JPH056708A - Reversible electrode - Google Patents

Reversible electrode

Info

Publication number
JPH056708A
JPH056708A JP3145857A JP14585791A JPH056708A JP H056708 A JPH056708 A JP H056708A JP 3145857 A JP3145857 A JP 3145857A JP 14585791 A JP14585791 A JP 14585791A JP H056708 A JPH056708 A JP H056708A
Authority
JP
Japan
Prior art keywords
electrode
battery
compound
disulfide
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3145857A
Other languages
Japanese (ja)
Inventor
Yasushi Uemachi
裕史 上町
Yoshiko Sato
佳子 佐藤
Teruhisa Kanbara
輝寿 神原
Tadashi Tonomura
正 外邨
Kenichi Takeyama
健一 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3145857A priority Critical patent/JPH056708A/en
Publication of JPH056708A publication Critical patent/JPH056708A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase a speed of an oxidation-reduction reaction of a reversible electrode comprising an organic compound used for an electrochemical element such as a battery, an electrochromic display element, a sensor, and a memory. CONSTITUTION:A complex electrode constituted of mainly a conductive high polymer, where a compound including a disulfide bond in a molecule is introduced as a side chain, is used as an electrode for a battery, thus obtaining a secondary battery having a high energy density more than 150wh/kg. Although it is difficult to take out a large current only by a disulfide compound an oxidation-reduction reaction of the disulfide compound can be promoted by an electrode catalytic action of the conductive high polymer in the case of combination of the disulfide compound and the conductive high polymer. Simultaneously, electrolysis (charge and discharge) with a large current can be realized even at a room temperature in cooperation with an effect of a remarkable increase in substantial contact area with respect to an electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサ、メモリなどの電気化学素子に
用いられる導電性有機化合物よりなる可逆性電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible electrode made of a conductive organic compound used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories.

【0002】[0002]

【従来の技術】1971年に白川氏らにより導電性のポ
リアセチレン電極が発見されて以来、導電性高分子電極
が盛んに検討されている。導電性高分子を電極材料に用
いると、軽量で高エネルギ密度の電池、大面積のエレク
トロクロミック素子、微小電極を用いた生物化学センサ
などの電気化学素子の実現が期待できる。しかし、ポリ
アセチレンは空気中の水分や酸素に対して化学的に活性
で、空気中では不安定な化合物であり、電気化学素子に
用いる電極として実用性に乏しいという問題を有してい
た。近年、この問題を克服するために、他のπ電子共役
系導電性高分子が検討され、ポリアニリン、ポリピロー
ル、ポリアセン、ポリチオフェンなど、空気中で比較的
安定な導電性高分子が見いだされ、これらの導電性高分
子を正極に用いたリチウム二次電池が開発されつつあ
る。
2. Description of the Related Art Since the discovery of a conductive polyacetylene electrode by Shirakawa et al. In 1971, conductive polymer electrodes have been actively studied. When a conductive polymer is used as an electrode material, it is expected to realize a lightweight and high energy density battery, an electrochromic device having a large area, and an electrochemical device such as a biochemical sensor using microelectrodes. However, polyacetylene is a compound that is chemically active to moisture and oxygen in the air and is unstable in the air, and has a problem that it is not practical as an electrode used in an electrochemical device. In recent years, in order to overcome this problem, other π-electron conjugated conductive polymers have been investigated, and conductive polymers that are relatively stable in air, such as polyaniline, polypyrrole, polyacene, and polythiophene, have been found. A lithium secondary battery using a conductive polymer as a positive electrode is being developed.

【0003】これらの高分子電極は、電極反応に際し
て、カチオンのみならず電解質中のアニオンをも取り込
むため、電解質はイオンの移動媒体として作用するだけ
でなく電池反応にも関与する。そのため電池の放電容量
に見合う量の電解質を電池内に保有する必要があり、反
応に消費される電解質の量だけ電池の重量が増加して、
電池のエネルギ密度は20〜50Wh/kg 程度に低下す
る。このため、ニッケルカドミウム蓄電池、鉛蓄電池な
どの通常の二次電池に較べ、この電池のエネルギ密度は
2分の1程度に小さくなるという問題を有している。
Since these polymer electrodes take in not only cations but also anions in the electrolyte during electrode reaction, the electrolyte not only acts as a transfer medium of ions but also participates in battery reaction. Therefore, it is necessary to retain an amount of electrolyte in the battery that corresponds to the discharge capacity of the battery, and the weight of the battery increases by the amount of electrolyte consumed in the reaction,
The energy density of the battery drops to around 20 to 50 Wh / kg. For this reason, there is a problem that the energy density of this battery is reduced to about one half of that of an ordinary secondary battery such as a nickel-cadmium storage battery or a lead storage battery.

