge that excites the laser gas becomes an arc discharge, or the discharge itself including the arc discharge does not occur. As a result, the laser output is not obtained, and most of the energy stored in the main capacitor is consumed in the spark gap, so that the life of the spark gap is extremely shortened. Further, when the discharge between the discharge electrodes becomes an arc discharge, the discharge electrode is sputtered by this arc discharge, and the deterioration of the discharge electrode and the laser gas becomes extremely fast. Conventionally, with respect to such a problem, the apparatus is stopped each time and the inside of the laser container is opened to adjust the gap between the preionization electrodes.

【0004】レーザ容器は、一端大気に開放すると内壁
に水分や空気成分であるガスを吸着し、ダストが入り汚
れる。このために、レーザ容器内を初期の状態に復帰さ
せるには、レーザ容器のパッシベーション、高真空排気
およびベーキングをその都度行う必要があり、装置の立
ち上げに長時間かかる欠点があった。
When the laser container is once exposed to the atmosphere, the inner wall adsorbs moisture and gas which is an air component, and dust is contaminated. Therefore, in order to return the inside of the laser container to the initial state, it is necessary to perform passivation, high vacuum evacuation and baking of the laser container each time, and there is a drawback that it takes a long time to start up the device.

【0005】本発明の目的は、レーザ容器を大気中に開
放せずに、予備電離電極間隔を自動的に調整できる長時
間動作が可能なガスレーザを提供することにある。
An object of the present invention is to provide a gas laser capable of long-time operation in which the preionization electrode interval can be automatically adjusted without opening the laser container to the atmosphere.

【0006】[0006]

【課題を解決するための手段】本発明によるガスレーザ
は、従来の構成に加えて、予備電離電極間の間隔を測定
する手段と、その測定を基に予備電離電極間の間隔を調
整する手段とを備えたことを特徴としている。また、予
備電離電極間の間隔の測定手段として、予備電離電極対
間の電圧の変化から相対的な測定を行う方法および光学
的な測定を用いたことを特徴としている。さらに、予備
電離電極間の間隔調整の手段に、一方の予備電離電極が
取り付けられた可動体と可動体を動かす駆動部と可動部
と駆動部をつなぐシャフトからなる間隔調整手段を用い
たことを特徴としている。
The gas laser according to the present invention comprises, in addition to the conventional structure, means for measuring the distance between the preionization electrodes and means for adjusting the distance between the preionization electrodes based on the measurement. It is characterized by having. Further, as a means for measuring the distance between the preionization electrodes, a method of performing relative measurement based on a change in voltage between the preionization electrode pairs and an optical measurement are used. Further, as the means for adjusting the space between the preionization electrodes, the space adjustment means composed of a movable body to which one of the preionization electrodes is attached, a drive section for moving the movable body, and a shaft connecting the movable section and the drive section is used. It has a feature.

【0007】[0007]

【作用】本発明のガスレーザは、上記したように長時間
ガスレーザを動作させた時に問題になる、予備電離電極
間の間隔の広がりを、予備電離電極間の電圧変化による
相対的な測定や光学的な測定で検出し、その信号を基に
予備電離電極間の間隔を調整している。そのために、予
備電離電極間の間隔の広がりによるアーク放電の不点弧
が抑えられ、一層のガスレーザの長時間動作が可能とな
り、レーザガスおよび部品の長寿命化が図られる。
In the gas laser of the present invention, the widening of the space between the preionization electrodes, which becomes a problem when the gas laser is operated for a long time as described above, is measured by a relative measurement or an optical change by a voltage change between the preionization electrodes. The distance between the preionization electrodes is adjusted based on the detected signal. Therefore, the misfiring of the arc discharge due to the widening of the space between the preionization electrodes is suppressed, the gas laser can be operated for a long time, and the life of the laser gas and parts can be extended.