【0004】これに対し、高エネルギ密度電池の実現が
期待できる有機材料として、米国特許第4,833,048号に
ジスルフィド系化合物が提案されている。この化合物
は、最も簡単にはR−S−S−R(Rは脂肪族あるいは
芳香族の有機基、Sは硫黄)と表わされる。このジスル
フィド系化合物のS−S結合は電解還元により開裂し、
電解浴中のカチオン(Mn+)とでR−Sー・M+ で表さ
れる塩を生成する。また、この塩は、電解酸化により再
び元のR−S−S−Rに戻るという性質を持つものであ
る。また、カチオン(Mn+)を供給、捕捉する金属Mn+
とジスルフィド系化合物を組み合わせた金属ーイオウ二
次電池が前述の米国特許に提案されており、150Wh/
Kg以上と、通常の二次電池に匹敵するか、あるいはそれ
以上のエネルギ密度が期待されている。
On the other hand, as an organic material which can be expected to realize a high energy density battery, US Pat. No. 4,833,048 proposes a disulfide compound. This compound is most simply represented as R—S—S—R (R is an aliphatic or aromatic organic group and S is sulfur). The S—S bond of this disulfide compound is cleaved by electrolytic reduction,
The cation ( Mn + ) in the electrolytic bath forms a salt represented by RS-M + . Further, this salt has a property of returning to the original R-S-S-R again by electrolytic oxidation. In addition, a metal M n + that supplies and captures a cation (M n + ).
A metal-sulfur secondary battery, which is a combination of a disulfide-based compound and a disulfide-based compound, has been proposed in the above-mentioned US patent.
It is expected to have an energy density of Kg or more, which is comparable to or higher than an ordinary secondary battery.

【0005】なお、電極触媒をジスルフィド系化合物電
極に導入することは、上記の米国特許第4833048号明細
書あるいは J.Electrochem Soc., Vol.136, p.2570-257
5(1989)に開示されているが、電極触媒としては有機金
属化合物が開示されているのみである。さらに、その効
果については具体的に示されていないばかりか、導電性
高分子がジスルフィド系化合物の電解に際し電極触媒と
して作用することは全く示されていない。
Introducing an electrocatalyst into a disulfide compound electrode is described in the above-mentioned US Pat. No. 4833048 or J. Electrochem Soc., Vol. 136, p. 2570-257.
5 (1989), only an organometallic compound is disclosed as an electrode catalyst. Furthermore, not only the effect thereof has not been concretely shown, but it has not been shown at all that the conductive polymer acts as an electrode catalyst in the electrolysis of the disulfide compound.

【0006】[0006]

【発明が解決しょうとする課題】しかし、このような従
来のジスルフィド系化合物は、米国特許第4,833,048号
の発明者らがJ.Electrochem.Soc, Vol.136, No.9, p.25
70〜2575(1989)で報告しているように、例えば[(C
252NCSS-]2 の電解では、酸化と還元の電位が
1v 以上離れており、このような材料における電気化学
反応は、その電子移動が極めて遅いので、室温付近では
実用に見合う大きな電流、例えば1mA/cm2以上の電流を
取り出すことが困難であり、電子移動が速くなる100
〜200℃の高温での使用に限られるという課題を有し
ていた。
However, such conventional disulfide compounds have been reported by the inventors of US Pat. No. 4,833,048 in J. Electrochem. Soc, Vol. 136, No. 9, p. 25.
As reported in 70-2575 (1989), for example [(C
In the electrolysis of 2 H 5 ) 2 NCSS-] 2 , the oxidation and reduction potentials are separated by 1 v or more, and the electrochemical reaction in such a material has a very slow electron transfer, so that it is practically suitable near room temperature. It is difficult to extract a current, for example, a current of 1 mA / cm 2 or more, and electron transfer becomes faster.
It has a problem that it is limited to use at a high temperature of up to 200 ° C.

【0007】本発明はこのような課題を解決するもの
で、ジスルフィド系化合物を電池の電極材料として用い
ることにより、高エネルギ密度という特徴を損なわず、
かつ室温でも大電流での充放電が可能で、可逆性に優れ
た電極を提供することを目的とするものである。
The present invention solves such a problem by using a disulfide compound as an electrode material for a battery without impairing the feature of high energy density.
Moreover, it is an object of the present invention to provide an electrode that can be charged and discharged with a large current even at room temperature and is excellent in reversibility.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明は、複数個のチオール基を有する化合物を、側
鎖に導入したモノマー化合物を重合して形成した、導電
性高分子を主体として構成したものである。
To achieve this object, the present invention mainly comprises a conductive polymer formed by polymerizing a monomer compound having a plurality of thiol groups introduced into a side chain. It is configured as.

【0009】また、チオール基間の酸化還元反応が、分
子内あるいは分子間のチオール基間で起こるようにした
ものである。
Further, the redox reaction between thiol groups is made to occur within a molecule or between thiol groups between molecules.

【0010】[0010]

【作用】重合して導電性高分子を形成するモノマ化合物
に、複数のチオール基を有する側鎖を導入して重合する
ことにより、分子内にジスルフィド結合を有する導電性
高分子を得ることができる。この導電性高分子では、ジ
スルフィド結合が電子移動過程における反応の活性化エ
ネルギを低減する電極触媒として作用する。つまり、ジ
スルフィド系化合物単独では1v 以上であった酸化反応
と還元反応との電位差を、チオール基と導電性高分子の
相互作用により、これを0.1v あるいはそれ以下まで
に低下することができる。このため、電極反応が促進さ
れるとともに、電解質との実質的な接触面積が格段に増
大されることになり、室温でも大電流での電解(充放
電)が可能となる。
[Function] A conductive polymer having a disulfide bond in the molecule can be obtained by introducing a side chain having a plurality of thiol groups into a monomer compound which is polymerized to form a conductive polymer and polymerized. . In this conductive polymer, the disulfide bond acts as an electrode catalyst that reduces the activation energy of the reaction in the electron transfer process. That is, the potential difference between the oxidation reaction and the reduction reaction, which was 1 v or more for the disulfide compound alone, can be lowered to 0.1 v or less by the interaction between the thiol group and the conductive polymer. Therefore, the electrode reaction is promoted, and the substantial contact area with the electrolyte is significantly increased, and electrolysis (charging / discharging) can be performed with a large current even at room temperature.

【0011】また、分子内にジスルフィド結合を形成す
るチオール基を導入することにより、電極反応の主体と
なるチオール基を有する分子種が、酸化還元反応時に電
解質中に漏れでることを防ぐことができ、充放電特性の
向上が期待できることとなる。
Further, by introducing a thiol group which forms a disulfide bond into the molecule, it is possible to prevent the molecular species having a thiol group, which is the main component of the electrode reaction, from leaking into the electrolyte during the redox reaction. It can be expected that the charge / discharge characteristics will be improved.

【0012】[0012]

【実施例】以下に本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.

【0013】本発明の導電性高分子に導入する基として
は、米国特許第4833048号明細書に述べられてる
一般式(R(S)y)nで表される基を用いることができ
る。Rは脂肪族基、芳香族基、Sは硫黄、yは1以上の
整数、nは2以上の整数である。例えば、C22S(S
H)2で表される2,5−ジメルカプト−1,3,4−
チアジアゾールや、C3333で表されるS−トリア
ジン−2,4,6−トリチオールなどが用いられる。本
発明の導電性高分子を形成するモノマー化合物として
は、チオフェン、ピロール、アニリン、フランまたはベ
ンゼンなどが用いられ、これらを重合した導電性高分子
にヨー素などのアニオンをドープしたものなどが有効に
用いられる。また、多孔性のフィブリル構造をとること
ができる重合条件のものが有効に用いられる。
As the group to be introduced into the conductive polymer of the present invention, the group represented by the general formula (R (S) y) n described in US Pat. No. 4,83,048 can be used. R is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. For example, C 2 N 2 S (S
H) 2 represented by 2,5-dimercapto-1,3,4-
Thiadiazole and, like C 3 H 3 N 3 S- triazine-2,4,6-trithiol represented by S 3 are used. As the monomer compound forming the conductive polymer of the present invention, thiophene, pyrrole, aniline, furan, benzene, or the like is used, and a conductive polymer obtained by polymerizing these is effective such as anion doped with iodine or the like. Used for. Further, those under polymerization conditions capable of forming a porous fibril structure are effectively used.