【0008】[0008]

【実施例】次に、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1は本発明を用いた第1の実施例で、予
備電離電極間の間隔を測定する手段として予備電離電極
間の電圧を検出する電圧プローブ1を用いたガスレーザ
の構造図、図2は図1に示したガスレーザにおけるピー
キングコンデンサの端子間電圧と予備電離電極間の電圧
が合成された電圧波形、図3は本発明を用いた第2の実
施例で、予備電離電極間の間隔を測定する手段にモニタ
ーカメラを用いたガスレーザの構造図、図4は本発明を
用いた第3の実施例で予備電離電極間の間隔を調整する
機構を示した構造図である。図5は図1,図3の信号処
理部5、10の具体的回路例を示す図である。
FIG. 1 is a first embodiment of the present invention, which is a structural diagram of a gas laser using a voltage probe 1 for detecting the voltage between the preionization electrodes as a means for measuring the distance between the preionization electrodes. 2 is a voltage waveform in which the voltage between the terminals of the peaking capacitor and the voltage between the preionization electrodes in the gas laser shown in FIG. 1 are combined, and FIG. 3 shows the second embodiment using the present invention, in which the gap between the preionization electrodes is shown. FIG. 4 is a structural diagram of a gas laser using a monitor camera as a means for measuring the, and FIG. 4 is a structural diagram showing a mechanism for adjusting the distance between the preionization electrodes in the third embodiment using the present invention. FIG. 5 is a diagram showing a specific circuit example of the signal processing units 5 and 10 shown in FIGS.

【0010】図1は、本発明の第1の実施例を用いたガ
スレーザの構造図を示しており、図6に示した従来のガ
スレーザと異なり、第1の予備電離電極2および第2の
予備電離電極3間に加わる電圧を検出する電圧プローブ
1と、第1の予備電離電極2の位置を調整する位置調整
機構4を設置していることである。この実施例におい
て、電圧プローブ1により図2に示した電圧波形が計測
される。この電圧波形はピーキングコンデンサの端子間
電圧と第1の予備電離電極2および第2の予備電離電極
3間に加わる電圧の合成された電圧であるが、第1の予
備電離電極2および第2の予備電離電極3間にアーク放
電が生じていないA点からB点までの電圧は、第1の予
備電離電極2および第2の予備電離電極3間に印加され
ている電圧に等しく、B点からC点への電圧効果はアー
ク放電が生じたことによる第1の予備電離電極2および
第2の予備電離電極3間の電圧降下によるものである。
さらに、B点の電圧値はレーザガスの組成など一定なら
ば、第1の予備電離電極2および第2の予備電離電極3
間の間隔に依存し、距離が離れるにしたがい上昇する。
このB点における電圧上昇を信号処理部5で検出し、こ
の信号を基に位置調整機構4で、第1の予備電離電極2
の位置を調整し第2の予備電離電極3との間隔が一定に
なるように制御している。
FIG. 1 shows a structural diagram of a gas laser using the first embodiment of the present invention. Unlike the conventional gas laser shown in FIG. 6, a first preliminary ionization electrode 2 and a second preliminary ionization electrode 2 are provided. That is, the voltage probe 1 for detecting the voltage applied between the ionization electrodes 3 and the position adjustment mechanism 4 for adjusting the position of the first preliminary ionization electrode 2 are installed. In this embodiment, the voltage probe 1 measures the voltage waveform shown in FIG. This voltage waveform is a combined voltage of the inter-terminal voltage of the peaking capacitor and the voltage applied between the first preionization electrode 2 and the second preionization electrode 3. The voltage from point A to point B at which arc discharge does not occur between the preionization electrodes 3 is equal to the voltage applied between the first preionization electrode 2 and the second preionization electrode 3, and from the point B The voltage effect on the point C is due to the voltage drop between the first preionization electrode 2 and the second preionization electrode 3 due to the arc discharge.
Further, if the voltage value at the point B is constant such as the composition of the laser gas, the first preionization electrode 2 and the second preionization electrode 3
Depending on the distance between them, it rises as the distance increases.
The signal processing unit 5 detects the voltage increase at point B, and the position adjusting mechanism 4 detects the voltage increase at the first preionization electrode 2 based on this signal.
Is adjusted to control the distance between the second preionization electrode 3 and the position to be constant.