【0014】ジスルフィド化合物が還元され塩を形成す
る際の金属イオンには、上記の米国特許に述べられてい
るアルカリ金属イオン、アルカリ土類金属イオンに加え
て、プロトンを用いることもできる。アルカリ金属イオ
ンとしてリチウムイオンを用いる場合は、リチウムイオ
ンを供給および捕捉する電極として金属リチウムあるい
はリチウムーアルミニウムなどのリチウム合金を用い、
リチウムイオンを伝導する電解質を用いると電圧が3〜
4vの電池が構成できる。また同様に上記の金属イオン
としてプロトンを用い、プロトンを供給および捕捉する
電極として LaNi5 などの金属水素化物を用い、プ
ロトンを伝導する電解質を用いると電圧が1〜2v の電
池を構成することもできる。
As the metal ion used when the disulfide compound is reduced to form a salt, a proton can be used in addition to the alkali metal ion and alkaline earth metal ion described in the above-mentioned US patents. When using lithium ions as alkali metal ions, a lithium alloy such as metallic lithium or lithium-aluminum is used as an electrode for supplying and capturing lithium ions,
When an electrolyte that conducts lithium ions is used, the voltage is 3 to
A 4v battery can be constructed. Similarly, when a proton is used as the above-mentioned metal ion, a metal hydride such as LaNi 5 is used as an electrode for supplying and capturing the proton, and an electrolyte for conducting the proton is used, a battery having a voltage of 1 to 2 v may be constructed. it can.

【0015】以下に本発明の実施例を具体的に説明す
る。 (1)チオフェン誘導体の合成 100mlのベンゼンに水素化ナトリウム24g(1mol)
を加えた後、84g(1mol)の3−ブロモチオフェンを
加え、1時間還流した。この溶液にトランス−1,2−
ジチアン−4,5−ジオール30.4g(1mol)を混合
し、3時間還流し、3−ブロモチオフェン誘導体1の溶
液を得た。100mlのベンゼンに水素化ナトリウムを2
4g(1mol)を加えた後、9.4g(0.1mol)のブロ
モメタンを加え1時間還流した溶液に3−ブロモチオフ
ェン誘導体溶液を加え3時間還流した。このようにし
て、側鎖にジスルフィド結合を導入したチオフェン誘導
体2(化1)を得た。
Examples of the present invention will be specifically described below. (1) Synthesis of thiophene derivative Sodium hydride 24g (1mol) in 100ml benzene
Was added, 84 g (1 mol) of 3-bromothiophene was added, and the mixture was refluxed for 1 hour. Trans-1,2-
30.4 g (1 mol) of dithian-4,5-diol was mixed and refluxed for 3 hours to obtain a solution of 3-bromothiophene derivative 1. 2 ml of sodium hydride in 100 ml of benzene
After adding 4 g (1 mol), 9.4 g (0.1 mol) of bromomethane was added, and the solution was refluxed for 1 hour. The solution of 3-bromothiophene derivative was added to the solution and refluxed for 3 hours. Thus, a thiophene derivative 2 (Chemical Formula 1) having a disulfide bond introduced into its side chain was obtained.

【0016】[0016]

【化1】 [Chemical 1]

【0017】(2)サイクリックボルタンメトリー (1)で得られたチオフェン誘導体2(1mol/dm3)を
モノマーとしてプロピレンカーボネート中で、過塩素酸
リチウムを支持電解質として飽和カロメル参照電極に対
し1.2v で定電位電解することにより、厚さ約20μ
mのフィブリル構造を有するチオフェン誘導体重合膜を
黒鉛電極上に形成した。この電極を、室温で、LiCl
4を1M 溶解したジメチルホルムアミド中でAg/A
gCl参照電極に対し−0.7〜+0.2vの間で電位
を 50 mV/sec の速度で直線的に増減させ電解したと
ころ、図1の曲線Aで示される電流電圧特性を得た。ま
た、比較例として、トランス−1,2−ジチアン−4,
5−ジオールを0.05mol/dm3、LiClO4を0.5
mol/dm3溶解したジメチルホルムアミド中でAg/Ag
Cl参照電極に対し+0.8v で定電位電解しポリチオ
フェンを有しない黒鉛電極を用いて同様に電解したとこ
ろ図1の曲線Bで示される電流電圧特性を得た。さら
に、ポリチオフェン薄膜のみを有する黒鉛電極について
も同様な電解を行い図1の曲線Cで示される電流電圧特
性を得た。曲線Aは、ポリチオフェンのみを有する黒鉛
電極の電流電圧曲線Cと、トランス−1,2−ジチアン
−4,5−ジオールの酸化還元反応に対応する電流ピー
クとが重なった電流電圧特性を与えている。トランス−
1,2−ジチアン−4,5−ジオールの酸化還元に対応
する電流ピークのうち、特に還元反応に対応する電流ピ
ーク位置が−0.6v 〜−0.2v 付近まで移動し、導
電性高分子であるポリチオフェンの存在でトランス−
1,2−ジチアン−4,5−ジオールの酸化還元が促進
されていることがわかる。これに対し、ポリアニリン薄
膜を有しない黒鉛電極で得られた曲線Bでは、トランス
−1,2−ジチアン−4,5−ジオールの酸化還元に対
応する電流ピークが得られるが、酸化ピークと還元ピー
クとの電位差が0.6v 近くに及び、酸化還元は準可逆
で反応の速度は遅く、この電極を電池の正極に用いる
と、充電と放電の電圧差が0.6v 以上に大きくなると
ともに、大電流での充放電では効率低下の大きい電池と
なる。 (3)充放電サイクル特性 (1)で得られたチオフェン誘導体2(1mol/l)をモ
ノマーとしてプロピレンカーボネート中、過塩素酸リチ
ウムを支持電解質として飽和カロメル参照電極に対し
1.2〜1.5V で定電位電解することにより、厚さ約
20μmのフィブリル構造を有するチオフェン誘導体重
合膜を黒鉛電極上に形成した。この電極を、作用極と
し、Li線を参照電極、対極にLi箔、電解質溶液にL
iClO4を1M溶解したジメチルホルムアミドの構成で
電池を作成した。この電池を用いて、充電電位を4.0
V で15時間充電後、終止電圧2.0V 、放電電流0.
5mAの条件で充放電サイクル特性試験を行った。このよ
うにして、図2の曲線Aで示される充放電サイクル特性
曲線を得た。図2の横軸はサイクル数、縦軸は1サイク
ル目の放電容量を100としたときの放電容量である。
また、比較例として、ポリチオフェンとスルフィド化合
物である2,5−ジメルカプト−1,3,4チアゾール
とポリエチレンオキサイドを重量比3:1:1で混合し
て作成した複合電極を作用極とし、同様の電池を組み、
同様の条件で充放電サイクル特性試験をおこなった。こ
の結果、図2の曲線Bで示される充放電サイクル特性曲
線を得た。曲線Bは、10サイクル程度で充放電効率が
低下しているが、曲線Aでは、充放電サイクル特性が5
0サイクルで初期値の50%に向上している。
(2) Cyclic voltammetry The thiophene derivative 2 (1 mol / dm 3 ) obtained in (1) was used as a monomer in propylene carbonate, and lithium perchlorate was used as a supporting electrolyte to a saturated calomel reference electrode at 1.2 v. About 20μ thick by constant potential electrolysis at
A thiophene derivative polymer film having m fibril structure was formed on a graphite electrode. This electrode was placed at room temperature in LiCl
Ag / A in dimethylformamide containing 1M of O 4
When the potential was linearly increased / decreased at a rate of 50 mV / sec with respect to the gCl reference electrode at a rate of 50 mV / sec and electrolysis was performed, the current-voltage characteristics shown by the curve A in FIG. 1 were obtained. Moreover, as a comparative example, trans-1,2-dithiane-4,
0.05 mol / dm 3 of 5-diol and 0.5 of LiClO 4
mol / dm 3 Ag / Ag in dissolved dimethylformamide
When the electrolysis was performed at a constant potential of + 0.8v with respect to the Cl reference electrode and the same electrolysis was performed using a graphite electrode having no polythiophene, the current-voltage characteristics shown by the curve B in FIG. Further, the same electrolysis was performed on the graphite electrode having only the polythiophene thin film, and the current-voltage characteristics shown by the curve C in FIG. 1 were obtained. The curve A gives current-voltage characteristics in which the current-voltage curve C of the graphite electrode having only polythiophene and the current peak corresponding to the redox reaction of trans-1,2-dithian-4,5-diol are overlapped. . Transformer
Among the current peaks corresponding to the oxidation-reduction of 1,2-dithian-4,5-diol, the current peak position particularly corresponding to the reduction reaction moves to around -0.6v to -0.2v, and the conductive polymer In the presence of polythiophene
It can be seen that the redox of 1,2-dithian-4,5-diol is promoted. On the other hand, in the curve B obtained with the graphite electrode having no polyaniline thin film, the current peak corresponding to the redox of trans-1,2-dithiane-4,5-diol is obtained, but the oxidation peak and the reduction peak are obtained. The potential difference between and is close to 0.6v, the oxidation-reduction is quasi-reversible, and the reaction speed is slow. If this electrode is used as the positive electrode of the battery, the voltage difference between charging and discharging becomes larger than 0.6v and the A battery with a large decrease in efficiency is obtained by charging and discharging with electric current. (3) Charge / discharge cycle characteristics In propylene carbonate using the thiophene derivative 2 (1 mol / l) obtained in (1) as a monomer, and lithium perchlorate as a supporting electrolyte for a saturated calomel reference electrode.
A thiophene derivative polymer film having a fibril structure with a thickness of about 20 μm was formed on the graphite electrode by electrolysis at a constant potential of 1.2 to 1.5 V. This electrode was used as the working electrode, the Li wire was the reference electrode, the counter electrode was Li foil, and the electrolyte solution was L.
A battery was made with a composition of dimethylformamide in which 1M of iClO 4 was dissolved. Using this battery, the charging potential is 4.0
After being charged at V for 15 hours, the final voltage was 2.0 V and the discharge current was 0.
A charge / discharge cycle characteristic test was conducted under the condition of 5 mA. In this way, the charge / discharge cycle characteristic curve shown by the curve A in FIG. 2 was obtained. The horizontal axis of FIG. 2 is the number of cycles, and the vertical axis is the discharge capacity when the discharge capacity at the first cycle is 100.
As a comparative example, a composite electrode prepared by mixing polythiophene, a sulfide compound, 2,5-dimercapto-1,3,4thiazole, and polyethylene oxide at a weight ratio of 3: 1: 1 was used as a working electrode. Assemble the battery,
A charge / discharge cycle characteristic test was conducted under the same conditions. As a result, the charge / discharge cycle characteristic curve shown by the curve B in FIG. 2 was obtained. In the curve B, the charge / discharge efficiency is reduced after about 10 cycles, but in the curve A, the charge / discharge cycle characteristic is 5
It has improved to 50% of the initial value in 0 cycle.