【0011】信号処理部5は、図5(a)にその具体的
回路例を示すように、電圧プローブの出力電圧を比較回
路で基準信号と比較し、比較回路の出力が零になるよう
に、モータ駆動回路により、位置調整機構4のモータを
駆動する構成になっている。
The signal processing unit 5 compares the output voltage of the voltage probe with a reference signal in a comparison circuit so that the output of the comparison circuit becomes zero, as shown in a concrete circuit example of FIG. The motor of the position adjusting mechanism 4 is driven by the motor drive circuit.

【0012】図3は、本発明の第2の実施例を用いたガ
スレーザの構造図を示している。図1に示した本発明の
第1の実施例と異なり、レーザ容器の側壁にのぞき窓1
1を設置し、電圧プローブの代わりにのぞき窓11を通
して第1の予備電離電極2および第2の予備電離電極3
間の間隔を測定するモニターカメラ6を用いている。こ
の実施例においては、のぞき窓11を通してレーザ容器
外からモニターカメラ6で予備電離部分を撮し、その映
像信号を基に信号処理部10で第1の予備電離電極2と
第2の予備電離電極3間の間隔を検出し、その値を基に
位置調整機構4を用いて第1の予備電離電極2と第2の
予備電離電極3との間隔を一定になるように第1の予備
電離電極2の位置を動かしている。信号処理部10は図
5(b)に示す構成である。
FIG. 3 is a structural diagram of a gas laser using the second embodiment of the present invention. Unlike the first embodiment of the present invention shown in FIG. 1, a peephole 1 is provided on the side wall of the laser container.
1 is installed and the first preionization electrode 2 and the second preionization electrode 3 are provided through the sight window 11 instead of the voltage probe.
A monitor camera 6 is used to measure the interval between them. In this embodiment, the monitor camera 6 takes an image of the preionization portion from outside the laser container through the observation window 11, and the signal processing unit 10 uses the video signal to photograph the first preionization electrode 2 and the second preionization electrode. The distance between the first preionization electrode 2 is detected by using the position adjusting mechanism 4 based on the detected distance between the first preionization electrode 2 and the second preionization electrode 3 so as to be constant. Moving position 2. The signal processing unit 10 has the configuration shown in FIG.

【0013】図4はラックピニオン機構を用いた位置調
整機構の構成図である。本実施例における位置調整機構
は、第1の予備電離電極2および第2の予備電離電極3
間の間隔を調整する機構で、第1の予備電離電極2が固
定されている可動体12と可動体12に取り付けられて
いるラック13とピニオン14を回転させるモータ16
とピニオン14にモータ16の回転を伝達するシャフト
15とレーザ容器内の気密を取るOリング17とアース
側の電流経路となるアース接続体18とから構成されて
いる。この実施例では、ラックピニオン機構を用い、モ
ータ16によるピニオン14の回転運動をラック13で
直線運動に変換し、可動体12に固定されている第1の
予備電離電極2の位置を動かすことにより、第1の予備
電離電極2と第2の予備電離電極3間の間隔が調整でき
る。
FIG. 4 is a block diagram of a position adjusting mechanism using a rack and pinion mechanism. The position adjusting mechanism in this embodiment includes a first preionization electrode 2 and a second preionization electrode 3.
A motor 16 for rotating a movable body 12 to which the first preionization electrode 2 is fixed, a rack 13 attached to the movable body 12, and a pinion 14 by a mechanism for adjusting the interval between them.
And a shaft 15 for transmitting the rotation of the motor 16 to the pinion 14, an O-ring 17 for hermetically sealing the inside of the laser container, and a ground connection body 18 serving as a current path on the ground side. In this embodiment, by using the rack and pinion mechanism, the rotational movement of the pinion 14 by the motor 16 is converted into the linear movement by the rack 13, and the position of the first preionization electrode 2 fixed to the movable body 12 is moved. The distance between the first preionization electrode 2 and the second preionization electrode 3 can be adjusted.

【0014】本実施例では、予備電離電極間隔の調整手
段にラックピニオン機構を用いたが、特に限定されるも
のではない。
In the present embodiment, the rack and pinion mechanism is used as the means for adjusting the preionization electrode interval, but the invention is not limited to this.