【0018】なお、本実施例においては、チオフェンを
用いた場合について説明したが、上記のその他の導電性
高分子を用いても、同様の効果が得られる。さらに、本
発明の重合膜を粉砕し集電体と混合しても同様の効果を
発揮することは自明である。
Although the case of using thiophene has been described in the present embodiment, the same effect can be obtained by using the other conductive polymer described above. Further, it is obvious that the same effect can be exhibited even if the polymerized film of the present invention is pulverized and mixed with a current collector.

【0019】[0019]

【発明の効果】以上の実施例の説明からも明らかなよう
に、本発明の導電性高分子を形成するモノマー化合物の
分子内に、複数のチオール基を有する化合物を側鎖とし
て導入したモノマー化合物の重合物を主体とする電極で
は、従来のジスルフィド系化合物のみでは困難であった
大電流での電解が可能となる。そして、この電極を正極
に用い、金属リチウムを負極に用いることにより、大電
流での充放電が可能な高エネルギー密度二次電池を構成
することができる。
EFFECTS OF THE INVENTION As is clear from the above description of the embodiments, a monomer compound in which a compound having a plurality of thiol groups is introduced as a side chain into the molecule of the monomer compound forming the conductive polymer of the present invention. In the electrode mainly composed of the polymer, it becomes possible to electrolyze at a large current, which has been difficult with a conventional disulfide compound alone. By using this electrode for the positive electrode and metallic lithium for the negative electrode, a high energy density secondary battery capable of charging and discharging with a large current can be configured.