【0015】[0015]

【発明の効果】以上述べたように、本発明を用いたガス
レーザでは予備電離電極対間の間隔を一定に調整できる
ために、長時間動作が可能で、レーザガスや部品の長寿
命化が図れる。
As described above, in the gas laser using the present invention, the distance between the pair of preionization electrodes can be adjusted to a constant value, so that the gas laser can be operated for a long time and the life of the laser gas and parts can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例であるガスレーザの構造
図。
FIG. 1 is a structural diagram of a gas laser which is a first embodiment of the present invention.

【図2】図1の実施例における電圧プローブの測定波形
図。
2 is a measured waveform diagram of the voltage probe in the embodiment of FIG.

【図3】本発明の第2の実施例であるガスレーザの構造
図。
FIG. 3 is a structural diagram of a gas laser which is a second embodiment of the present invention.

【図4】位置調整機構の具体例を示す構造図。FIG. 4 is a structural diagram showing a specific example of a position adjusting mechanism.

【図5】実施例の信号処理部の具体例を示す図。FIG. 5 is a diagram showing a specific example of a signal processing unit according to the embodiment.

【図6】従来のエキシマレーザの構造図。FIG. 6 is a structural diagram of a conventional excimer laser.

【符号の説明】[Explanation of symbols]

1 電圧プローブ 2 第1の予備電離電極 3 第2の予備電離電極 4 位置調整機構 5,10 信号処理部 6 モニターカメラ 11 のぞき窓 12 可動体 13 ラック 14 ピニオン 15 シャフト 16 モータ 17 Oリング 18 アース接続体 1 Voltage probe 2 1st preionization electrode 3 2nd preionization electrode 4 Position adjustment mechanism 5,10 Signal processing part 6 Monitor camera 11 Peephole 12 Movable body 13 Rack 14 Pinion 15 Shaft 16 Motor 17 O-ring 18 Earth connection body

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともレーザガスを放電で励起する
ため一対の柱状の放電電極と、前記放電電極間にパルス
状の電流を流すための励起回路と、空隙を介して対向す
る一対の予備電離電極を前記放電電極の長手方向に前記
放電電極に沿って複数個並べた予備電離部と、前記レー
ザガスを封入するためのレーザ管とから構成された紫外
線予備電離パルスガスレーザにおいて、前記予備電離電
極間の間隔を測定する手段と、前記間隔を調整する手段
とを備え、前記間隔を測定する手段からの信号を基に前
記間隔を調整する手段を備えたことを特徴とする紫外線
予備電離パルスガスレーザ。
1. A pair of columnar discharge electrodes for exciting at least a laser gas by a discharge, an excitation circuit for supplying a pulsed current between the discharge electrodes, and a pair of preionization electrodes facing each other through a gap. An ultraviolet preionization pulse gas laser comprising a plurality of preionization parts arranged along the discharge electrode in the longitudinal direction of the discharge electrode, and a laser tube for enclosing the laser gas, wherein a space between the preionization electrodes And a means for adjusting the interval, and means for adjusting the interval based on a signal from the means for measuring the interval.
【請求項2】 請求項1に記載の紫外線予備電離パルス
ガスレーザにおいて、前記予備電離電極間の間隔を測定
する手段として前記予備電離電極対間の電圧を検出する
装置を設け、その電圧変化から前記空隙の間隔の相対的
な変化を検出することを特徴とする紫外線予備電離パル
スガスレーザ。
2. The ultraviolet preionization pulsed gas laser according to claim 1, wherein a device for detecting a voltage between the preionization electrode pairs is provided as a means for measuring the distance between the preionization electrodes, and the device detects the voltage from the voltage change. An ultraviolet preionization pulsed gas laser, which is characterized by detecting a relative change in the gap distance.
【請求項3】 請求項1に記載の紫外線予備電離パルス
ガスレーザにおいて、前記予備電離電極間の間隔を測定
する手段として光学的な検出装置を用いたことを特徴と
する紫外線予備電離パルスガスレーザ。
3. The ultraviolet preionization pulse gas laser according to claim 1, wherein an optical detection device is used as a means for measuring the distance between the preionization electrodes.
【請求項4】 請求項1、2、3に記載の紫外線予備電
離パルスガスレーザにおいて、前記予備電離電極間の間
隔を調整する手段が、少なくとも前記予備電離電極体の
内、一方の予備電離電極を取り付けた可動体と、前記可
動体を動かすための駆動部と、前記駆動部の運動を前記
可動体に伝達するシャフトからなることを特徴とする紫
外線予備電離パルスガスレーザ。
4. The ultraviolet preionization pulsed gas laser according to claim 1, 2, or 3, wherein the means for adjusting the distance between the preionization electrodes has at least one of the preionization electrode bodies. An ultraviolet preionization pulse gas laser, comprising: a movable body attached to the movable body; a drive unit for moving the movable body; and a shaft for transmitting the motion of the drive unit to the movable body.
JP22574291A 1991-09-05 1991-09-05 Ultraviolet pulsed gas laser with pre-discharge electrode Pending JPH0567828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22574291A JPH0567828A (en) 1991-09-05 1991-09-05 Ultraviolet pulsed gas laser with pre-discharge electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22574291A JPH0567828A (en) 1991-09-05 1991-09-05 Ultraviolet pulsed gas laser with pre-discharge electrode