【0020】なお、本発明は電池の他に、電極を対極に
用いることで発色・退色速度の速いエレクトロクロミッ
ク素子、応答速度の速いグルコースセンサーなどの生物
化学センサーを得ることができるし、また、書き込み・
読み出し速度の速い電気化学アナログメモリーを構成す
ることもできる。
In addition to the battery, the present invention makes it possible to obtain a biochemical sensor such as an electrochromic element having a fast coloring / fading speed and a glucose sensor having a fast response speed by using an electrode as a counter electrode. writing·
It is also possible to construct an electrochemical analog memory with a high read speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合電極および比較例の電極の電流−
電圧特性を示す図
FIG. 1 is a current of a composite electrode of the present invention and an electrode of a comparative example-
Diagram showing voltage characteristics

【図2】同充放電サイクル特性を示す図FIG. 2 is a diagram showing the same charge / discharge cycle characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外邨 正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 竹山 健一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tadashi Sotobe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kenichi Takeyama             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数個のチオール基を有する化合物を、側
鎖に導入したモノマー化合物を重合して形成した導電性
高分子を主体としてなる可逆性電極。
1. A reversible electrode composed mainly of a conductive polymer formed by polymerizing a monomer compound having a plurality of thiol groups introduced into its side chain.
【請求項2】チオール基間の酸化還元反応が、分子内あ
るいは分子間のチオール基間で起こるようにした可逆性
電極。
2. A reversible electrode in which an oxidation-reduction reaction between thiol groups occurs within a molecule or between thiol groups between molecules.
JP3145857A 1991-06-18 1991-06-18 Reversible electrode Pending JPH056708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145857A JPH056708A (en) 1991-06-18 1991-06-18 Reversible electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145857A JPH056708A (en) 1991-06-18 1991-06-18 Reversible electrode

Publications (1)

Publication Number Publication Date
JPH056708A true JPH056708A (en) 1993-01-14

Family

ID=15394689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145857A Pending JPH056708A (en) 1991-06-18 1991-06-18 Reversible electrode

Country Status (1)

Country Link
JP (1) JPH056708A (en)

Similar Documents

Publication Publication Date Title
JP4259617B2 (en) Electrochemical storage battery comprising at least one electrode prepared from a fluorophenylthiophene polymer
US6090504A (en) High capacity composite electrode and secondary cell therefrom
US20150380730A1 (en) Single Component Sulfur-Based Cathodes For Lithium And Lithium-Ion Batteries
JPH0574459A (en) Reversible electrode material
JP3116451B2 (en) Reversible electrode
US6403255B1 (en) Polyvinyl mercaptan redox material for cathodes in non-aqueous batteries
JP3089707B2 (en) Solid electrode composition
JP2940198B2 (en) Solid electrode composition
JP3115153B2 (en) Electrochemical devices and secondary batteries
JP3239374B2 (en) Electrode composition
JPH056708A (en) Reversible electrode
JP3111506B2 (en) Reversible electrode
JPH04264363A (en) Reversible compound electrode
JPH05135769A (en) Reversible electrode
JP3047492B2 (en) Solid electrode composition
JPH04272659A (en) Reversible electrode
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
US10355277B2 (en) Single component sulfur-based cathodes for lithium and lithium-ion batteries
JPH05135767A (en) Reversible electrode
JP2607571B2 (en) Novel conductive polymer and secondary battery using it as cathode material
JPH06150932A (en) Electrode
Paramasivam et al. Fabrication and Characterization of Zn-POLYANILINE Battery
Su et al. A Novel Conducting Polymer with OSSO Bonds for Positive Material: Poly (2, 2′-Diaminobenzyloxydisulfide)
JPH08329947A (en) Composite electrode and manufacture thereof