Publications (1)

Publication Number Publication Date
JPH0567828A true JPH0567828A (en) 1993-03-19

Family

ID=16834128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22574291A Pending JPH0567828A (en) 1991-09-05 1991-09-05 Ultraviolet pulsed gas laser with pre-discharge electrode

Country Status (1)

Country Link
JP (1) JPH0567828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137796A1 (en) * 2007-04-16 2009-12-30 Cymer, Inc. Extendable electrode for gas discharge laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110058580A1 (en) * 2001-01-23 2011-03-10 Sandstrom Richard L Extendable electrode for gas discharge laser
US8446928B2 (en) * 2001-01-23 2013-05-21 Cymer, Inc. Extendable electrode for gas discharge laser
EP2137796A1 (en) * 2007-04-16 2009-12-30 Cymer, Inc. Extendable electrode for gas discharge laser
EP2137796A4 (en) * 2007-04-16 2014-01-08 Cymer Inc Extendable electrode for gas discharge laser

Similar Documents

Publication Publication Date Title
JP3204949B2 (en) High reliability, modular, production quality narrow band KrF excimer laser
JP3353253B2 (en) Gas pulse laser play-on device
Bollanti et al. Performance of a ten-liter electron avalanche-discharge XeCl laser device
JP2002118309A (en) Excimer laser device and fluorine molecule laser device, and method of stabilizing its output beam parameter
JPH0567828A (en) Ultraviolet pulsed gas laser with pre-discharge electrode
JPS6237892B2 (en)
RU2197045C2 (en) High-reliability narrow-band industrial excimer laser of modular design built around krypton fluoride
JP5371208B2 (en) 2-stage laser pulse energy control system
Hamilton et al. A repetitively pulsed, double discharge TEA CO2 laser
RU2000125098A (en) KRYPTON FLUORIDE EXCIMER LASER (KrF) FOR INDUSTRIAL APPLICATIONS WITH HIGH RELIABILITY AND MODULAR DESIGN
JP2612659B2 (en) Gas deterioration detection device and excimer laser device having gas deterioration detection function
JP3819181B2 (en) Laser equipment
JP2004342964A (en) Two-stage laser equipment equipped with high precision synchronous control function
JP4429042B2 (en) Two-stage laser device with high-accuracy synchronous control function
JP3063569B2 (en) Gas laser device
SU387230A1 (en) METHOD OF MEASURING THE STATIC TEMPERATURE OF THE GAS FLOW
JP2942033B2 (en) Discharge pump laser device
RU2082963C1 (en) Method for measurement of density of excited atoms in longitudinal nanosecond discharge
JPH09167871A (en) Pulse laser oscillation device
RU1830472C (en) Way of measuring gas pressure
Bhatnagar et al. Low-pressure 50-mJ KrF laser
JP2002043658A (en) Discharge pumping gas laser
JP2932723B2 (en) Discharge excitation circuit for pulsed laser
JP2001057346A (en) Laser processing method and laser processing device
EP0236761A1 (en) Flight time and heterodyne doppler laser telemetry system